Нелинейная эволюция структур в средах без дисперсии и диффузия частиц
Диссертация
Давлением обычно пренебрегают, поскольку материя является очень холодной. Член, содержащий расширение, пропорционален скорости и появляется, потому что уравнение записано в сопровождающей системе координат. Можно показать, что при малых флуктуациях (линейное приближение) описание само-гравитационного газа в расширяющейся системе сводится лишь к учету нарастающей моды потенциального решения… Читать ещё >
Список литературы
- Е W., Rykov Yu.G. and Sinai Ya.G. Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys., 177 349−380 (1996).
- Burgers J.M. Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Kon. Ned. Akad. Wet. Verh., 17 1 (1939).
- Burgers J.M. The Nonlinear Diffusion Equation, Dordrecht, (1974).
- Frisch U. Turbulence: the Legacy of A.N. Kolmogorov, Cambridge University Press,(1995).
- Kraichnan R. Lagrangian-History Statistical theory for Burgers' Equation. Phys. Fluids Mech., 11 266−277 (1968).
- Hopf E. The partial differential equation u’t -f uu’x = u’xx.Cbmm. Pure Appl. Mech., 3 201 (1950).
- Cole J.D. On a quasi-linear paribolic equation occurring in aerodynamics. Quart. Appl. Math., 9 225 (1951).
- Frachebourg L., Martin Ph.A. Exact statistical properties of the Burgers equation. J. Fluid. Mech., 417 323 (2000).
- Гурбатов C.H., Малахов А. Н., Саичев А. И. Нелинейные случайные волны в средах без дисперсии, Наука, Москва, (1990).
- Gurbatov S.N., Malakhov A.N., Saichev A.I. Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays, Particles, Manchester University Press, (1991).
- Woyczynski W.A. Burgers-KPZ Turbulence. Gottmgen Lectures, Berlin, (1998).
- Kida S. Asymptotic properties of Burgers turbulence. J. Fluid Mech., 93 (2) 337−377(1979).
- Гурбатов С. H., Саичев А. И. Вырождение одномерной акустической турбулентности при больших числах Рейнольдса. ЖЭТФ, 80 (2) 689−703 (1981).
- Fournieir J. D. and Frisch U. L’equation de Burgers detrerministe et statistique. J. Mech. Theor. Appl. (Paris), 2 699−750 (1983).
- Sinai Ya. Statistics of shocks in solutions of inviscid Burgers equation. Commun. Math. Phys., 148 601−622 (1992).
- Gurbatov S.N., Saichev A.I. Inertial nonlinearitv and chaotic motion of particle fluxes. Chaos, 3 (3) 333−358 (1993).
- Albeverio S., Molchanov A. A., Surgailis D. Stratified structure of the universe and Burgers' equation a probabilistic approach. Prob. Theory Relat. Fields, 100 457−484 (1994).
- Molchanov S. A., Surgailis D., Woyczynski W. A. Hyperbolic asymptotics in Burgers turbulence and extremal processes. Commun. Math. Phys., 168 209−226 (1995).
- Avellaneda A., Ryan R., Weinan E. PDFs for velocity and velocity gradients in Burgers' turbulence. Phys. Fluids, 7 (12) 3067−3071 (1995).
- Gurbatov S. N., Simdyankin S. I., Aurell E., Frisch U., Toth G. On the decay of Burgersl turbulence. J. Fluid. Mech., 344 339−374 (1997).
- Molchan G. M. Burgers equation with self-similar Gaussian initial data: tail probabilities. J. of Stat. Phys., 88 1139−1150 (1997).
- Newman T. J. Dynamical scaling in dissipative Burgers turbulence. Phys. Rev. E, 55 (6) 6989−6999 (1997).
- Ryan R. Large-deviation analysis of Burgers turbulence with white-noise initial data. Comm. Pure Appl. Math., 11 47−75 (1998).v
- Hu Y., Woyczynski W.A. An extremal rearrangement property of statistical solutions of Burgers' equation. Ann. Appl. Probab., 4 838−858 (1994).
- Hu Y., Woyczynski W.A. A maximum principle for unimodal moving average data of the Burgers equation. Probab. Math. Statist., 15 153−171 (1994).
- Gurbatov S., Frisch U. Advances in Turbulence VII, Acad. Publ. Nederlands, 4 371 998).
- Gurbatov S.N., Enflo B.O., Pasmanik G.V. The decay of pulses with complex structure according to Burgers' equation. ACTA AC USTIC A, 85 181 (1999).
- She Z.S., Aurell E. and Frisch U. The inviscid Burgers equation with initial data of Brownian type. Commun. Math. Phys., 148 623−641 (1992).
- Гурбатов C.H., Пасманик Г. В. О самосохранении крупномасштабных структур в нелинейной вязкой среде, описываемой уравнением Бюргерса. ЖЭТФ, 115 21 999).
- Gurbatov S.N. Universality classes for self-similarity of noiseless multidimensional Burgers turbulence and interface growth. Phys. Rev. E, 61 2595 (2000).
- Yakhot V. J. Decay of three-dimensional turbulence at high Reynolds numbers. Fluid Mech., 505 87Ц91 (2004).
- Whitham G.B. Linear and Nonlinear Waves, Wiley, New York, (1974).
- Рудеико O.B., Солуян С. И. Нелинейная акустика, Наука, Москва, (1975).
- Gutkin Е., Кас М. Propagation of chaos and the Burgers equation. SI AM J. Appl. Math., 43 971−980 (1983).
- Sznitman A. A propagation of chaos results for Burgers' equation. Probab. Theory Related Fields, 71 581−613 (1986).
- Avellaneda M., E W. Statistical properties of shocks in Burgers turbulence. Comm. Math. Phys., 172 13−38 (1995).
- Holden H., Oksenda В., Uboe J., Zhang T.S. Stochastic Partial Differential Equations. A modelling, White Noise, Functional Approach, Birkhouser-Boston, (1996).
- Bertini L., Cancrini N., Jona-Lasinio G. The stochastic Burgers equation. Comm.Math. Phys., 165 211−232 (1994).
- Boghosian B.M., Levermore C. D. A cellular automaton for Burgers equation. Complex System, 1 17−30 (1987).
- Brieger L., Bonomi E. A stochastic lattice gas for Burgers' equation: a practical study. J. Statist. Phys., 69 837−855 (1992).
- Abraham D. Solvable model with a roughening transition for a planar Ising ferro-magnet. Phys. Rev. Lett, 44 (18) 1165−1168 (1980).
- Huse D. A., Henley C. L. Pinning and roughening of domain walks in Ising systems due to random impurities. Rev. Lett, 54 (25) 2708−2711 (1985).
- Blatter G., Feigelman M. V, Geshkenbein V. B, Larkin A. I. & Vinokur V. M. Vortices in high-temperature superconductors. Rev. Modern Phys., 66 1125−1388 (1994).
- Cheklov A., Yakhot V. Kolmogorov turbulence in a randomforce-driven Burgers equation: anomalous scaling and probability functions. Phys. Rev. E, 52 5681 (1995).
- E W., Khanin K., Mazel A. & Sinai Ya. G. Probability distribution functions for the random forced Burgers equation. Phys. Rev. Lett., 78 1904 (1997).
- Boldyrev S.A. Phys. Rev. E, 59, 2971 (1999).
- Davoudi J., Masoudi A.A., Tabar M.R., Rastegar A.R. & Shahbazi F. Statistical Theory for the Kardar-Parisi-Zhang Equation in 1+1 Dimension. Phys. Rev. E, 63 6308 (2001).
- Kardar M., Parisi G., Zhang Y. Dynamic scaling of growing interfaces. Phys. Rev. Lett., 57 (9) 889−892 (1986).
- Esipov S., Newman T. Interface growth and Burgers turbulence: the problem of random initial conditions. Phys. Rev. E, 48 (2) 1046 (1993).
- Esipov S., Newman T. Interface growth and Burgers turbulence: the problem of random initial conditions. II Phys. Rev. E, 48 (3) 2070 (1993).
- Borisov A., Sharypov O. Perturbation front structure in chemically reacting systems. Proceedings of the International Forum on mathematical modelling and computer simulation of processes in energy systems. Yugoslavia, March 1989.
- Barabasi A.L. k Stanley H.E. Fractal Concepts in Surface Growth, Cambridge University Press, (1995).
- Medina E., Hwa T., Kardar M. & Zhang Y. Phys. Rev. A, 39 3053 (1989).
- Halpin-Healy T., Zhang Y. Surface growth, directed polymers and all that. Phys.Rep., 254 215−362 (1995).
- Kuznetzov E.A., Minaev S.S. Formation and propagation of cracks on the flame surface. Phys. Let. A, 221 187 (1996).
- Bouchaud J.P., Mezard M. & Parisi G. Scaling and intermittency in burgers' turbulence. Phys. Rev. E, 52 3656 (1995).
- Csanady G.T. Turbulent Diffusion in the Environment, Geophys. and Astrophys., Vol. 3, Dordrecht, D. Reidel Publ. Co., (1973).
- Ungarish M. Hydrodynamics of Suspensions: Fundamentals of Centrifugal and Gravity Separation, Berlin, Springer-Verlag, (1993).
- Pelletier Jon D. A Stochastic Diffusion Model of Climate Change, ao-sci/9 510 001.
- Hamburger D.A., Yinnon A.T., Farbman I., Ben-Shaul A., Benny G.R. The Scattering from Compact Clusters and from Diffusion-Limited Aggregates on Surfaces. Surface Science, 327 165−191 (1995).
- Okubo A. Diffusion and Ecological Problems: Mathematical Models, Biomathematics, Vol. 10, Berlin, Springer-Verlag, (1980).
- Saichev A.I., Woyczynski W.A. Stochastic Models in Geosystems, Vol. 85, New York, Springer-Verlag, 359, (1997).
- Antoni M., Torcini A. Anomalous diffusion as a signature of collapsing phase in two dimensional self-gravitating systems Phys. Rev. E, 57 6233 (1998).
- Kar S., Banik S., Ray D. Class of self-limiting growth models in the presence of nonlinear diffusion, physics/203 092.
- Basset A.B. A treatise on hydrodynamics, Vol. 2, Deighton Bell, Cambridge, (1888).
- Basset A.B. On the descent of a sphere in a viscous liquid. Quart. J. Math, 41 369−381 (1910).
- Batchelor G.K. An introduction to fluid dynamics, Cambridge University Press, (1967).
- Ландау Л.Д., Лифшиц Е. М. Теоретическая физика, том VI, М.: Наука, (1988).
- Кляцкин В.И. Статистическое описание динамических систем с флуктуирующими параметрами, М.:Наука, (1975).
- Кляцкин В.И. Стохастические уравнения и волны в мучайно неоднородных средах., М.:Наука, (1980).
- Klyatskin V.I. Statistical description of the diffusion of a passive tracer in a random velocity field. Phyics Uspekhi, 37 (5) 501−513 (1994).
- Жукова И.С., СаичевА.И. Локализация сгустков плавучих частиц на поверхности турбулентного потока. Прикладная математика и механика, 64 (4) 624−630, (2000).
- Balkovsky Е., Falkovich G. &-с Fouxon A. Intermittent distribution of inertial particles in turbulent flows. Phys Rev. Lett., 86 2790 (2001).
- Zhou Y., Wexler A.S. & Wang L.P. Modelling turbulent collision of bidlsperse inertial particles. J. Fluid Mech., 433 77 (2001).
- Gawedzki K., Vergassola M. Phase Transition in the Passive Scalar Advection. Physica D, 138 63 (2000).
- Falkovich G., Gawedzki K. & Vergassola M. Particles and fields in fluid turbulence. Rev. Mod. Phys., 73 913 (2001).
- Klessen R., Lin D. Diffusion in supersonic, turbulent, compressible flows. Phys.Rev., 67 46 311 (2003).
- Crlsanti A., Falcioni M., Paladin G. & Vulpiaini A. Anisotropic diffusion in fluids with steady periodic velocity fields. J. Phys. A: Math. Gen., 23 3307−3315 (1990).
- Falkovich G., Pumir A. Intermittent distribution of heavy particles in a turbulent flow. Phys. Fluids, 16 47 (2004).
- Maxey M.R., Riley J. Equation of motion of a small rigid sphere in a nonuniform flow. Phys. Fluids, 26 88 (1983).
- Tory E.M. Sedimentation of Small Particles in a Viscous Fluid. Advances in Fluid Mechanics, Vol. 7, Computational Mechanics Publ., UK, (1996).
- Bee J., Celani A., Cencini M. & Musacchio S. Clustering and collisions of heavy particles in random smooth flows .CD/407 013, (2004).
- Bee J. Fractal clustering of inertial particles in random flows. Phys. Fluids, 15 81 (2003).
- Bee J., Gaw K. & Horvai P. Intermittent distribution of tracers advected by a compressible random flow. CD/310 015, (2003).
- Frisch U., Bee J. & Villone B. Singularities and the distribution of density in the Burgers/adhesion model, condmat/ 9 912 110, Physica D (2000).
- Angelucci M., Grella E., Mainardi F. & Tampieri F. On passive transport in a Burgers flow. Procedmgs of the conference «Non-lmear diffusion phenomenon, Narosa Publ. House, India, 220−235, (1993).
- Mainardi F., Pironi P. & Tampieri F. A numerical approach to the generalized Basset problem for a sphere accelerating in a viscous fluid. Proceedings of CFD 95, Vol. II, 105−112, (1995).
- Angelucci M., Tampieri F. & Mainardi F. Dynamics of an impurity in a ID Burgers flow. J. Phys. A: Math. Gen., 27 527−532 (1994).
- Fung J.H., Perkins R.J. Particle trajectories in turbulent flow generated by true-varying random Fourier modes. Advances in Turbulence 2., Springer Verlag, Berlin, 322−332, (1989).
- Roberts P. J. fluid Mech., 11 257 (1961).
- Gurbatov S.N., Saichev A.I. Probability distribution and spectra of potential hydrodynamic turbulence. Radiophys. Quant. Electr., 27 303−313 (1984).
- Gurbatov S.N., Saichev A.I. k, Shandarin S.F. Large Scale Structure of the Universe in the frame of the model equation of nonlinear diffusion. MNRAS, 236 385 (1989).
- Shandarin S.F. & Zeldovich Ya.B. The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys., 61 185 (1989).
- Vergassola M., Dubrulle B., Frisch U. & Noullez A. Burgers’equation, devil’s staircase and the mass distribution for large scale structures. Astron. Astrophys., 289 325 (1994).
- Coles P., Peter & Kate Month. Not. R. astr. Soc., 342 (1), 176−184 (2003).
- Frisch U., Matarrese S., Mohayaee R., Sobolevski A. A reconstruction of the initial conditions of the Universe by optimal mass transportation. Nature, 417 260 2002.
- Bardeen J.M., Bond J.R., Kaiser N. & Szalay A.S. Cosmic fluctuation spectra with large-scale power. Astrophysical J., 304 15−61 (1986).
- Gurbatov S.N. Proceedings of the International school of physics «E. Fermi», Course CXXXII: Dark Matter in the Universe, Society Italiana di Fisica, 645−660,(1996).
- Weinberg D., Gunn J. Large-Scale Structure and the adhesion approximation. MNRAS, 247 260 (1990).
- Frisch U. and Bee J. Burgulence. New Trends in Turbulence, Les Houches Session LXXTV2000, Springer EDP-Sciences, p.341, (2001).
- Suidan T.M. A one-dimensional gravitationally interacting gas and the convex minorant of Brownian motion. Russian Math. Surveys, 56 687−708 (2001).
- Coles P., Lucchin F. Cosmology: the Origin and Evolution of Cosmic Structures, J. Wiley and sons, Chichester, (1995).
- Bogaevsky I.A. Matter evolution in Burgulence, math-ph/407 073.
- Peebles P.J. The Large-scale Structure of the Universe, Princeton University Press, NJ, (1980).1051 Harrison E.R. Phys. Rev. D, 1 2726−2730, (1970).
- Weinberg S. Gravitation and Cosmology, Wiley, (1972).
- Doroshkevich A.G., Kotok E.V., Novikov I.D., Poludov A.N., Shandarin S.F. & Sigov Yu.S. MNRAS, 192 321 (1980).
- Zeldovich Ya.B. Gravitational instability: an approximate theory for large density perturbations. Astronom. Astrophys5 84−89 (1970).
- Fanelli D., Aurell E. & Noullez A. Heap-based algorithm and one-dimensional expanding Universe. Proceeding of IAU Symposium 208, Japan, (2001).
- Мотков А.Ю. Использование принципа минимума при решении уравнений Бюр-герса и KPZ. Материалы научной школы-конференции «Нелинейные дни в Саратове для молодых-99», Саратов, 116−119, (1999).
- Гурбатов C.H., Мошков А. Ю. Эволюция крупномасштабных структур в многомерной турбулентности Бюргерса. Труды Нижегородской акустической научной сессии, ИНГУ, 150−152, (2002).
- Gurbatov S.N., Moshkov A.Yu. Isotropisation Of Multi-Dimensional Burgers Turbulence. Proceedings of International Conference «Frontiers Of Nonlinear Physics», Nizhni Novgorod, 6 pp., in print, (2004).
- Гурбатов C.H., Мошков А. Ю. Эволюция анизотропных полей в многомерной турбулентности Бюргерса. Сборник трудов XV сессии Российского акустического общества, изд-во ИПФРАН, Нижний Новгород, 6 стр., в печати, (2004).
- Crighton D.G., Scott J.F. Asimptotic solution of model equations in nonlinear acoustics. Phil.Trans.R.Soc.Lond., A292 101−134 (1979).
- Федорюк M.B. Метод перевала, М.:Наука, (1977).
- Курант Р. Уравнения с частными производными, М.:Мир, (1964).
- WMAP Mission¦ Results, http: www.map.gsfc.nasa.gov, U.S. Govt., (2003).
- Bennett C.L. First Year Wilkinson Microwave Anisotropy Probe Observations: Preliminary Maps and Basic Results, (2003).
- Kirshner R.P. Throwing Light on Dark Energy. Science, 300 1914−1918 (2003).
- Rouet J.L., Feix M.R. and Navet M. Vistas in Astronomy, 33 357 (1990).
- Ермаков С.М., Михайлов Г. А. Статистическое моделирование, М: Наука, (1982).
- Шалыгин А. С, Палаган Ю. И. Прикладные методы статистического моделирования, JL: Машиностроение, (1986).
- Михайлов Г. А. Докл. АН СССР., 238 793−795 (1978).