Неупругое рассеяние света в модельных белках и полупроводниковых наноструктурах CdSe/ZnS, функционализированных пептидами
Диссертация
Апробация работы. Обоснованность и достоверность результатов работы подтверждается их обсуждением на отечественных и международных конференциях и публикациями в ведущих реферируемых журналах. Результаты докладывались на следующих конференциях: 11 -ой Международной конференции по рассеянию фононов в конденсированных средах, С-Петербург, 2004; 14-ом Международном симпозиуме «Наноструктуры: физика… Читать ещё >
Список литературы
- Landsherg G.S., Mandelstam L.I. Uber die Lichtzerstrenung in Kristallen. // Zs. Phys. B. -1928.-v.50.-pp.750.
- Raman С .V., Krishnan K.S. A New Type of Secondary Radiation. // Nature. -1928. -v.121. -pp.508−511.
- Гинзбург B.JI., Фабелинский И. Л. Еще раз к истории открытия комбинационного рассеяния света. // Вестник РАН. -2003. -т.73. -С.215−227.
- Фабелинский И.Л. Комбинационному рассеянию света 70 лет. // УФН. -1998. -т.168. -С.1341.
- Горелик B.C., Сущинский М. М., Комбинационное рассеяние света в кристаллах, УФН. -1969. -т.98. -С.2. Сущинский М. М. Резонансное рассеяние света, УФН. -1988. -Т.154.-С.З.
- Loudon R. The Raman Effect in Crystals. // Advances in Physics. -1964. -v.52. -pp. 424 482.
- Набиев И.P., Ефремов P.Г., Чуманов Г. Д. Гигантское комбинационное рассеяние и его применение к изучению биологических молекул. // Успехи физических наук. -1988. -т. 154. -С.459−496.
- Ojha А.К., Singha A., Dasgupta S., Singh R.K., and Roy A. pH dependent surface enhanced Raman study of the Phe+ag complex and DFT calculations for spectral analysis. // Chemical Physics Letters. -2006. -v.431. -pp. 121 -126.
- Sonois V., Faller P., Bacsa W., Fazouan N., and Esteve A. Nanoscale needle shaped histidine and narrow vibrational Raman bands using visible excitation. // Chemical Physics Letters. -2007. -v.439. -pp.360−363.
- Hannah S., Shafaat B.S., Michael T.J., and Judy E.R. Resonance Raman Characterization of a Stable Tryptophan Radical in an Azurin Mutant. // J. Phys. Chem. B. -2009. -v.113. -pp.382−388.
- Tu E.R. Raman spectroscopy in biology: Principles and applications. New York, Wiley. -1982.
- Austin J.C., Rodgers K.R., Spiro T.G. Protein structure from ultraviolet resonance Raman spectroscopy. In: Methods in enzymology. Chap. 15. -1993. -v.226. -pp.374−396.
- Carey P.R. Raman spectroscopy, the sleeping giant in structural biology, awakes. // J. Biol. Chem. -1999. -v.274. -pp.26 625−26 628.
- Kudryavtsev A.B., Christopher G., Smith C.D., Mirov S.B., Rosenblum W.M., DeLucas W.M. The elect of ordering of internal water in thaumatin and lysozyme crystals as revealed by Raman method. // J. Cryst. Growth. -2000. -v.219. -pp. 102−114.
- Raso S.W., Clark P.L., Hasse-Pettingell C., King J., Thomas G.L., Distinct Jr. cysteine sulfhydryl environment detected by analysis of Raman S-H markers of Cys-Ser mutant proteins. // J. Mol. Biol. -2001. -v.307. -pp.899−911.
- Carey P.R., Dong J. Following Ligand Binding and Ligand Reactions in Proteins via Raman Crystallography. // Biochemistry. -2004. -v.43. -pp.8885−8893.
- Tuma R. Raman spectroscopy of proteins: From peptides to large assembles. // J. Raman Spectrosc. -2005. -v.36. -pp.307−319.
- Carey P.R. Raman crystallography and other biochemical applications of Raman microscopy. //Annu Rev Phys Chem. -2001. -v.57. -pp.527−554.
- Gelder J.D., Gussem K.D., Vandenabeele P. and L. Moens. Reference database of Raman spectra of biological molecules. // J. Raman Spectrosc. -2007. -v.38. pp.1133−1147.
- Takeuchi H., and Harada I. Normal coordinate analysis of the indole ring. // Spectrochim. Acta. -1986. -v.42A. -pp. 1069−1078.
- Takeuchi H., Kimura Y., Koitabashi I., and Harada I. Raman bands of N-deuterated histidinium as markers of conformation and hydrogen bonding. // J. Raman Spectrosc. -1991. -v.22. -pp.233−236.
- Takeuchi H., Matsuno M., Overman S.A., and Thomas G.J., Raman Jr. linear intensity difference of flow-oriented macromolecules: Orientation of the indole ring of tryptophan-26 in filamentous virus fd. // J.Am. Chem. Soc. -1996. -v.l 18. -pp.3498−3507.
- Benevides J.M., Overman S.A., and Thomas G.J., Raman Jr. Spectroscopy of Proteins Current Protocols in Protein Science. John Wiley & Sons, Inc. 17.8.1−17.8.35 (2003).
- Wojtuszewski K., and Mukerji I. The HU-DNA binding interaction with UV resonant Raman spectroscopy: Structural elements of specificity. // Protein Science. -2004. -v. 13. -pp. 2416−2428.
- Wen Z.Q., Thomas G.J., UV Jr. resonance Raman spectroscopy of DNA and protein constituents of viruses: Assignments and cross sections for excitations at 257, 244, 238, and 229 nm. // Biopolymers. -1998. -v.45. -pp.247−256.
- Overman S.A., Thomas G.J., Novel Jr. vibrational assignments for proteins from Raman spectra of viruses. //J. Raman Spectrosc. -1998. -v.29 -pp.29 (1998).
- Wen Z.Q., Thomas G.J., Ultraviolet Jr. resonance Raman spectroscopy of the filamentous virus Pf3: Interaction of Trp 38 specific to the assembled virion subunit. // Biochemistry.2000. -v.39. -pp. 146−152.
- WenV, Thomas G.J., Overman SA, Bondre P. Structure and organization of bacteriophage Pf3 probed by Raman and ultraviolet resonance Raman spectroscopy. // Biochemistry.2001.-v.40. -pp.449−458.
- Gelder J.D., Gussem J.D., Vandenabeele P. Vos P.D., and Moens L. Methods for extracting biochemical information from bacterial Raman spectra: An explorative study on Cupriavidas metalladurans. // Analytical chimica acta. -2007. -v.585. -pp.234−240.
- Lord R.C., and Yu N. Laser-excited Raman spectroscopy of biomolecules. I. Native lysozyme and its constituent amino acids. // J. Mol. Biol. -1970. -v.50. -pp.509−524.
- Bussian B.M., Sandler C. How to determine protein secondary structure in solution by Raman Spcctrosxopy: Practical guide and test case DNase I.// Biochemistry. -1989. -v.28. -pp.4271.
- Xu M., Shashilov V., and Lednev I.K. Probing the Cross-a Core Structure of Amyloid Fibrils by Hydrogen-Deuterium Exchange Deep Ultraviolet Resonance Raman Spectroscopy. J. Am. Chem. Soc. -2007. -v. 129. -pp. 11 002−11 003.
- Story R.M., Weber I.T. & Steitz T.A. The structure of the E. coli recA protein monomer and polymer. // Nature. -1992. -v.355. -pp.318−325.
- Story R.M., & Steitz R.M., T. A. Structure of the recA protein-ADP complex. // Nature. -1992.-v.355.-pp.374−376.
- Xing X., and Bell C.E. Crystal Structures of Escherichia coli RecA in a Compressed Helical Filament. // Mol. Biol. -2004. -v.342. -pp.1471−1485.
- Roca A.I., and Cox M.M. RecA protein: structure, function, and role in recombinational DNA repair. // Prog. Nucl. Acid. Res. -1997. -v.56. -pp. 129−223.
- Kowalczykowski S.C., Dixon D.A., Eggleston A.K., Lauder S.D., and Rehrauer W.M. Biochemistry of homologous recombination in Escherichia coli. // Microbiol. Rev. -1994. -v.58.-pp.401−465.
- Lusetti S.L., and Cox, M.M. The bacterial RecA protein and recombinational DNA repair of stalled replication forks. // Annu. Rev. Biochem. -2001. -v.71. -pp.71−100.
- Cromie G.A., Connelly J. C., and Leach D.R. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. // Mol. Cell. -2001. -v.8. -pp. 1163−1174.
- Neale M.J., Keeney S. Clarifing the mechanisms of DNA starnd exchange in meotic recombination. // Nature. -2006. -v.442. -pp. 153−158.
- Ланцов В.А., Бакланова И. В., Дудкина А. В. и Киль Ю.В. Регулироание рекомбинационной активности у бактерий. // Бреслеровские чтения II. Молекулярная генетика, биофизика, и медицина сегодня. ПИЯФ, С.-Петербург. -2007.-С.110−122.
- Петухов М.Р., Лебедев Д. В., Карелов Д. В. и Исаев-Иванов В.В. Крупномасштабная конформационная подвижность филамента белка RecA. // Бреслеровские чтения И. Молекулярная генетика, биофизика, и медицина сегодня. ПИЯФ, С.-Петербург. -2007. С.99−109.
- Петухов М. Г. Киль В. Ланцов В. А. О природе терморезистентности белков: стабильность альфа-спиралей белков RecA термофильных бактерий. // Докл. Акад. Наук. -1997. -т.356. -С.268−271.
- Petukhov М., Lebedev D., Shalguev V., Islamov A. Kuklin A., Lanzov V., Isaev-Ivanov V. Conformational flexibility of RecA protein filament: transitions between compressed and stretched states. // Proteins. -2006. -v.65. -pp.296−304.
- Baitin D.M., Bakhlanova I.V., Kil Y.V., Сох M.M., and Lanzov V.A. Distinguishing Characteristics of Hyperrecombinogenic RecA Protein from Pseudomonas aeruginosa Acting in Escherichia coli. //J. Bacteriology. -2006. -v. 188. -pp.5812−5820.
- Aihara H., Ito Y., Kurumizakal H., Terada Т., Yokoyama S., and Shibata T. An Interaction Between a Specified Surface of the C-terminal Domain of RecA Protein and Double-stranded DNA for Homologous Pairing. // J. Mol. Biol. -1997. -v.274. -pp.213 221.
- Roca A.I., and Singleton S. F. Direct Evaluation of a Mechanism for Activation of the RecA Nucleoprotein Filament. //J. Am. Chem. Soc. -2003. -v.125. -pp. 15 366−15 375.
- Roberts J.W., Roberts C.W., and Craig N.L. Escherichia coli recA gene product inactivates phage lambda repressor. // Proc. Natl Acad. Sei. USA. -1978. -v.75. -pp. 4714−4718.
- Little J.W. Autodigestion of LexA and phage lambda repressors. // Proc. Natl Acad. Sei. USA. -1984. -v.81. -pp. 1375−1379.
- Roca A.I., and Cox M.M. The RecA protein: structure and function. // Crit. Rev. Biochem. Mol. Biol. -1990. -v.25. -pp.415−456.
- DiCapua E., Engel A., Stasiak A., and Koller T. Characterization of complexes between RecA protein and duplex DNA by electron microscopy. // J. Mol. Biol. -1982. -v. 157. -pp.87−103.
- DiCapua E., Schnarr M., Ruigrok R.W., Lindner P., and Timmins P.A. Complexes of RecA protein in solution. A study by small angle neutron scattering. // J. Mol. Biol. -1990. -v.214. -pp.557−570.
- Egelman E.H., and Stasiak A. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-y-S or ATP. // J. Mol. Biol. -1986. -v.191. -pp.677−697.
- VanLoock X., Yu M.S., Yang S., Reese J. T. and Egelman E. H. What is the structure of the RecA-DNA filament? // Curr. Protein Pept. Sei. -2004. -v.5. -pp.73−79.
- Chen Z., Yang H., and Pavlctich N.P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. // Nature. -2008. -v.453. -pp.489−496.
- Стрелов В.И., Захаров Б. Г., Безбах И. Ж. и др. Кристаллизация белка лизоцима в прецизионно-управляемом градиенте температуры. // Кристаллография. -2007. -т. 52. -С.1134−1139.
- Butt H.J., Downing К.H., Hansma P.К. Imaging the membrane protein bacteriorodopsin with the atomic force microscope. // Biophys. J. -1990. -v.58. -pp. 1473−1480.
- Worcester D.L., Kim H.S., Miller R.G., Bryant P.J. Imaging bacteriorodopsin lattices in purple membranes with atomic force microscopy. // J. Vac. Sci. Technol. A. -1990. -v.8. -pp.403−405.
- Hoh J.H., Sosinsky G.E., Revel J.P., Hansma P.K. Structure of the extracellular surface of the gap junction by atomic force microscopy. // Biophys. J. -1993. -v.65. -pp.149−163.
- Vander K.O., Werf C.A. Putman J., Grooth B.G., Greve J. Adhesion force imaging in air and liquid by adhesion force mode atomic force microscope. // Appl. Phys. Lett. -1994. -v.65.-pp.1195−1197.
- Yang J., Mou J., Shao Z. Structure and stability of pertussis toxin studied by in situ atomic force microscopy. // FEBS Lett. -1994. -v.338. -pp.89−92.
- Radmacher M., Fritz M., Hansma H.G. Hansma P.K. Direct observation of enzyme activity with the atomic force microscope. // Science. -1995. -v.265. -pp. 1577−1579.
- Yamada H., Hirata Y., Miyake J. Atomic force microscopy studies of photosynthetic protein membrane Langmuir-Blodgett films. // J. Vac. Sci. Technol. A. -1995. -v.13. -pp. 1742−1745.
- Masai J., Shibata-Seki T., Ogawa Y. Sato K., Yanagawa H. Friction force microscopy of petide filament: an application to estimate the size of a supramolecular unit. // Thin Solid Films. -1996. -v.281−282. -pp.624−629.
- Thomson N.H. Fritz M., Radmacher M.M., Cleveland J.P., Schmidt C.F., Hansma P.K. Protein tracking and detection of protein motion using atomic force microscopy. // Biophys. J. -1996. -v.70. -pp.2421−2431.
- Hinterdorfer P., Baumgartner W. Gruber H.J., Schilcher K., Schilder H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. // Proc. Natl. Acad. Sci. USA. -1996. -v.93. -pp.3477−3481.
- Perrin A., Lanet V., Theretz A. Quantification of specific immunological reactions by atomic force microscopy. // Langmuir. -1997. -v. 13. -pp.2557−2563.
- Binnig G., Gerber Ch., Stoll E" Albrecht T.R., Quate C.F. Atomic resolution with atomic force microscope.//Europhys. Lett.-1987.-v.3.-pp.1281−1287.
- Durbin S.D., Carlson W.E. Lysozyme crystal growth studied by atomic force microscopy. //Journal of Crystal Growth. -1992. -v.122. -pp.71−79.
- Konnert J.U., D’Antonio P., Ward K.B. Observation of growth steps, spiral dislocations and molecular packing on the surface of lysozyme crystals with the atomic force microscope. // Acta Cryst. D. -1994. -v.50. -pp.603−613.
- Land T.A., Malkin A.J., Kuznetsov Yu.G., DeYoreo J.J. Mechanisms of protein crystal growth: An atomic force microscopy study of canavalin crystallization. // Phys. Rev. Lett. -1995. -v.75. -pp.2774−2777.
- McPherson A. The science of macromolecular crystallization. // Structure. -1995. -v.3. -pp .759−786.
- Kuznetsov Yu.G., Malkin A.J., Land T.A., DeYoreo J.J., Barba A.P., Konner J., McPherson A. Molecular resolution imaging of macromolecular crystals by atomic force microscopy. // Biophys. J. -1997. -v.72. -pp.2357−2364.
- Жавнерко Г. К. Кучук Т.А., Агабеков В. Е., Галлямов М. О., Яминский И. В. Свойства и структура мономолекулярных пленок на основе Ы-октадил-3,4:9,10-перилен-бис-(дикарбоксимидина). // Журнал физической химии. -1999. -v.73. -pp. 1244−1248.
- Рашкович JI.H., Филонов А. С. Яминский И.В. О форме ступеней на грани (010) кристаллов ромбического лизоцима. // Кристаллография. -2008. -v.53. -pp.346−350.
- Dubrovin E.V., Voloshin A.G., Kraevsky S.V., Ignatyuk Т.Е., Abramchuk S.S., Yaminsky I.V., and Ignatov S.G. Atomic force microscopy investigation of phage infection of bacteria. // Langmuir. -2008. -v.24. -pp. 13 068−13 074.
- Рашкович JI.H., Гвоздев H.B., Яминский И. В. Механизм движения ступеней при кристаллизации лизоцима. // Кристаллография. -1998. -v.43. -pp.745−750.
- Темкина Н., Филонов А. Яминский И. Силовая спектроскопия единичных макромолекул и их комплексов с использованием АСМ. // Наноиндустрия. -2008. -v.6. -pp. 26−29.
- Образцова Е.А., Калинина Н. О., Тальянский М. Е., Габренайте-Верховская Р., Макинен К., Яминский И. В. Атомно-силовая микроскопия, А вируса картофеля. // Коллоидный журнал. -2008. -v.70. -pp. 199−201.
- Григорьева Н.Р., Григорьев Р. В. Новиков Б.В., Анкудинов А. В. и др. Морфология стабилизированных естественных граней твердого раствора CdS|.xSex. // ФТТ. -2006. -v.48.-pp.591−596.
- Howell N.K., Herman Н., Li-Chan Е. Elucsidation of protein-lipid interactions in a lysozyme-corn oil system by Fourier transform Raman spectroscopy. // J. Agric. Food Chem. -2001. -v.49. -pp. 1529−1533.
- Howell N.K., Li-Chan E. Elucsidation of interactions of lysozyme with wey proteins by Raman spectroscopy. // Int. J. Food Sci. Technol. -1996. -v.31. -pp.439−451.
- Шайтан К. В, Михайлюк М. Г., Леонтьев К. М., Сарайкин С. С., Беляков А. А. Молекулярная динамика изгибных флуктуаций элементов вторичной структуры белков. // Биофизика. -2002. -v.47. -pp.411−419.
- Shaitan K.V. Protein dynamics and new approaches to the molecular mechanisms of protein functioning. In: Stochastic Dynamics of Reacting Biomolecules (ed. Ebeling W., Romanovsky Yu., Schimansky-Geier L.) // World Scientific. -2003. -pp.283−308.
- Mikhonin A.V., Ahmed Z., Ianoul A., and Asher S.A. Assignments and Conformational Dependencies of the Amide III Peptide Backbone UV Resonance Raman Bands. // J. Phys. Chem. B. -2004. -v. 108. -pp. 19 020−19 028.
- Dong J., Wan Z., Popov M. Carey P.R., and Weiss M.F. Insulin assembly damps conformational fluctuations: Raman analysis of Amide I linewidths innative state and fibrils. //J. Mol. Biol. -2003. -v.330. -pp.431−442.
- Zheng R. Zheng X. Dong J., and Carey P.R. Proteins can convert to (3-sheets in single crystals. // Protein science. -2004. -v.13. -pp.1288−1294.
- Edler J., and Harnm P. Spectral response of crystalline acetanilide and N-methylacetamide: Vibrational self-trapping in hydrogen-bonded crystals. // Phys. Rev. B. -2004. -v.69. -pp.214 301.
- H’edoux A., Affouard F., Descamps M., Guinet Y., and Paccou L. Microscopic description of protein thermostabilization mechanisms with disaccharides from Raman spectroscopy investigations. // J. Phys.: Condens. Matter. -2007. -v. 19. -pp.205 142.
- Debelle L.A., Alix J.P., Jacobi M., Huvenne J., Berjot M., Sombret В., and Legrand P. Bovine Elastin and k-Elastin Secondary Structure Determination by Optical Spectroscopies. // J. Biol. Chem. -1995. -v.270. -pp.26 099−26 103.
- Huang C.Y., Balakrishnan G. and Spiro T.G. Protein secondary structure from deep-UV resonance Raman spectroscopy. // J. Raman Spectr. -2006. -v.37. -pp.277−282.
- Shashilov Y.A., and Lednev I.K. 2D Correlation Deep UV Resonance Raman Spectroscopy of Early Events of Lysozyme Fibrillation: Kinetic Mechanism and Potential Interpretation Pitfalls. //J. Am. Chem. Soc. -2008. -v. 130. -pp.309−317.
- Zavaleta C., Zerda A., Liu Z., Keren S., Cheng Z., Schipper M., Chen X., Dai H., Gambhir S.S. Noninvasive Raman Spectroscopy in Living Mice for Evaluation of Tumor Targeting with Carbon Nanotubes.//Nano Letters. -2008. -v.8. -pp.2800−2805.
- Liu Z" Cai W" He L" Nakayama N., Chen K., Sun X., Chen X., and Dai H. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice.// Nature Nanotechnology. -2006. -v.2. -pp.47 52.
- Liu Z" Li X., Tabakman S.M. Jiang K., Fan S., and Dai H. Multiplexed Multi-Color Raman Imaging of Live Cells with Isotopically Modified Single Walled Carbon Nanotubes. // J. Am. Chem. Soc. -2008. -v. 130. -pp. 13 540−13 541.
- Екимов А.И., Онущенко А. А. Квантовый размерный эффект в трехмерных микрокристаллах полупрорводников. // Письма в ЖЭТФ. -1981. -т.34. -С.363−366.
- Murray С.В., Norris D.J., Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. // J. Am. Chem. Soc. -1993. -v.l 15. -pp.8706−8715.
- Danek M., Jensen K.F., Murray C.B., and Bawendi M.G. Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dots Composites Using CdSe Quantum Dots Passivated With an Overlayer ZnSe. // Chem. Mater. -1996.-V.8, -С. 173−180.
- Bfranov A.V. et.al. Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. // Phys. Rev. B. 2003. -v.68. -pp.165 306.
- Олейников В.А., Суханова А. В., Набиев И.P. Флуоресцентные полупроводниковые метки в биологии и медицине. // Российские нанотехнологии, 2007. -т.2. -С.160−173.
- Algar W.R. and Krull U.J. Multidentate Surface Ligand Exchange for the Immobilization of CdSe/ZnSe Quantum Dot-Oligonucleotide Conjugates. // Langmuir. -2008. -v.24. pp.5514- 5520.
- Chan W., and Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. // Science. -1998. -v.281. -pp.2016−2024.
- Zhang C.Y. et al. Quantum dot-labeled trichosanthin. // Analyst. -2000. -v. 125. pp. 10 291 031.
- Winter J.O., et al. Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. // Adv. Mater. -2001. -v.13. -pp.1673−7.
- Thomas N. L., Allione M., Fedutik Y., Woggon U., Artemyev M.V., and Ustinovich E.A. Multiline spectra of single CdSe/ZnS core-shell nanorods. // Appl. Phys. Lett. -2006. -v.89. -pp.263 115.
- Bimberg D., Grundmann M., and Ledentsov N.N. Quantum dot Heterostructures. // (New York, Wiley). 1998.
- Leatherdale C.F., Woo W.R. Mikulec F.V., Bawendi M.G. Emission Intensity Dependence and Single-Exponential Behavior In Single Colloidal Quantum Dot Fluorescence Lifetimes. // J. Phys. Chem. B. -2002. v. 106. -pp.7619.
- Wolcott A., Gerion D., Visconte M., Sun J., Schwartzberg A., Chen S.H., and Zhang J.Z. Silica-Coated CdTe Quantum Dots Functionalized with Thiols for Bioconjugation to IgG Proteins. // J. Phys. Chem. B. -2006. -v.l 10. -pp.5779.
- Gerion D., Pinaud F., Williams Sh., Parak W.J., Zanchet D., Weiss Sh., and Alivisatos A.H. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. // J. Phys. Chem. B. -2001. -v.105. -pp.8861.
- Goldman E.R., Anderson G.P. Tran P.N., Mattoussi H., Charles P., and Mauro J.M. Conjugation of Luminescent Quantum Dots with Antibodies Using an Engineered Adaptor
- Protein To Provide New Reagents for Fluoroimmunoassays. // Anal. Chem. -2002. —v.74. -pp. 841.
- Ji X., Zheng J., Xu J. Rastogi V.K., Cheng T.C., DeFrank J., and Leblanc R.M. CdSe/ZnS Quantum Dots and Organophosphorus Hydrolase Bioconjugate as Biosensors for Detection of Paraoxon. II J. Phys. Chem. B. -2005. -v. 109. -pp.3793−3799.
- Днепровский B.C., Добынде И. И., Жуков Е. А. и Санталов А.Н. Замедление релаксации по уровням размерного квантования в квантовых точках с ростом числа возбужденных состояний. // Физика твердого тела. -2007. -т.49. -С.741−744.
- Dybiec M., Chomokur G., Ostapenko S., Wolcott A., Zhang J.Z., Zajac A., Phelan C., Sellers T., and Gerion G. Photolumineseence spectroscopy of bioconjugated CdSe/ZnS quantum dots. // Appl. Phys.Lett. -2007. -v.90. -pp.263 112.
- Huynh W.U., Dittmer J.J., and Alivisatos A.P. Hybrid Nanorod-Polymer Solar Cells. // Science. -2002. -v.290. -pp.2425.
- Bruchez M.P., Moronne M., Gin P., Weiss S., and Alivisatos F.P. // Science. -1998. -v. 281.-pp.2013.
- Chan W.C., Maxwell D.J., Gao X., Bailey R.E., Han M., Nie S. Luminescent quantum dots for imaging. // Curr. Opin. Biotechnol. -2002. -v. 13. -pp.40−44.
- Klimov V.I. McBranch D.W. Leatherdale C.A., and M.G. Bawendi. Electron and hole relaxation pathways in semiconductor quantum dots. // Phys. Rev. B. -1999. -v.60. -pp.13 740.
- Torchynska T.V., Interface states and bio-conjugation of CdSe/ZnS core-shell quantum dots. // Nanotechnology. -2009. -v.20. -pp.95 401.
- Zhao X.S., Schroeder J., Persans P.D., and Bilodeau T.G. Resonant-Raman-scattering and photoluminescence studies in glass-composite and colloidal CdS. // Phys. Rev. B, Condens Matter. -1991. -v.43. -pp. 12 580−12 589.
- Creti A. et al. Role of the shell thickness in stimulated emission and photoinduced absorption in CdSe core/shell nanorods. // Phys. Rev. B. -2006. -v.73. -pp.165 410.
- A Creti et al., Ultrafast carrier dynamics and confined acoustic phonons in CdSe nanorods. //J. Opt Pure and Apllied Optics. -2008. -v. 10. -pp.64 005.
- Creti A. et al. Role of defect states on Auger processes in resonantly pumped CdSe nanorods. // Appl. Phys. Lett. -2007. -v.91. -pp.93 106.
- Peng Z.A., and Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. // J. Am. Chem. Soc. -2001. -v.123. -pp.183−4.
- Stroscio M.A., and Dutta M. Advances in Quantum Dot Research and Technology: The Path to Applications in Biology, in Advanced Semiconductor Heterostructures. // World Scientific Publ. Co., Singapore. 2003.
- Rufo S., Dutta M., and Stroscio M.A. Acoustic Modes in Free and Embedded Quantum Dots. // J. Appl. Phys. -2003. -v.93. -pp.2900.
- Mizejewski M.A. Role of Integrins in Cancer: Survey of Expression Patterns. // Proc. Soc. Exp. Biol. Med. -1999. -v.222. -pp.124−138.
- Wong N.C., Mueller B.M., Barbas C.F., Ruminski P., Quaranta V., Lin E.C., and Smit J.W. Alpha v Integrins Mediate Adhesion and Migration of Breast Carcinoma Cell Lines. // Clin. Exp. Metastasis. -1998. -v. 16. -pp.50−61.t