Полипептиды Кунитц-типа актинии Heteractis crispa: структура, функция и причины многообразия изоформ
Диссертация
Настоящая работа является частью исследований, проводимых в Тихоокеанском институте биоорганической химии им. Г. Б. Елякова ДВО РАН, посвященных изучению структуры и функции биологически активных полипептидов актиний. Целью настоящего исследования являлось получение, структурно-функциональный анализ и изучение природы разнообразия полипептидов Кунитц-типа актинии Н. crispa. Для достижения… Читать ещё >
Список литературы
- Farady C.J., Craik C.S. Mechanisms of macromolecular protease inhibitors // ChemBioChem. 2010. V. 11. P. 2341−2346.
- Scott C.J., Taggart C.C. Biologic protease inhibitors as novel therapeutic agents // Biochimie. 2010. V. 92, N 11. P. 1681−1688.
- Joanitti G.A., Freitas S.M., Silva L.P. Proteinaceous protease inhibitors: structural features and multiple functional faces // Current Enzyme Inhibition. 2006. V. 2, N 3. P. 199−217.
- Bode W., Huber R. Natural protein proteinase inhibitors and their interaction with proteinases // Eur. J. Biochem. 1992. V. 204, N 2. P. 433−451
- Di Cera E. Serine proteases // IUBMB Life. 2009 V. 61, N 5. P. 510−515.
- Rawlings N.D., Morton F.R., Kok C.Y., Kong J., Barrett A.J. MEROPS: the peptidase database // Nucleic Acids Res. 2008. V. 36. P. D320-D325.
- Rawlings N.D. Peptidase inhibitors in the MEROPS database // Biochimie. 2010. V. 92. P.1463−1483.
- Lesk A.M., Fordham W.D. Conservation and variability in the structures of serine proteinases of the chymotrypsin family // J. Mol. Biol. 1996. V. 258, N 3. P. 501−537.
- Siezen R.J., Leunissen J.A. Subtilases: the superfamily of subtilisin-like serine proteases // Protein Sci. 1997. V. 6, N 3. P. 501−523.
- Ollis D.L., Cheah E., Cygler M., Dijkstra B., Frolow F., Franken S.M., Harel M., Remington S.J., Silman I., Schrag J., Sussman J.L., Verschueren K.H.G., Goldman A. The ct/p hydrolase fold // Protein Eng. 1992. V. 5, N 3. P. 197−211.
- Page M.J., Di Cera E. Serine peptidases: classification, structure and function // Cell Mol. Life. Sci. 2008. V. 65. P. 1220−1236.
- Fehlhammer H., Bode W. The refined crystal structure of bovine /3-trypsin at 1.8 A resolution. I. Crystallization, data collection and application of patterson search technique // J. Mol. Biol. 1975. V. 98. P. 683−692.
- Blow D.M. Structure and mechanism of chymotrypsin // Acc. Chem. Res. 1976. V. 9, N4. P. 145−152.
- Dodson G., Wlodawer A. Catalytic triads and their relatives // Trends Biochem. Sci. 1998. V. 23, N9. P. 347−352.
- Krem M.M., Di Cera E. Molecular markers of serine protease evolution // EMBO J. 2001. V. 20, N 12. P. 3036−3045.
- Apostoluk W., Otlewski J. Variability of the canonical loop conformations in serine proteinases inhibitors and other proteins // Proteins. 1998 V. 32, N 4. P. 459−474.
- Krowarsch D., Cierpicki Т., Jelen F., Otlewski J. Canonical protein inhibitors of serine proteases // Cell. Mol. Life Sci. 2003. V. 60. P. 2427−2444.
- Zani M.L., Moreau T. Phage display as a powerful tool to engineer protease inhibitors // Biochimie. 2010. V. 92, N 11. P. 1689−1704.
- Rawlings N.D., Tolle D.P., Barrett A.J. Evolutionary families of peptidase inhibitors // Biochem. J. 2004. V. 378. P. 705−716.
- Laskowski M.J., Kato I. Protein inhibitors of proteinases // Ann. Rev. Biochem. 1980. V. 49. P. 593−626.
- Read R.J., James M.N. Introduction to protein inhibitors: X-ray crystallography. In Protease Inhibitors (Barrett, A. J. & Salvesen, G., eds). Elsevier Science Publishers, Amsterdam. 1986. P. 301−336.
- Laskowski M., Qasim M.A. What can the structure of enzyme-inhibitor complex tell us about the structure of enzyme substrate complexes? // Biochim. et Biophys. Acta. 2000. V. 1477, N 1−2. P. 324−337.
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain // Biochem. Biophys. Res. Commun. 1967. V. 27. P. 157−162.
- Мосолов В.В. Ингибиторы белковой природы протеолитических ферментов // Биоорг. химия. 1994. Т. 20, № 2. С. 153−160.
- Czapinska H., Otlewski J. Structural and energetic determinants of the SI-site specificity in serine proteases // Eur. J. Biochem. 1999. V. 260. P. 571−595.
- Kraunsoe J.A., Claridge T.D., Lowe G. Inhibition of human leukocyte and porcine pancreatic elastase by homologues of bovine pancreatic trypsin inhibitor // Biochemistry. 1996. V.35.P. 9090−9096.
- Gherardini P.F., Wass M.N., Helmer-Citterich M., Sternberg M.J. Convergent evolution of enzyme active sites is not a rare phenomenon // J. Mol. Biol. 2007. V. 372, N 3. P. 817−845.
- Cardie L., Dufton M.J. Foci of amino acid residue conservation in the 3D structures of the Kunitz BPTI proteinase inhibitors: how do variants from snake venom differ? // Protein Eng. 1997. V. 10, N 2. P. 131−136.
- Pritchard L., Dufton M.J. Evolutionary trace analysis of the Kunitz/BPTI family of proteins: functional divergence may have been based on conformational adjustment // J. Mol. Biol. 1999. V. 285, N 4. P. 1589−1607.
- Kunitz M., Northrop J.H. Isolation from beef pancreas crystalline trypsinogen, trypsin, a trypsin inhibitors and an inhibitors trypsin compound // J. Gen. Physiol. 1936. V. 19. P. 991−1001.
- Ascenzi P., Bocedi A., Bolognesi M., Spallarossa A., Coletta M., De Cristofaro R., Menegatti E. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein // Curr. Protein Peptide Sci. 2003. V. 4. P. 231−251.
- Sun Z., Lu W., Jiang A., Chen J., Tang F., Liu J.N. Expression, purification and characterization of aprotinin and a human analogue of aprotinin // Protein Expr. Purif. 2009. V. 65, N2. P. 238−243.
- Zhao R., Dai H., Qiu S., Li T., He Y., Ma Y., Chen Z., Wu Y., Li W., Cao Z. SdPI, the first functionally characterized Kunitz-type trypsin inhibitor from scorpion venom // PLoS One. 2011. V. 6, N 11. P. e27548.
- You D., Hong J., Rong M., Yu H., Liang S., Ma Y., Yang H., Wu J., Lin D., Lai R. The first gene-encoded amphibian neurotoxin // J. Biol. Chem. 2009. V. 284, N 33. P. 22 079−22 086.
- Hu H., Bandyopadhyay P.K., Olivera B.M., Yandell M. Characterization of the Conus bullatus genome and its venom-duct transcriptome // BMC Genomics. 2011. V. 12. P. 60.
- Helland R., Otlewski J., Sundheim O., Dadlez M., Smalas A.O. The crystal structures of the complexes between bovine beta-trypsin and ten Pi variants of BPTI //J. Mol. Biol. 1999. V. 287, N 5. P. 923−942.
- Buczek O., Koscielska-Kasprzak K., Krowarsch D., Dadlez M., Otlewski J. Analysis of serine proteinase-inhibitor interaction by alanine shaving // Protein Sci. 2002. V. 11, N 4. P. 806−819.
- Czapinska H., Helland R., Smalas A.O., Otlewski J. Crystal structures of five bovine chymotrypsin complexes with P, BPTI variants // J. Mol. Biol. 2004. V. 344, N 4. P. 10 051 020.
- Marquart M., Walter J., Deisenhofer J., Bode W., Huber R. The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors // Acta Crystallogr. 1983. V. 39. P. 480.
- Узденский А.Б. Ионные каналы в биологических мембранах. Учебное пособие. Ростов-на Дону: Южный федеральный университет, 2008. 44 с.
- Димитриев Д.А., Сапёрова Е. В. Электрофизиология кардиомиоцита. Учебное пособие. Чебоксары: Чуваш, гос. пед. ун-т, 2009. 102 с.
- Кодиров С.А., Журавлев В. Л., Сафонова Т. А., Курилова Л. С., Крутецкая З. И. Суперсемейство потенциалзависимых К±каналов: структура, функции и патология // Цитология. 2010. Т. 52, № 9. С. 697−714.
- Yu F.H., Catterall W.A. Overview of the voltage-gated sodium channel family // Genome Biology. 2003. V. 4, N. 3. P. 207.
- Waxman S.G. Transcriptional channelopathies: an emerging class of disorders // Nat. Rev. Neurosci. 2001. V. 2, N. 9. P. 652−659.
- Василевский A.A., Козлов C.A., Гришин Е. В. Молекулярное разнообразие яда пауков // Успехи биологической химии. 2009. Т. 49. С. 211−274.
- Bohlen C.J., Priel A., Zhou S., King D., Siemens J., Julius D. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain // Cell. 2010. V. 141, N5. P. 834−845.
- Wang J.M., Roh S.H., Kim S., Lee C.W., Kim J.I., Swartz K.J. Molecular surface of tarantula toxins interacting with voltage sensors in K (v) channels // J. Gen. Physiol. 2004. V. 123, N4. P. 455−467.
- Mouhat S., Jouirou В., Mosbah A., De Waard M., Sabatier J.M. Diversity of folds in animal toxins acting on ion channels // Biochem. J. 2004. V. 378. P. 717−726.
- Mebs D. Toxicity in animals. Trends in evolution? // Toxicon. 2001. V. 39, N 1. P. 87−96.
- Olivera B.M., Hillyard D.R., Marsh M., Yoshikami D. Combinatorial peptide libraries in drug design: lessons from venomous cone snails // Trends Biotechnol. 1995. V. 13, N 10. P. 422−426.
- Froy O., Sagiv T., Poreh M., Urbach D., Zilberberg N., Gurevitz M. Dynamic diversification from a putative common ancestor of scorpion toxins affecting sodium, potassium, and chloride channels // J. Mol. Evol. 1999. V. 48. P. 187−196.
- Escoubas P., Rash L. Tarantulas: eight-legged pharmacists and combinatorial chemists // Toxicon. 2004. V. 43. P. 555−574.
- Sollod B.L., Wilson D., Zhaxybayeva O., Gogarten J.P., Drinkwater R., King G.F. Were arachnids the first to use combinatorial peptide libraries? // Peptides. 2005. V. 26. P. 131−139.
- Fry B.G. From genome to «venome»: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins // Genome Res. 2005. V. 15, N 3. P. 40320.
- Escoubas P. Molecular diversification in spider venoms: a web of combinatorial peptide libraries // Mol. Divers. 2006. V. 10. P. 545−554.
- Kozminsky-Atias A., Bar-Shalom A., Mishmar D., Zilberberg N. Assembling an arsenal, the scorpion way // BMC Evol. Biol. 2008. V. 8. P. 333−346.
- Wang Y., Yap L.L., Chua K.L., Khoo H.E. A multigene family of Heteractis magnificalysins (HMgs) // Toxicon. 2008. V. 51. P. 1374−1382.
- Duda T.F., Palumbi S.R. Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus // Proc. Natl. Acad. Sci. USA. 1999. V. 96, N 12. P. 6820−6823.
- Kordis D., Gubensek F. Adaptive evolution of animal toxin multigene families // Gene. 2000. V. 261, N 1. P. 43−52.
- Duda T.F., Palumbi S.R. Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails // Mol. Biol. Evol. 2000. V. 17. P. 1286−1293.
- Zupunski V., Kordis D., Gubensek F. Adaptive evolution in the snake venom Kunitz/BPTI protein family // FEBS Lett. 2003. V. 547. P. 131−136.
- Zhu S., Bosmans F., Tytgat J. Adaptive evolution of scorpion sodium channel toxins // J. Mol. Evol. 2004. V. 58. P. 145−153.
- Ma Y., He Y., Zhao R., Wu Y., Li W., Cao Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal // J. Proteomics. 2012. V. 75, N 5. P. 1563−1576.
- Wong E.S., Belov K. Venom evolution through gene duplications // Gene. 2012. V. 496, N l.P. 1−7.
- St Pierre L., Earl S.T., Filippovich I., Sorokina N., Masci P.P., De Jersey J., Lavin M.F. Common evolution of waprin and kunitz-like toxin families in australian venomous snakes // Cell Mol. Life Sci. 2008. V. 65. P. 4039^1054.
- He Y-Y., Liu S.B., Lee W.H., Qian J.Q., Zhang Y. Isolation, expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from king cobra venom // Peptides. 2008. V. 29, N 10. P. 1692−1699.
- Lu J., Yang H., Yu H., Gao W., Lai R., Liu J., Liang X. A novel serine protease inhibitor from Bungarus fasciatus venom // Peptides. 2008. V. 29, N 3. P. 369−374.
- Strydom D.J. Protease inhibitors as snake venom toxins // Nature New Biol. 1973. V. 243, N 124. P. 88−89.
- Gilquin B., Lecoq A., Desne F., Guenneugues M., Zinn-Justin S., Menez A. Conformational and functional variability supported by the BPTI fold: Solution structure of the Ca2+ channel blocker calcicludine // Proteins. 1999. V. 34, N 4. P. 520−532.
- Stotz S.C., Spaetgens R.L., Zamponi G.W. Block of voltage-dependent calcium channel by the green mamba toxin calcicludine // J. Membr. Biol. 2000. V. 174, N 2. P. 157−165.
- Wang X., Du L., Peterson B.Z. Calcicludine binding to the outer pore of L-type calcium channels is allosterically coupled to dihydropyridine binding // Biochemistry. 2007. V. 46, N 25. P. 7590−7598.
- Harvey A.L. Twenty years of dendrotoxins // Toxicon. 2001. V. 39, N. 1. P. 15−26.
- Skarzynski T. Crystal structure of alpha-dendrotoxin from the green mamba venom and its comparison with the structure of bovine pancreatic trypsin inhibitor // J. Mol. Biol. 1992. V. 224, N3. P. 671−683.
- Foray M.F., Lancelin J.M., Hollecker M., Marion D. Sequence-specific 1H-NMR assignment and secondary structure of black mamba dendrotoxin I, a highly selective blocker of voltage-gated potassium channels // Eur. J. Biochem. 1993. V. 211, N 3. 813— 820.
- Berndt K.D., Guntert P., Wuthrich K. Nuclear magnetic resonance solution structure of dendrotoxin K from the venom of Dendroaspis polylepis polylepis II J. Mol. Biol. 1993. V. 234. P. 735−750.
- Katoh E., Nishio H., Inui T., Nishiuchi Y., Kimura T., Sakakibara S., Yamazaki T. Structural basis for the biological activity of dendrotoxin-I, a potent potassium channel blocker // Biopolymers. 2000. V. 54, N 1. P. 44−57.
- Yoshida S., Matsumoto S. Effects of alpha-dendrotoxin on K+ currents and action potentials in tetrodotoxin-resistant adult rat trigeminal ganglion neurons // J. Pharmacol. Exp. Ther. 2005. V. 314, N 1. P. 437145.
- Peigneur S., Billen B., Derua R., Waelkens E., Debaveye S., Beress L., Tytgat J. A Afunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties // Biochem. Pharmacol. 2011. V. 82, N 1. P. 81−90.
- Bogin O. Venom toxins as ion channel research tools // Modulator. 2006. N 21. P. 28−31.
- Harvey A.L. Recent studies on dendrotoxins and potassium ion channels // Gen. Pharmacol. 1997. V. 28. P. 7−12.
- Harvey A.L., Robertson B. Dendrotoxins: structure-activity relationships and effects on potassium ion channels // Curr. Med. Chem. 2004. V. 11. P. 3065−3072.
- Jin L., Wu Y. Molecular mechanism of 5-dendrotoxin-potassium channel recognition explored by docking and molecular dynamic simulations // J. Mol. Recognit. 2011. V. 24, N. l.P. 101−107.
- Doley R., Kini R.M. Protein complexes in snake venom // Cell. Mol. Life Sci. 2009. V. 66. P. 2851−2871.
- Kwong P.D., McDonald N.Q., Sigler P.B., Hendrickson W.A. Structure of beta 2-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action// Structure. 1995. V. 3. P. 1109−1119.
- Benishin C.G. Potassium channel blockade by the B subunit of beta-bungarotoxin // Mol. Pharmacol. 1990. V. 38. P. 164−169.
- Yuan C.H., He Q.Y., Peng K., Diao J.B., Jiang L.P., Tang X., Liang S.P. Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas // PLoS One. 2008. V. 3, N. 10. P. e3414.
- Possani L.D., Rodriguez de la Vega R.C. Scorpion venom peptides. In Handbook of Biologically Active Peptides Edited by: Kastin AJ. San Diego, Academic Press. 2006. P. 339−354.
- Schwartz E.F., Diego-Garcia E., Rodriguez de la Vega R.C., Possani L.D. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones) // BMC Genomics. 2007. V. 8. P. 119.
- Schweitz H., Bruhn Т., Guillemare E., Moinier D., Lancelin J.M., Beress L., Lazdunski M. Kalicludines and kaliseptine. Two different classes of sea anemone toxins for voltage sensitive K+ channels // J. Biol. Chem. 1995. V. 270, N 42. P. 25 121−25 126.
- Bevins C.L., Zasloff M. Peptides from frog skin // Annu. Rev. Biochem. 1990. V. 59. P. 395−414.
- Conlon J.M., Kim J.B. A protease inhibitor of the Kunitz family from skin secretions of the tomato frog, Dyscophus guineti (Microhylidae) // Biochem. Biophys. Res. Commun. 2000. V. 279, N 3. P. 961 -964.
- Ibrahim H.R., Aoki Т., Pellegrini A. Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules // Curr. Pharm. Des. 2002. V. 8, N 9. P. 671−693.
- Pellegrini A., Thomas U., von Fellenberg R., Wild P. Bactericidal activities of lysozyme and aprotinin against gram-negative and gram-positive bacteria related to their basic character // J. Appl. Bacterid. 1992. V. 72, N 3. P. 180−187.
- Wei L., Dong L., Zhao Т., You D., Liu R., Liu H., Yang H., Lai R. Analgesic and anti-inflammatory effects of the amphibian neurotoxin, anntoxin // Biochimie. 2011. V. 93, N 6. P. 995−1000.
- Dib-Hajj S.D., Black J.A., Waxman S.G. Voltage-gated sodium channels: therapeutic targets for pain // Pain Med. 2009. V. 10. P. 1260−1269.
- Dib-Hajj S.D., Cummins T.R., Black J.A., Waxman S.G. Sodium channels in normal and pathological pain // Annu. Rev. Neurosci. 2010. V. 33. P. 325−347.
- Кашеверов И.Е., Цетлин В. И. а-Конотоксины в исследовании структуры и функций никотиновых рецепторов // Успехи биологической химии. 2009. Т. 49. С. 275−318.
- Dy C.Y., Buczek P., Imperial J.S., Bulaj G., Horvath M.P. Structure of conkunitzin-Sl, a neurotoxin and Kunitz-fold disulfide variant from cone snail // Acta. Crystallogr. D Biol. Crystallogr. 2006. V. 62. P. 980−990.
- Elliger C.A., Richmond T.A., Lebaric Z.N., Pierce N.T., Sweedler J.V., Gilly W.F. Diversity of conotoxin types from Conus californicus reflects a diversity of prey types and a novel evolutionary history // Toxicon. 2011. V. 57, N 2. P. 311−322.
- Macek P. Polipeptide cytolytic toxins from sea anemones (Actinaria) // FEMS Microbiol. Immunol. 1992. V. 5. P. 121−129.
- Anderluh G., Macek P. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria) // Toxicon. 2002. V. 40. P. 111−124.
- Ishida M., Minagawa S., Miyauchi K., Shimakura K., Nagashima Y., Shiomi K. Amino acid sequences of Kunitz-type protease inhibitors from the sea anemone Actinia equina // Fish. Sci. 1997. V. 63. P. 794−798.
- Minagawa S., Sugiyama M., Ishida M., Nagashima Y., Shiomi K. Kunitz-type protease inhibitors from acrorhagi of three species of sea anemones // Сотр. Biochem. Physiol. B. 2008. V. 150. P. 240−245.
- Wunderer G., Machleidt W., Fritz H. The broad-specificity proteinase inhibitor 5 II from the sea anemone Anemonia sulcata II Methods. Enzymol. 1981. V. 80. P. 816−820.
- Minagawa S., Ishida M., Shimakura K., Nagashima Y., Shiomi K. Isolation and amino acid sequences of two Kunitz-type protease inhibitors from the sea anemone Anthopleura aff. xanthogrammica II Сотр. Biochem. Physiol. B. 1997. V. 118. P. 381−386.
- Minagawa S., Ishida M., Shimakura K., Nagashima Y., Shiomi K. Amino acid sequence and biological activities of another Kunitz-type protease inhibitor from the sea anemonq Anthopleura aff. xanthogrammica II Fish. Sci. 1998. V. 64. P. 157−161.
- Зыкова T.A., Винокуров JI.M., Маркова Л. Ф., Козловская Э. П., Еляков Г. Б. Аминокислотная последовательность ингибитора трипсина IV из Radianthus macrodactylus II Биоорг. химия. 1985. Т. 11, С. 293−301.
- Сокотун И.Н., Ильина А. П., Монастырная М. М., Лейченко Е. В., Еськов А. А., Анастюк С. Д., Козловская Э. П. Ингибиторы протеиназ тропической актинии Radianthus macrodactylus: выделение и характеристика // Биохимия. 2007. Т. 72, вып. 3. С. 368−374.
- Гладких И.Н. Изучение структуры и механизма действия ингибиторов сериновых протеиназ из актинии Radianthus macrodactylus: Диссертация канд. хим. наук. Владивосток. 2008. 109 с.
- Козлов C.A., Андреев Я. А., Мурашев A.H., Скобцов Д. И., Дьяченко И. А., Гришин Е. В. Новые полипептидные компоненты с анальгетической активностью из морской анемоны Heteractis crispa II Биоорг. химия. 2009. Т. 35. С. 789−798.
- Honma Т., Kawahata S., Ishida М., Nagai Н., Nagashima Y., Shiomi К. Novel peptide toxins from the sea anemone Stichodactyla haddoni II Peptides. 2008. V. 29. P. 536−544.
- Antuch W., Berndt K.D., Chavez M.A., Delfin J., Wuthrich K. The NMR solution structure of a Kunitz-type proteinase inhibitor from the sea anemone Stichodactyla helianthus И Eur. J. Biochem. 1993. V. 212. P. 675−684.
- Андреев Я. А. Исследование природных модуляторов функциональной активности TRPV1 рецепторов: Диссертация канд. биол. наук. Москва. 2009. 109 с.
- Honma Т., Shiomi К. Peptide toxins in sea anemones: structural and functional aspects // Mar. Biotechnol. 2006. V. 8, N 1. P. 1−10.
- Kozlov S., Grishin E. The mining of toxin-like polypeptides from EST database by single residue distribution analysis // BMC Genomics. 2011. V. 12. P. 88.
- Mebs D., Gebauer E. Isolation of proteinase inhibitory, toxic and hemolytic polypeptides from the sea anemone Stoichactis sp. // Toxicon. 1980. V. 18. P. 97−106.
- Lewis S.M. Evolution of immunoglobulin and T-cell receptor gene assembly // Ann. N. Y. Acad. Sci. 1999. V. 870. P. 58−67.
- Cooper M.D., Alder M.N. The evolution of adaptive immune systems // Cell. 2006. V. 124, N4. P. 815−822.
- Niimura Y. Olfactory receptor genes: evolution // Encyclopedia of life sciences. 2008. P. 1−9.
- Kishida T. Pattern of the divergence of olfactory receptor genes during tetrapod evolution // PLoS One. 2008. V. 3, N 6. P. e2385.
- Lundell N., Schreitmuller T. Sample preparation for peptide mapping a pharmaceutical quality-control perspective // Analytical Biochem. 1999. V. 266, N 1. P. 3147.
- Монастырная M.M., Зыкова Т. А., Козловская Э. П. Выделение и характеристика высокомолекулярных цитолизинов морской актинии Radianthus macrodactylus II Биоорг. химия. 1998. Т. 25, № 10. С. 733−741.
- Вакорина Т.И., Гладких И. Н., Монастырная М. М., Козловская Э. П. Конформационная стабильность ингибитора сериновых протеиназ InhVJ из актинии Heteractis crispa II Биоорг. химия. 2011. Т. 37, № 3. С. 310−318.
- Монастырная М.М., Чаусова В. Е., Гладких И. Н., Лейченко Е. В., Козловская Э. П. Способ получения полипептида из актинии Heteractis crispa, обладающего анальгетическим действием // Патент РФ № 2 415 866. БИ. № 10. 10.04.2011.
- Matz M.V., Alieva N.O., Chenchik A., Lukyanov S. Amplification of cDNA ends using PCR suppression effect and step-out PCR // Methods Mol. Biol. 2003. V. 221. P. 4149.
- Il’ina A., Lipkin A., Barsova E., Issaeva M., Leychenko E., Guzev K., Monastyrnaya M., Lukyanov S., Kozlovskaya E. Amino acid sequence of RTX-A's isoform actinoporin from the sea anemone, Radianthus macrodactylus II Toxicon. 2006. V. 47. P. 517−520.
- Anderluh G., Podlesek Z., Macek P. A common motif in proparts of Cnidarian toxins and nematocyst collagens and its putative role // Biochem Biophys Acta. 2000. V. 1476. P. 372−376.
- Castaneda O, Harvey AL. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels // Toxicon. 2009. V. 54, N 8. P. 1119−1124.
- Зыкова Т.А. Исследование первичной структуры биологически активных пептидов актинии Radianthus macrodactylus: Диссертация канд. хим. наук. Владивосток. 1987. 130 с.
- Richter S., Wenzel A., Stein М., Gabdoulline R. R., Wade R.C. webPIPSA: a web server for the comparison of protein interaction properties // Nucleic Acid Res. 2008. V. 36. P.276−280.
- Uechi G., Toma H., Arakawa Т., Sato Y. Molecular characterization on the genome structure of hemolysin toxin isoforms isolated from sea anemone Actineria villosa and Phyllodiscus semoni // Toxicon. 2010. V. 56. P. 1470−1476.
- Gendeh G.S., Chung M.C., Jeyaseelan K. Genomic structure of a potassium channel toxin from Heteractis magnifica IIFEBS Lett. 1997. V. 418. P. 183−188.
- Jiang L., Chen J., Peng L., Zhang Y., Xiong X., Liang S. Genomic organization and cloning of novel genes encoding toxin-like peptides of three superfamilies from the spider Orinithoctonus huwena II Peptides. 2008. V. 29, N 10. P. 1679−1684.
- Conticello S.G., Gilad Y., Avidan N., Ben-Asher E., Levy Z., Fainzilber M. Mechanisms for evolving hypervariability: the case of conopeptides // Mol. Biol. Evol. 2001. V. 18. P. 120−131.
- Conticello S.G., Pilpel Y., Glusman G., Fainzilber M. Position-specific codon conservation in hypervariable gene families // Trends Genet. 2000. V. 16. P. 57−59.
- Nei M., Rooney A.P. Concerted and birth-and-death evolution of multigene families // Annu. Rev. Genet. 2005. V. 39. P. 121−152.
- Christeller J.T. Evolutionary mechanisms acting on proteinase inhibitor variability // FEBS J. 2005. V. 272, N 22. P. 5710−5722.
- Rose Т., Di Cera E. Substrate recognition drives the evolution of serine proteases // J. Biol. Chem. 2002. V. 277. P. 19 243−19 246.
- Rudolph R. Successful protein folding on an industrial scale. Protein engineering: principles and practice. New York: Wiley-Liss. 1996. P. 283−298.
- Berndt C., Lillig C.H., Holmgren A. Thioredoxins and glutaredoxins as facilitators of protein folding // Biochim. Biophys. Acta. 2008. V. 1783, N 4. P. 641−650.
- Yasukawa Т., Kanei-Ishii C., Maekawa Т., Fujimoto J., Yamamoto Т., Ishii S. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin // J. Biol. Chem. 1995 V. 270, N 43. P. 25 328−25 331.
- McCoy J., Lavallie E. Expression and purification of thioredoxin fusion proteins // Curr. Protoc. Mol. Biol. 2001. Chapter 16: Unit 16.8.
- Novagen. pET System Manual. 2008. 11th edition.
- Andreev Y.A., Kozlov S.A., Vassilevski A.A., Grishin E.V. Cyanogen bromide cleavage of proteins in salt and buffer solutions // Anal. Biochem. 2010. V. 407, N 1. P. 144−146.
- Диксон M., Уэбб Э. Ферменты // Изд. Иностр. Лит. М. 1961. С. 31.
- Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 //Nature. 1970. V. 227, N. 5259. P. 680−685.
- Thalhammer J.G., Vladimirova M., Bershadsky B., Strichartz G.R. Neurologic evolution of the rat during sciatic nerve block with lidocaine // Anesthesiology. 1995. V. 82. P. 1013−1025.
- Monastyrnaya M.M., Zykova T.A., Apalikova O.V., Shwets T.V., Kozlovskaya E.P. Biologically active polypeptides from the tropical sea anemone Radianthus macrodactylus II Toxicon. 2002. V. 40. P. 1197−1217.
- Lowry O.H., Rosebrrough N.J., Fearr A.L., Randall R.J. Protein measurement with Folin phenol reagent // J. Biol. Chem. 1951. V. 193, N 1. P. 265−275.
- Sambrook J., Russel D.W. Molecular cloning: a laboratory manual (third edition) // Cold Spring Harbor, New York. 2001. P. 16.33−16.36.
- Bas D.C., Rogers D.M., Jensen J.H. Very fast prediction and rationalization of pKa values for protein-ligand complexes // Proteins. 2008. V. 73. P. 765−783.
- Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling // Bioinformatics. 2006. V. 22. P. 195−201.
- Kiefer F., Arnold K., Kiinzli M., Bordoli L., Schwede T. The SWISS-MODEL Repository and associated resources // Nucl. Acids Res. 2009. V. 37. P. 387−392.
- Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: a program to check the stereochemical quality of protein structures // J. App. Cryst. 1993. V. 26. P. 283−291.
- Laskowski R.A., Rullman J.A., MacArthur M.W., Kaptein R., Thornton J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR // J. Biomol. NMR. 1996. V. 8. P. 477−486.
- Peitsch M.C. Protein modeling by E-mail // Nat. Biotechnol. 1995. V. 13. P. 658 660.
- Koradi R., Billeter M., Wiithrich K. MOLMOL: a program for display and analysis of macromolecular structures // J. Mol. Graph. 1996. V. 14. P. 51−55.
- De Rienzo F., Gabdoulline R.R., Menziani M.C., De Benedetti P.G., Wade R.C. Electrostatic analysis and Brownian dynamics simulation of the association of plastocyanin and cytochrome ill Biophys. J. 2001. V. 81. P. 3090−3104.