ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ организация Π”ΠΠš Π² ядрС ΠΈ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π”ΠΠš-Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ II хромосомныС пСрСстройки

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π£ΠΆΠ΅ достаточно Π΄Π°Π²Π½ΠΎ Π² Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ Π”ΠΠš-Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ II, ΠΈ Π½Π΅Ρ€Π΅Π΄ΠΊΠΈ случаи, ΠΊΠΎΠ³Π΄Π° использованиС этих ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Ρ… Π»Π΅ΠΉΠΊΠΎΠ·ΠΎΠ², Π² ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π»Π΅ΠΆΠ°Ρ‚ Ρ‚Π΅ ΠΈΠ»ΠΈ ΠΈΠ½Ρ‹Π΅ хромосомныС пСрСстройки (Auxenfants et al., 1992; Super et al., 1993). Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π²Ρ‹ΡΡˆΠΈΡ… эукариот ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ II (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ организация Π”ΠΠš Π² ядрС ΠΈ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π”ΠΠš-Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ II хромосомныС пСрСстройки (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • 1. ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
    • 1. 1. ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ организация Π”ΠΠš Π² ΡΠ΄Ρ€Π΅
      • 1. 1. 1. Π£Ρ€ΠΎΠ²Π½ΠΈ ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ Π”ΠΠš
      • 1. 1. 2. ДомСнная структура Π³Π΅Π½ΠΎΠΌΠ°
        • 1. 1. 2. 1. Π―Π΄Π΅Ρ€Π½Ρ‹ΠΉ матрикс
        • 1. 1. 2. 2. ΠŸΡ€ΠΈΠΊΡ€Π΅ΠΏΠ»Π΅Π½Π½Π°Ρ ΠΊ ΡΠ΄Π΅Ρ€Π½ΠΎΠΌΡƒ матриксу Π”ΠΠš
        • 1. 1. 2. 3. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π”ΠΠš ядСрного матрикса
      • 1. 1. 3. Π₯ромосомныС Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ
    • 1. 2. НСзаконная рСкомбинация ΠΈ Ρ…ромосомныС пСрСстройки
      • 1. 2. 1. Π”Π²ΡƒΡ…Ρ‡Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹Π΅ Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹ Π”ΠΠš (Π”Π¦Π ) ΠΈ ΠΈΡ… Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΡ
      • 1. 2. 2. ΠšΠ»Π°ΡΡ‚Π΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ€Π°Π·Ρ€Ρ‹Π²Π° ΠΏΡ€ΠΈ транслокациях, ассоциированных с Π»Π΅ΠΉΠΊΠΎΠ·Π°ΠΌΠΈ
      • 1. 2. 3. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π° ΠΊΠ°ΠΊ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π° кластСризации ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ€Π°Π·Ρ€Ρ‹Π²Π°
      • 1. 2. 4. УчастиС Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ II Π² Π½Π΅Π·Π°ΠΊΠΎΠ½Π½ΠΎΠΉ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ
      • 1. 2. 5. ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ организация ядра способствуСт ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Ρ… транслокаций
  • ΠŸΠΎΡΡ‚Π°Π½ΠΎΠ²ΠΊΠ° Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈ ΠΌΠ΅Ρ‚одичСскиС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹
  • 2. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 2. 1. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹
      • 2. 1. 1. ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ
      • 2. 1. 2. АнтитСла
      • 2. 1. 3. Π₯имичСскиС Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹
    • 2. 2. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹
      • 2. 2. 1. ΠšΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ чСловСчСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
      • 2. 2. 2. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· Π² ΠΏΡƒΠ»ΡŒΡΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΌ ΠΏΠΎΠ»Π΅
      • 2. 2. 3. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ядСрных матриксов in situ
      • 2. 2. 4. Π˜ΠΌΠΌΡƒΠ½ΠΎΡ†ΠΈΡ‚ΠΎΡ…ΠΈΠΌΠΈΡ
      • 2. 2. 5. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ прСдставлСнности Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… участков Π”ΠΠš Π²ΠΎ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ Π”ΠΠš ядСрного матрикса
      • 2. 2. 6. ΠœΠ΅Ρ‚ΠΎΠ΄ остановки ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ (PCR-stop assay)
      • 2. 2. 7. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
        • 2. 2. 7. 1. Растворы
        • 2. 2. 7. 2. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°
  • 3. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований
    • 3. 1. ПодавлСниС активности Π”ΠΠš-Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ II ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ Π΄Π²ΡƒΡ…Ρ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ² Π”ΠΠš
      • 3. 1. 1. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΊΠ»Π΅Ρ‚ΠΎΠΊ этопозидом ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ Π”Π¦Π 
      • 3. 1. 2. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Π”Π¦Π  зависит ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ этопозида
      • 3. 1. 3. Π˜Π½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ monollΠ”Π¦Π  эффСктивно Ρ€Π΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‚ΡΡ
    • 3. 2. Π ΠžΠ›Π¬ ядСрного матрикса Π² Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π”Π¦Π , ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π”ΠΠš-Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ II
      • 3. 2. 1. Π˜Π½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ этопозидом фокусы гистона уН2АΠ₯ассоциированы с ΡΠ΄Π΅Ρ€Π½Ρ‹ΠΌ матриксом
      • 3. 2. 2. Участки кластСризации Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ€Π°Π·Ρ€Ρ‹Π²Π° (bcr) ассоциированы с ΡΠ΄Π΅Ρ€Π½Ρ‹ΠΌ матриксом
    • 3. 3. НСгомологичноС соСдинСниС ΠΊΠΎΠ½Ρ†ΠΎΠ² Π”ΠΠš, ΠΊΠ°ΠΊ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ хромосомных пСрСстроСк, ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π”ΠΠš-Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ II
      • 3. 3. 1. ЦитологичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄
      • 3. 3. 2. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-биологичСский ΠΏΠΎΠ΄Ρ…ΠΎΠ΄
        • 3. 3. 2. 1. Π’Ρ‹Π±ΠΎΡ€ Π³Π΅Π½ΠΎΠΌΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ
        • 3. 3. 2. 2. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Π΅ экспСримСнты
        • 3. 3. 2. 3. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
  • 4. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ²
  • Π’Ρ‹Π²ΠΎΠ΄Ρ‹

Π£ΠΆΠ΅ достаточно Π΄Π°Π²Π½ΠΎ Π² Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ Π”ΠΠš-Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ II, ΠΈ Π½Π΅Ρ€Π΅Π΄ΠΊΠΈ случаи, ΠΊΠΎΠ³Π΄Π° использованиС этих ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½Ρ‹Ρ… Π»Π΅ΠΉΠΊΠΎΠ·ΠΎΠ², Π² ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π»Π΅ΠΆΠ°Ρ‚ Ρ‚Π΅ ΠΈΠ»ΠΈ ΠΈΠ½Ρ‹Π΅ хромосомныС пСрСстройки (Auxenfants et al., 1992; Super et al., 1993). Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π²Ρ‹ΡΡˆΠΈΡ… эукариот ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ II (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, этопозидом ΠΈΠ»ΠΈ амсакрином) ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡŽ Ρ‚Π°ΠΊΠΈΡ… пСрСстроСк, ΠΊΠ°ΠΊ Π΄Π΅Π»Π΅Ρ†ΠΈΠΈ, инсСрции ΠΈ Ρ‚ранслокации (Maraschin et al., 1990; Shibuya et al., 1994). Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π° II ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ мСТмолСкулярной Π”ΠΠš-Π»ΠΈΠ³Π°Π·Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ Π½Π΅Π·Π°ΠΊΠΎΠ½Π½ΡƒΡŽ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡŽ Π”ΠΠš in vitro (Gale, 1992). НС ΠΌΠ΅Π½Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹ΠΌ Π½Π°ΠΌ прСдставляСтся Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½Ρ‹Ρ… комплСксов Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ ΠΈ Π”ΠΠš, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠ΅ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π»ΠΈΠ³ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ активности Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ II, ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ Π·Π°ΠΏΡƒΡΠΊΡƒ систСм Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π΄Π²ΡƒΡ…Ρ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ² Π”ΠΠš. Π’ ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… эукариот ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° основных ΠΏΡƒΡ‚ΠΈ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π”Π¦Π : гомологичная рСкомбинация, ΠΈΠ³Ρ€Π°ΡŽΡ‰Π°Ρ Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π½ΠΈΠ·ΡˆΠΈΡ… эукариот, ΠΈ Π½Π΅Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠ΅ соСдинСниС ΠΊΠΎΠ½Ρ†ΠΎΠ² Π”ΠΠš (NHEJ, non-homologous end joining). БущСствуСт мноТСство косвСнных Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ NHEJ являСтся основным ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π”Π¦Π , ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ II (Adachi et al., 2003; Adachi et al., 2004).

Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ транслокации, ассоциированныС с Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π»Π΅ΠΉΠΊΠΎΠ·ΠΎΠ², ΠΈΠΌΠ΅ΡŽΡ‚ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΡƒΡŽ Ρ‡Π΅Ρ€Ρ‚Ρƒ — Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ€Π°Π·Ρ€Ρ‹Π²Π° сосрСдоточСны Π² Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎ ΡƒΠ·ΠΊΠΈΡ… участках Π³Π΅Π½ΠΎΠΌΠ°, Π½Π°Π·Π²Π°Π½Π½Ρ‹Ρ… кластСрами Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ€Π°Π·Ρ€Ρ‹Π²Π° (bcr, breakpoint cluster region). Π’ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΈΠ· ΡΡ‚ΠΈΡ… участков ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ сайты Π³ΠΈΠΏΠ΅Ρ€Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ.

Π”ΠΠšΠ°Π·Π΅ I ΠΈ Ρ‚ΠΎΠΏΠΎΠŸ. Π Π°Π½Π΅Π΅ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ основной мишСнью ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€ΠΎΠ² Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ II являСтся нСрастворимая Ρ„ΠΎΡ€ΠΌΠ° Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°, связанная с ΡΠ΄Π΅Ρ€Π½Ρ‹ΠΌ матриксом ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ с ΡƒΡ‡Π°ΡΡ‚ΠΊΠ°ΠΌΠΈ прикрСплСния Π”ΠΠš ΠΊ ΠΌΠ°Ρ‚риксу. Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ связанная с ΡΠ΄Π΅Ρ€Π½Ρ‹ΠΌ матриксом Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Π° ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ³Ρ€Π°Ρ‚ΡŒ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Π·Π°ΠΏΡƒΡΠΊΠ΅ систСм Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π”Π¦Π , Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ дСйствия ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ появлСниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… транслокаций.

Настоящая Ρ€Π°Π±ΠΎΡ‚Π° посвящСна ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° возникновСния хромосомных пСрСстроСк, ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π”ΠΠš-Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ II. ΠžΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ удСляСтся Ρ€ΠΎΠ»ΠΈ ядСрного матрикса Π² ΡΡ‚ΠΎΠΌ процСссС.

1. ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹.

Π’Ρ‹Π²ΠΎΠ΄Ρ‹:

1. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ стабилизированныС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ комплСксы Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ II с Π”ΠΠš ΠΊΠΎΠ½Π²Π΅Ρ€Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ Π² Π΄Π²ΡƒΡ…Ρ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹Π΅ Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠ·Π½Π°ΡŽΡ‚ΡΡ систСмами ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° цСлостности Π”ΠΠš.

2. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π»ΠΈΠ³ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ активности Π”ΠΠš-Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ II Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹ вносятся ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π² ΡƒΡ‡Π°ΡΡ‚ΠΊΠΈ прикрСплСния Π”ΠΠš ΠΊ ΡΠ΄Π΅Ρ€Π½ΠΎΠΌΡƒ матриксу.

3. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ участок кластСризации хромосомных Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ², ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ Π² Π³Π΅Π½Π΅ AMLI, ΠΏΡ€ΠΈΠΊΡ€Π΅ΠΏΠ»Π΅Π½ ΠΊ ΡΠ΄Π΅Ρ€Π½ΠΎΠΌΡƒ матриксу.

4. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ продСмонстрировано, Ρ‡Ρ‚ΠΎ рСпарация Π΄Π²ΡƒΡ…Ρ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²ΠΎΠ², вносимых Π² Π”ΠΠš Ρ‚ΠΎΠΏΠΎΠΈΠ·ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ II, осущСствляСтся прСимущСствСнно систСмой Π½Π΅Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠ³ΠΎ соСдинСния ΠΊΠΎΠ½Ρ†ΠΎΠ² Π”ΠΠš.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Abranches R, Beven AF, Aragon-Alcaide L, Shaw PJ (1998) Transcription sites are not correlated with chromosome territories in wheat nuclei. J Cell Biol. 143(1):5−12.
  2. Adachi N, Iiizumi S, So S, Koyama H (2004) Genetic evidence for involvement of two distinct nonhomologous end-joining pathways in repair of topoisomerase II-mediated DNA damage. Biochem. Biophys. Res. Commun. 318, 856--861.
  3. N., Suzuki H., Iiizumi S., Koyama H. (2003) Hypersensitivity of nonhomologous DNA end-joining mutants to VP-16 and ICRF-193: implications for the repair of topoisomerase II-mediated DNA damage. J. Biol. Chem. 278, 35 897−35 902.
  4. Adam M, Robert F, Larochelle M & Gaudreau L (2001) H2A. Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific condition. Mol Cell Biol 21: 6270−6279.
  5. K. & Henikoff S (2002) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci USA 99: 16 477−16 484.
  6. Ahnesorg P, Smith P, Jackson SP (2006) XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124(2):301−13.
  7. Alvelo-Ceron D, Niu L & Collart DG (2000) Growth regulation of human variant histone genes and acetylation of the encoded proteins. Mol Biol Report 27: 61−71.
  8. Andersen MK, Johansson B, Larsen SO, Pedersen-Bjergaard J (1998) Chromosomal abnormalities in secondary MDS and AML. Relationship to drugsand radiation with specific emphasis on the balanced rearrangements. Haematologica 83(6):483−8.
  9. Andoh T, Ishida R (1998) Catalytic inhibitors of DNA topoisomerase II. Biochim BiophysActa 1400(1−3):155−71.
  10. Angelov D, Verdel A, An W, Bondarenko V, Hans F, Doyen C-M, Studitsky VM, Hamiche A, Roeder RG, Bouvet P & Dimitrov S (2004) SWI/SNF remodeling and p300-dependent transcription of histone variant H2A. Bbd nucleosomal arrays. EMBOJ 23:3815−3824.
  11. Apian PD (2006) Chromosomal translocations involving the MLL gene: molecular mechanisms. DNA Repair (Amst) 5(9−10): 1265−72.
  12. Apian, P.D., Chervinsky, D.S., Stanulla, M., Burhans, W.C. (1996) Sitespecific DNA cleavage within the MLL breakpoint cluster region induced by topoisomerase II inhibitors. Blood 87, 2649−2658.
  13. Ausio J & Abbott DW (2002) The many tales of a tail: carboxyl terminal tail heterogeneity specializes histone H2A variants for defined chromatin function. Biochemistry 41: 5945−5949.
  14. Auxenfants E., Morel P., Lai J.L., Sartiaux C., Detourmignies L., Bauters F., Fenaux P. (1992) Secondary acute lymphoblastic leukemia with t (4- 11): report on two cases and review of the literature. Ann. Hematol. 65, 143−146.
  15. Ayton PM & Cleary ML (2001) Molecular mechanisms of Ieukemogenesis mediated by MLL fusion proteins. Oncogene 20:5695−5707.
  16. Bae YS, Kawasaki I, Ikeda H, Liu LF (1988) Illegitimate recombination mediated by calf thymus DNA topoisomerase II in vitro. Proc Natl Acad Sci USA 85(7):2076−80.
  17. Bakshi RP, Galande S, Muniyappa К (2001) Functional and regulatory characteristics of eukaryotic type II DNA topoisomerase. Crit Rev Biochem Mol Biol. 36(1): 1−37.
  18. Bao Y, Konesky K, Park Y-J, Rosu S, Dyer PN, Rangasamy D, Tremethick DJ, Laybourn PJ & Lugcr К (2004) Nucleosomes containing the histone variant H2A. Bbd organize only 118 base pairs of DNA. EMBOJ23: 3314−3324.
  19. Basler J, Hastie ND, Pietras D, Matsui SI, Sandberg AA, Berezney R. (1981) Hybridization of nuclear matrix attached deoxyribonucleic acid fragments. Biochemistry 20(24):6921 -9.
  20. Baumann P & West SC (1998) DNA end joining catalyzed by human cell-free extracts. Proc. Natl. Acad. Sci. USA 95(24): 14 066−14 070.
  21. Belmont AS & Bruce К (1994) Visualization of G1 chromosomes: a folded, twisted, supercoiled chromonema model of interphase chromatid structure. J. Cell Biol 127: 287−302.
  22. Belmont AS, Sedat JW & Agard DA (1987) A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J. Cell Biol. 105: 77−92.
  23. Benyajati Π‘ & Worcel A (1976) Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster. Cell 9(3): 393−407.
  24. Berezney R & Coffey DS (1974) Identification of a nuclear protein matrix. Biochem. Biophys. Res. Commun. 60: 1410−1417.
  25. Berezney R & Coffey DS (1977) Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei. J Cell Biol. 73(3):616−37.
  26. M., Osheroff N., Fisher P. (1985) In situ localization of DNA topoisomerase II, a major polypeptide component of the Drosophila nuclear matrix fraction. Proc Natl Acad Sci USA, 82,4142−6.
  27. Bicknell GR, Snovvden RT, & Cohen GM (1994) Formation ofhigh molecular mass DNA fragments is a marker of apoptosis in the human leukaemic cell line, U937. J Cell Sci. 107: 2483−9.
  28. Bode J, Schlake T, Rios-Ramirez M, Mielke C, Stengert M, Kay V, Klehr-Wirth D (1995) Scaffold/matrix-attached regions: structural properties creating transcriptionally active loci. Int Rev Cytol. 162A: 389−454.
  29. J., Benham C., Ernst E., Knopp A., Marschalek R., Strick R., Strissel P. (2000) Fatal connections: when DNA ends meet on the Nuclear Matrix. J Cellular Biochem, 3, 3−22.
  30. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Muller S, Eils R, Cremer C, Speicher MR, Cremer T.(2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3(5):el57.
  31. Boulikas T (1993). Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J Cell Biochem. 52(1): 14−22.
  32. Boulikas T (1995) Chromatin domains and prediction of MAR sequences. Int Rev Cytol 162A: 279−388.
  33. Boy de la Tour, E & Laemmli UK (1988) The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell 55: pp. 937−944.
  34. Π’., Zenk D., Kahanic S., Renecer J. (1991). Avian nuclear matrix proteins bind very tightly to cellular DNA of the beta-globin gene enhancer in a tissue-specific fashion. Biochemistry 30(24): 5845−50.
  35. Bryans M, Valenzano MC, Stamato TD (1999) Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat Res. 433(l):53−8.
  36. Buongiorno-Nardelli M, Micheli G, Carri MT, Marilley M (1982) A relationship between replicon size and supercoiled loop domains in the eukaryotic genome. Nature 298:100−2.
  37. Burma S, Chen BP, Murphy M, Kurimasa A & Chen DJ (2001) ATM phosphorylates histone H2A. X in response to DNA double-strand breaks. J Biol Chem 276: 42 462−42 467.
  38. A. & Razin S. (2004) Breakpoint clusters: reason or consequence? Crit Rev Eukaryot Gene Expr, 14, 65−78.
  39. Calsou P, Delteil C, Frit P, Drouet J, Salles Π’ (2003) Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J. Mol. Biol 326(1):93−103.
  40. Carruthers LM & Hansen JC (2000) The core histone N termini function independently of linker histones during chromatin condensation. J. Biol. Chem. 275: 37 285−37 290.
  41. Chadwick BP & Willard HF (2002) Cell cycle-dependent localization of macroH2A in chromatin of the inactive X chromosome. J Cell Biol 157: 11 131 123.
  42. Chadwick BP & Willard HF (2003) Chromatin of the Barr body: histone and nonhistone proteins associated with or excluded from the inactive X chromosome. Human Mol Genet 12: 2167−2178.
  43. N., Little J.E., Brown D.L. (1985) Localization of nuclear antigens during preparation of nuclear matrices in situ. Can. J. Biochem. Cell Biol. 63, 644−653.
  44. J. (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem, 70, 369−413.
  45. Chappell C, Hanakahi LA, Karimi-Busheri F, Weinfeld M, West SC (2002) Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining, EMBOJ. 21(11): 2827−2832.
  46. M. & Hancock R. (1991) Chromosome recombination and defective genome segregation induced in Chinese hamster cells by the topoisomerase II inhibitor VM-26. Chromosoma, 100, 97−102.
  47. Chen HT, Bhandoola A, Difilippantonio MJ, Zhu J, Brown MJ, Tai X et al. (2000) Response to RAG-mediated VDJ cleavage by NBS1 and gamma-H2AX. Science 290: 1962−1965.
  48. Chen L, Trujillo K, Sung P, Tomkinson AE (2000) Interactions of the DNA Iigase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J. Biol. Chem. 275(34):26 196−26 205.
  49. Cleary H, Boulton E, Plumb M (2001) Allelic loss on chromosome 4 (Lyr2/TLSR5) is associated with myeloid, B-lymph-myeloid and lymphoid (B & T) mouse radiation-induced leukemias. Blood 98:1549−1554.
  50. Cleary ML (1991) Oncogenic conversion of transcription factors by chromosomal translocations. Cell 66:619−622.
  51. Cockerill PN & Garrard WT (1986). Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44(2): 273−82.
  52. Cohen GM, Sun XM, Fearnhead I I, MacFarlane M, Brown DG, Snowden RT, & Dinsdale D (1994) Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J Immunol 153(2): 507−16.
  53. Comings DE (1968) The rationale for an ordered arrangement of chromatin in the interphase nucleus. Am J Hum Genet. 20(5):440−60.
  54. P. (1999). The organization of replication and transcription. Science, 284, 1790−5.
  55. Cook PR & Brazell IA (1976) Conformational constraints in nuclear DNA. J Cell Sci 22(2): 287−302.
  56. Cook PR & Brazell IA (1980). Mapping sequences in loops of nuclear DNA by their progressive detachmcnt from the nuclear cage. Nucleic Acids Res 8(13): 2895−906.
  57. Cremer M, von Hase J, Volm T, Brero A, Kreth G, Walter J, Fischer C, Solovei I, Cremer C, Cremer T (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res. 9(7):541−67.
  58. Cremer T. and Cremer C. (2001) Chromosome territories, nuclear architechture and gene regulation in mammalian cells. Nat Rev Genet. 2(4):292−301.
  59. Daban JR (2000) Physical constraints in the condensation of eukaryotic chromosomes. Local concentration of DNA versus linear packing ratio in higher order chromatin structures. Biochemistiy 39: 3861−3866.
  60. Q., Auten J., Plavec I. (2000). Human beta interferon scaffold attachment region inhibits de novo methylation and confers long-term, copy number-dependent expression to a retroviral vector. J Virol 74(6): 2671−8
  61. DeFazio LG, Stansel RM, Griffith JD, Chu G. (2002) Synapsis of DNA ends by DNAdependent protein kinase. EMBOJ. 21(12): 3192−3200.
  62. Downs JA, Lowndes NF & Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408: 1001−1004.
  63. Dvir A, Peterson SR, Knuth MW, Lu H, Dynan WS (1992) Ku autoantigen is the regulatory component of a template-associated protein kinase that phosphorylates RNA polymerase II, Proc. Natl. Acad. Sci. USA 89:11 920−11 924
  64. Dynan WS & Yoo S (1998) Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucl. Acids Res. 26(7): 1551−1559.
  65. Eickbush TH & Moudrianakis EN (1978) The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry 17:49 554 964.
  66. B. & Jasin M. (2002) Double-strand breaks and translocations in cancer. Cell Mol Life Sci, 59,373−85.
  67. Fabry S, Muller K, Lindauer A, Park PB, Cornelius T, Schmitt R. (1995) The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes. Curr Genet. 28(4):333−45
  68. C. (1998) Secondary leukemias induced by topoisomerase-targeted drugs. Biochim Biophys Acta, 1400,233−55.
  69. G. & Bell A. (1999) Stopped at the border: boundaries and insulators. Curr Opin Genet Dev, 9, 191−8.
  70. Fernandes DJ & Catapano CV (1995) The nuclear matrix as a site of anticancer drug action. Int Rev Cytol 162A:539−76.
  71. Finch JT and Klug A (1976) Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. USA 73: 1897−1901.
  72. Fiorini A, Gouveia Fde S, Fernandez MA (2006) Scaffold/Matrix Attachment Regions and intrinsic DNA curvature. Biochemistry (Mosc) 71(5):481−8.
  73. Gale ΠšΠ‘ & Osheroff N (1992) Intrinsic intermolecular DNA ligation activity of eukaryotic topoisomerase II. Potential roles in recombination. J. Biol. Chem. 267, 12 090−12 097.
  74. Gasser SM, Walter R, Dang Q, Cardenas ME (1992) Topoisomerase II: its functions and phosphorylation. Antonie Van Leeuwenhoek. 62(1−2): 15−24.
  75. D., Beaudouin J., Kalbfuss Π’., Daigle N., Eils R., Ellenberg J. (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell. 112(6):751−64.
  76. Goldberg GI, Collier I, Cassel A (1983) Specific DNA sequences associated with the nuclear matrix in synchronized mouse 3T3 cells. Proc Natl Acad Sci USA. 80(22):6887−91.
  77. Gottlieb TM & Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72(1): 131−142.
  78. Gravel S, Larrivee M, Labrecque P, Wellinger RJ (1998) Yeast Ku as a regulator of chromosomal DNA end structure. Science 280:741−4.
  79. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson Π’Π•, Mann M, Lieber MR (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492−5.
  80. Grawunder U, Zimmer D, Kulesza P, Lieber MR (1998) Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V (D)J recombination and DNA double-strand break repair in vivo .J Biol Chem. 273(38):24 708−14.
  81. Gu Y, Cimino G, Alder H, Nakamura T, Prasad R, Canaani 0, Moir DT, Jones C, Nowell PC, Croce CM, et al. (1992) The (4−11)(q21-q23) chromosome translocations in acute leukemias involve the VDJ recombinase. Proc. Natl. Acad. Sci. USA 89(21): 10 464−8.
  82. Haluska FG, Tsujimoto Y, Croce CM (1987) The t (8−14) chromosome translocation of the Burkitt lymphoma cell line Daudi occurred during immunoglobulin gene rearrangement and involved the heavy chain diversity region. Proc Natl Acad Sci USA 84(19):6835−9.
  83. Hanakahi LA & West SC (2002) Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBOJ. 21(8):2038−2044.
  84. Hancock R (2000) A new look at the nuclear matrix. Chromosoma 109(4):219−25.
  85. Hand R (1978) Eucaryotic DNA: Organization of the genome for replication. Cell 15(2): 317−325.
  86. Hansen JC (2002) Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms and functions. Annu. Rev. Biophys. Biomol. Struct. 31: 361−392.
  87. Hayes JJ and Hansen JC (2001) Nucleosomes and the chromatin fiber. Curr. Opin. Genet. Dev. 11: 124−129.
  88. Hayes JJ, Clark DJ, Wolffe AP (1991) Histone contributions to the structure of DNA in the nucleosome Proc. Natl. Acad. Sci. USA 88: 6829−6833.
  89. Hilliker AJ & Appels R (1989) The arrangement of interphase chromosomes: structural and functional aspects. Exp Cell Res. 185(2):267−318.
  90. Hochstrasser M, Mathog D, Gruenbaum Y, Saumweber H, Sedat JW (1986) Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster. J Cell Biol. 102(1): 112−23.
  91. M., Mathog D., Gruenbaum Y., Saumweber H., Sedat J.W. (1986) Spatial organization of chromosomes in the salivary gland nuclei of Drosophila melanogaster. J Cell Biol. 102(1): 112−23.
  92. Huang C.H., Mirabelli C.K., Jan Y., Crooke S.T. (1981) Single-strand and double-strand deoxyribonucleic acid breaks produced by several bleomycin analogues. Biochemistry. 20, 233—238.
  93. Jackson DA & Cook PR (1985). A general method for preparing chromatin containing intact DNA. EMBOJ4(4): 913−8.
  94. Jackson DA, Dolle A, Robertson G, Cook PR (1992) The attachments of chromatin loops to the nucleoskeleton. Cell Biol Int Rep 16 (8), 687−96.
  95. Junop MS, Modesti M, Guarne A, Ghirlando R, Gellert M, Yang W (2000) Crystal structure of the Xrcc4 DNA repair protein and implications for end joining. EMBOJ. 19(22):5962−70.
  96. Karimi-Busheri F, Daly G, Robins P, Canas B, Pappin DJ, Sgouros J, Miller GG, Fakhrai H, Davis EM, Le Beau MM, Weinfeld M (1999) Molecular characterization of a human DNA kinase. J. Biol. Chem. 274(34): 24 187−24 194.
  97. Kim J & Pelletier J (1999) Molecular genetics of chromosome translocations involving EWS and related family members. Physiol Genomics 1:127−138.
  98. Koch CA, Agyei R, Galicia S, Metalnikov P, O’Donnell P, Starostine A,
  99. S., Lukasova E., Jirsova P., Koutna I., Kozubek M., Ganova A., Bartova E., Falk M., Pasekova R. (2002) 3D structure of the human genome: order in randomness. Chromosoma, 111, 321−31.
  100. Kuhne M, Rothkamm K, Lobrich M (2002) Physical and biological parameters affecting DNA double strand break misrejoining in mammalian cells. Radiat. Prot. Dosim. 99:129−132.
  101. M.Kuhne, M., Riballo, E., Rief, N., Rothkamm, K., Jeggo, P.A. and Lobrich, M. (2004) A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res, 64, 500−508.
  102. Laemmli UK (1978) Levels of organization of the DNA in eucaryotic chromosomes. Pharmacol Rev. 30(4):469−76
  103. Lagarkova M, Iarovaia O, Razin S (1995) Large-scale fragmentation of mammalian DNA in the course of apoptosis proceeds via excision of chromosomal DNA loops and their oligomers. J Biol Chem 270(35): 20 239−41.
  104. Leach TJ, Mazzeo M, Chotkowski HL, Madigan JP, Wotring MG & Glaser RL (2001) Histone H2A. Z is widely but non-randomly distributed in chromosomes of Drosophila melanogaster. J Biol Chem 275: 23 267−23 272.
  105. Lee JW, Blanco L, Zhou T, Garcia-Diaz M, Bebenek K, Kunkel ВА, Wang Z, Povirk LF (2004) Implication of DNA polymerase lambda in alignment-based gap-filling for non-homologous DNA end joining in human nuclear extracts. J. Biol. Chem. 279(1):805−811.
  106. Levy-Wilson B. & Fortier C. (1989) The limits of the DNase I-sensitive domain of the human apolipoprotein Π’ gene coincide with the locations of chromosomal anchorage loops and define the 5' and 3' boundaries of the gens. J Biol Chem, 264,21 196−204.
  107. Li HJ (1976) A model for chromatin structure. Nucleic Acids Res. 2(8): 1275−89.
  108. Li TK, Chen AY, Yu Π‘, Mao Y, Wang H, & Liu LF (1999) Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev 13(12): 1553−60.
  109. Look AT (1997) Oncogenic transcription factors in the human acute leukemias. Science 278:1059−1064.
  110. Losa R, Thoma F & Koller T (1984) Involvement of the globular domain of histone HI in the higher order structures of chromatin. J. Mol. Biol. 175: pp. 529— 551.
  111. Luger К & Richmond T J (1998) DNA binding within the nucleosome core. Curr. Opin. Struct. Biol. 8: 33−40.
  112. Luger K, Mader AW, Richmond RK et al. (1997) Crystal structure of the nucleosome core particle at 2.8 A0 resolution. Nature 389: pp. 251−260.
  113. Ma H., Siegel A.J., Berezney R. (1999) Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territoriescorrelates with the release of a subset of nuclear matrix proteins. J Cell Biol. 146(3):531−42.
  114. Ma Y,. Lieber MR (2002) Binding of inositol hexakisphosphate (IP6) to Ku but not to DNA-PKcs. J. Biol. Chem. 277(13): 10 756−10 759.
  115. Mahadevaiah SK, Turner JMA, Baudat F, Rogakou EP, de Boer P, Bianco-Rodriguez J et al. (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27: 271−276.
  116. Mahajan KN, Nick McElhinny SA, Mitchell BS, Ramsden DA (2002) Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end joining double-strand break repair. Mol. Cell. Biol. 22(14): 5194−5202
  117. Malik HS & Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10: 882−891.
  118. Maraschin J, Dutrillaux B, Aurias A (1990) Chromosome aberrations induced by etoposide (VP-16) are not random. Int. J. Cancer 46, 808−812.
  119. Marchetti F, Bishop JB, Lowe X, Generoso WM, Hozier J, Wyrobek AJ (2001) Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse. Proc Natl Acad Sci USA 98(7):3952−7.
  120. Marie Π‘ & Hyrien О (1998) Remodeling of chromatin loops does not account for specification of replication origins during Xenopus development. Chromosoma, 107, 155−65.
  121. Marsde MP & Laemmli U К (1979) Metaphase chromosome structure: evidence for a radial loop model. Cell 17: 849−858.
  122. Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell. 7(5):825−42.
  123. Mathog D, Hochstrasser M, Gruenbaum Y, Saumweber H, Sedat J (1984) Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei. Nature 308:414−21.
  124. Maya-Mendoza A, Aranda-Anzaldo A (2003) Positional mapping of specific DNA sequences relative to the nuclear substructure by direct polymerase chain reaction on nuclear matrix-bound templates. Analyt. Biochem. 313, 196−207.
  125. McCready SJ, Akrigg A, Cook PR (1979) Electron-microscopy of intact nuclear DNA from human cells. J Cell Sci 39: 53−62.
  126. Mersfelder EL & Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res. 34(9):2653−62.
  127. Mirkovitch J, Gasser SM & Laemmli UK (1988) Scaffold attachment of DNA loops in metaphase chromosomes. J Mol Biol 200(1): 101−9.
  128. Mirkovitch J, Mirault ME & Laemmli UK (1984). Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39(1): 223−32.
  129. Modesti M, Hesse JE, Gellert M (1999) DNA binding of Xrcc4 protein is associated with V (D)J recombination but not with stimulation of DNA ligase IV activity. EMBO J. 18(7):2008−18.
  130. Moneypenny CG, Shao J, Song Y, Gallagher EP (2006) MLL rearrangements are induced by low doses of etoposide in human fetal hematopoietic stem cells. Carcinogenesis 27(4):874−81.
  131. Morgan WF, Corcoran J, Hartmann Π›, Kaplan MI, Limoli CL, Ponnaiya Π’ (1998) Double strand breaks, chromosomal rearrangements, and genomic instability. Mutat. Res. 404:125−128.
  132. Nakanishi M, Tanaka K, Shintani T, Takahashi T, Kamada N (1999) Chromosomal instability in acute myelocytic leukemia and myelodysplastic syndrome patients among atomic bomb survivors. J. Radial Res. 40:159−167.
  133. Olins AL and Olins DE (1974) Spheroid Chromatin Units (nu Bodies). Science 183: 330- 332
  134. P.L., Banath J.P. (1993) Detection of DNA double-strand breaks through the cell cycle after exposure to X-rays, bleomycin, etoposide and 125IdUrd. Int. J. Radial Biol. 64, 349−358.
  135. Olive PL (2000) The role of single and double strand breaks in cell killing by ionizing radiation. Radiat. Res. 150: 42−51.
  136. Oshita F, Yamada K, Nomura I, Noda К (1998) Gene-specific damage produced by topoisomerase inhibitors in human lung cancer cells and peripheral mononuclear cells as assayed by polymerase chain reaction-stop assay. Anticancer Res. 18:3389−3393
  137. Parsons CA, Baumann P, Van Dyck E, West SC (2000) Precise binding of single-stranded DNA termini by human RAD52 protein. EMBOJ. 19:4175−4181.
  138. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M & Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10: 886−895.
  139. Pehrson JR & Fried VA (1992) MacroH2A, a core histone containing a large nonhistone region. Science 257: 1398−1400.
  140. Perche P-Y, Vourch C, Konecny L, Souchier C, Nicoud MR, Dimitrov S & Khochbin S (2000) Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr Biol 10: 1531−1534.
  141. Peterson CL, Laniel MA. (2004) Histones and histone modifications. Curr Biol. 14(14): 546−51.
  142. Pfeiffer P., Goedecke W., Obe G. (2000) Mechanisms of DNA double strand break repair and their potential to induce chromosomal aberrations. Mutagenesis, 15, 289−302.
  143. Philip P & Pedersen-Bjergaard J (1988) Cytogenetic, clinical, and cytologic characteristics of radiotherapy-related leukemias. Cancer Genet. Cytogenet. 31:227−236.
  144. Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003) Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Bioch Cell Biology 81(3): 123−9.
  145. C. (1885) Uber Zellteilung. In Morphologisches Jahrbuch, G. C., ed., pp. 214−258.
  146. Ramakrishnan V (1995) The Histone Fold: Evolutionary Questions. ProcNatl Acad Sci US A. 92: 11 328−11 330
  147. Rangasamy D, Berven L, Ridgway P & Tremethick DJ (2003) Pericentric heterochromatin becomes enriched with H2A. Z during early mammalian development. EMBOJ22: 1599−1607.
  148. F.V. (2003) DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Letters, 193, 1−9.
  149. Rattner J Π’ and Lin CC (1985). Radial loops and helical coils coexist in metaphase chromosomes. Cell 42: 291−296.
  150. Razin S & Gromova I (1995) The channels model of nuclear matrix structure. Bioessays, 17,443−50.
  151. Razin S (1999) Chromosomal DNA loops may constitute basic units of the eukaryotic genome organization and evolution. Crit Rev Eukaryot Gene Expr, 9, 279−83.
  152. Razin S, Farrell C, Recillas-Targa F (2003) Genomic domains and regulatory elements operating at the domain level. Int Rev Cytol 226: 63−125.
  153. Razin SV (2001) The nuclear matrix and chromosomal DNA loops: is their any correlation between partitioning of the genome into loops and functional domains? Cell Mol Biol Lett. 6(l):59−69.
  154. Razin SV, Kekelidze MG, Lukanidin EM, Scherrer K, Georgiev GP (1986) Replication origins are attached to the nuclear skeleton. Nucleic Acids Res. 14(20):8189−207.
  155. Razin SV, Mantieva VL, Georgiev GP (1978) DNA adjacent to attachment points of deoxyribonucleoprotein fibril to chromosomal axial structure is enriched in reiterated base sequences. Nucleic Acids Res. 5(12):4737−51.
  156. Redon C, Pilch D, Rogakou EP, Orr AH, Lowndes NF, Bonner WM (2003) Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Report 4: 678−684.
  157. Redon C, Pilch D, Rogakou EP, Sedelnikova O, Newrock K, Bonner WM (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12: 162−169.
  158. Riballo E, Kuhne M, RiefN, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A et al. (2004) A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol. Cell 16: 715−24.
  159. Richardson Π‘ & Jasin M (2000) Frequent chromosomal translocations induced by DNA double strand breaks. Nature 405: 697−700.
  160. Richmond, T J and Davey, Π‘ A (2003) The structure of DNA in the nucleosome core. Nature 423: 145−150.
  161. Rivera-Calzada A, Maman JD, Spagnolo L, Pearl LH, Llorca О (2005) Three-dimensional structure and regulation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Structure 13(2):243−55.
  162. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell. Biol. 146, 905 916.
  163. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double stranded breaks induce H2AX phosphorylation on serine-139. J Biol Chem 273: 5858−5868.
  164. Rothkamm K, Lobrich M (2002) Misrepair of radiation-induced DNA double-strand breaks and its relevance for tumorigenesis and cancer treatment. Int. J. Oncol. 2: 433−440.
  165. Rzeszowska-Wolny J, Razin S, Puvion E, Moreau J, Scherrer К (1988) Isolation and characterization of stable nuclear matrix preparations and associated DNA from avian erythroblasts. Biol. Cell. 64, 13−22.
  166. Sandman K, Krzycki JA, Dobrinski B, Lurz R, Reeve JN (2000) HMf, a DNA binding protein isolated from the hyperthermophilic archeon Methanothermus fervidus, is most closely related to histones. Proc Natl Acad Sci USA 7: 57 885 757.
  167. Santisteban MS, Kalashnikova T, Smith MM (2000) Histone H2A. Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell 103: 41122.
  168. Schaefer C, Grouse L, Buetow K, Strausberg RL (2001) A new cancer genome anatomy project web resource for the community. Cancer J. 7:52−60.
  169. Schar P (2001) Spontaneous DNA damage, genome instability, and cancer when DNA replication escapes control. Cell 104:329−332.
  170. Schwarz PM, Felthauser A, Fletcher TM, Hansen JC (1996) Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry 35: 4009−4015.
  171. Sedelnikova OA, Rogakou EP, Panuytin IG, Bonner WM (2002) Quantitative detection of 125IUdr-induced DNA double-strand breaks with y-H2AX antibody. Radiation Research 158:486−92.
  172. Sekiguchi JM & Alt FW (1999) Non homologous endjoining proteins are required for V (D)J recombination, normal growth and neurogenesis. Cold Spring Harbor Symp. Quant. Biol. 64:169−181.
  173. Sellos D, Krawetz SA, Dixon GH (1990) Organization and complete nucleotide sequence of the core-histone-gene cluster of the annelid Platynereis dumerilii. Eur J Biochem. 190(1): 21−29.
  174. Shibuya ML, Ueno AM, Vannais DB, Craven PA, Valdren CA (1994) Megabase pair deletions in mutant mammalian cells following exposure to amsacrine, an inhibitor of DNA topoisomerase II. Cancer Res. 54, 1092−1097.
  175. Sibanda BL, Critchlow SE, Begun J, Pei XY, Jackson SP, Blundell TL, Pellegrini L (2001) Crystal structure of an Xrcc4-DNA ligase IV complex. Nat Struct Biol. 8(12): 1015−9.
  176. Sigurdson AJ & Jones IM (2003) Second cancers after radiotherapy: any evidence for radiation-induced genomic instability? Oncogene, 22, 7018−7027.
  177. Singer RH & Green MR (1997) Compartmentalization of eukaryotic gene expression: causes and effects. Cell. 91(3):291−4.
  178. Smith MA, McCaffrey RP, Karp JE (1996) The secondary leukemias: challenges and research directions. J Natl Cancer Inst. 88(7):407−18
  179. Spagnolo L, Rivera-Calzada A, Pearl LH, Llorca О (2006) Three-dimensional structure of the human DNA-PKcs/Ku70/Ku80 complex assembled on DNA and its implications for DNA DSB repair. Mol Ce//.22(4):511−9.
  180. M., Deppert W. (1984) Preparation of nuclear matrices from cultured cells: subfractionation of nuclei in situ. J. Cell. Biol. 98, 1886−1894.
  181. Strick R, Zhang Y, Emmanuel N, Strissel PL (2006) Common chromatin structures at breakpoint cluster regions may lead to chromosomal translocations found in chronic and acute leukemias. Hum Genet. 119(5):479−95.
  182. Strissel PL, Strick R, Rowley JD, Zeleznik-Le NJ (1998) An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region. Blood 92:3793−3803
  183. Strout MP, Marcucci G, Bloomfield CD, Caligiuri ΠœΠ› (1998) The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc Natl Acad Sci USA 95(5):2390−5.
  184. Sullivan KF, Hechenberger M & Masri К (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127: 581−592.
  185. Sung P & Klein H (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol. 7(10):739−50.
  186. Taylor EM, Lehmann AR (1998) Conservation of eukaryotic DNA repair mechanisms. Int J Radiat Biol. 74(3):277−86.
  187. Thompson LH, Schild D (2001) Homologous rccombinational repair of DNA ensures mammalian chromosome stability. Mutat Res. 477(1−2): 131−53.
  188. Turner JMA, Aprelikova O, Xu X, Wang R, Kim S, Chandramouli GVA, Barratt CJ, Burgoyne PS & Deng CX (2004) BRCA1 histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 14: 2135−2142.
  189. Valerie К & Povirk LF (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene, 22, 5792−5812.
  190. Van Dyck E, Hajibagheri NM, Stasiak A, West SC (1998) Visualisation of human rad52 protein and its complexes with hRad51 and DNA. J Mol Biol. 284(4): 1027−38.
  191. Van Dyck E, Stasiak AZ, Stasiak A, West SC (1999) Binding of double-strand breaks in DNA by human Rad52 protein. Nature 398: 728−731.
  192. Van Holde KE (1989) «Chromatin». Springer Verlag, New York.213. van Leeuwen F, van Steensel Π’ (2005) Histone modifications: from genome-wide maps to functional insights. Genome Biol. 6(6): 113−8.
  193. Verheijen R, Kuijpers H, Vooijs P, van Venrooij W, Ramaekers F (1986) Protein composition of nuclear matrix preparations from HeLa cells: an immunochemical approach. J Cell Sci. 80: 103−22.
  194. Verheijen R, van Venrooij W, Ramaekers F (1988) The nuclear matrix: structure and composition. J Cell Sci. 90:11 -36.
  195. Verschure PJ, van Der Kraan I, Manders EM, van Driel R (1999) Spatial relationship between transcription sites and chromosome territories. J Cell Biol. 147(1): 13−24.
  196. Walker JR, Π‘ΠΎΡ„Ρ‚Π° RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412:607−14.
  197. J., Schermelieh L., Cremer M., Tashiro S., Cremer T. (2003) Chromosome order in HeLa cells changes during mitosis and early Gl, but is stably maintained during subsequent interphase stages. J Cell Biol. 160(5):685−97.
  198. J. (2002). Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol Cell Biol, 3(6): 430−40.
  199. Wiegant J, Kalle W, Mullenders L, Brookes S, Hoovers JM, Dauwerse JG, van Ommen GJ, Raap AK (1992) High-resolution in situ hybridization using DNA halo preparations. Hum Mol Genet. 1(8):587−91
  200. Wolffe AP & Dimitrov S (1993) Histone-modulated gene activity: developmental implications. Crit Rev Eukaryot Gene Expr 3: 167−191.
  201. Woodcock CL & Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr. Opin. Genet. Dev. 11: 130−135.
  202. Woodcock CL, McEwen BF, Frank J (1991) Ultrastructure of chromatin. II. Three-dimensional reconstruction of isolated fibers. J. Cell Sci. 99: 107−114.
  203. Wyman C, Ristic D, Kanaar R (2004) Homologous recombination-mediated double-strand break repair. DNA Repair (Amst). 3(8−9):827−33.
  204. Xu M, Hammer RE, Blasquez VC, Jones SL, Garrard WT (1989) Immunoglobulin kappa gene expression after stable integration. II. Role of the intronic MAR and enhancer in transgenic mice. J Biol Chem. 264(35):21 190−5.
  205. Yanagida M (2005) Basic mechanism of eukaryotic chromosome segregation. Philos Trans R Soc Lond Π’ Biol Sci. 360:609−21.
  206. Yaneva M, Kowalewski T, Lieber MR (1997) Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomicforce microscopy studies. EMBO J. 16(16):5098−5112.
  207. Yoshino N, Kojima T, Asami S, Motohashi S, Yoshida Y, Chin M, Shichino H, Yoshida Y, Nemoto N, Kaneko M, Mugishima H, Suzuki T (2003) Diagnostic significance and clinical applications of chimeric genes in Ewing’s sarcoma. Biol PharmBull 26:585−588.
  208. Yu J Bock JH, Slightom JL, Villeponteau Π’ (1994) A 5' beta-globin matrix-attachment region and the polyoma enhancer together confer position-independent transcription. Gene 139(2): 139−45.
  209. Zhang Z, Zhu L, Lin D, Chen F, Chen DJ, Chen Y (2001) The three-dimensional structure of the C-terminal DNA-binding domain of human Ku70. J Biol Chem. 276(41):38 231−6.
  210. Π‘., РТСшовска-Π’ΠΎΠ»ΡŒΠ½Ρ‹ Π™., ΠœΠΎΡ€ΠΎ Π–., Π¨Π΅Ρ€Ρ€Π΅Ρ€ К. (1985) Локализация участков прикрСплСния Π”ΠΠš ΠΊ ΡΠ΄Π΅Ρ€Π½ΠΎΠΌΡƒ скСлСту Π² Π³Π΅Π½Π°Ρ… Π°Π»ΡŒΡ„Π°-Π³Π»ΠΎΠ±ΠΈΠ½Π° Ρ†Ρ‹ΠΏΠ»Π΅Π½ΠΊΠ° Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π½Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ядрах. Мол. Π‘ΠΈΠΎΠ». 19: 456−66.
  211. И., Акопов Π‘., НиколаСв Π›. (2004) Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ участков прикрСплСния Π”ΠΠš ΠΊ ΡΠ΄Π΅Ρ€Π½ΠΎΠΌΡƒ матриксу (S/MARs). БиооргапичСская химия 30(1):3−14.1. Благодарности
  212. Автор Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΠΈΡΠΊΡ€Π΅Π½Π½ΡŽΡŽ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ своим Π½Π°ΡƒΡ‡Π½Ρ‹ΠΌ руководитСлям ΠΈ Π²ΡΠ΅ΠΌ ΠΊΠΎΠ»Π»Π΅Π³Π°ΠΌ ΠΏΠΎ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ хромосом Π˜Π‘Π“ РАН.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ