ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎ-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π”Π»ΠΈΠ½Π° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€ рСгулируСтся благодаря многочислСнным Π±Π΅Π»ΠΊΠ°ΠΌ, ассоциированным с Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Π”ΠΠš. НСпосрСдствСнно синтСз Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Ρ‹ осущСствляСтся слоТным Ρ€ΠΈΠ±ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ΄Π½Ρ‹ΠΌ комплСксом — Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈ сразу послС открытия активности, ΡƒΠ΄Π»ΠΈΠ½ΡΡŽΡ‰Π΅ΠΉ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ‹, Π² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ·Π°Ρ‚Π°Ρ… ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ синтСз Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Π”ΠΠš осущСствляСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎ-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Saccharomyces cerevisiae (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Π“Π»Π°Π²Π° I. ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ комплСкса
    • 1. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½Ρ‹Ρ… РНК
      • 1. 1. ΠŸΠ΅Ρ€Π²ΠΈΡ‡Π½Π°Ρ структура Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½Ρ‹Ρ… РНК
      • 1. 2. ΠœΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹ΠΉ Ρ€Π°ΠΉΠΎΠ½ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½Ρ‹Ρ… РНК
      • 1. 3. Роль элСмСнтов Π²Ρ‚ΠΎΡ€ΠΈΡ‡Π½ΠΎΠΉ структуры РНК Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹
    • 2. Π’Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½Ρ‹Π΅ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ транскриптазы
      • 2. 1. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½Ρ‹Π΅ особСнности Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… транскриптаз
      • 2. 2. РСгуляция экспрСссии Π’Π•Π«Π’ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½Ρ‹Ρ…--.,
    • 3. Π‘Π΅Π»ΠΊΠΈ, ассоциированныС с Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½Ρ‹ΠΌ комплСксом
  • Π“Π»Π°Π²Π° II. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
    • 1. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠ° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ комплСкса Π―. сСгС>Π«Π°Π΅
      • 1. 1. Π£Π»ΡŒΡ‚Ρ€Π°Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ Π² Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π΅ плотности Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½Π°
      • 1. 2. ИонообмСнная хромтография
    • 2. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ свойства Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ комплСкса Π―. сСгСу’Ρ‚Π°Π²
      • 2. 1. ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ
      • 2. 2. НуклСазная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ
      • 2. 3. Π”ΠΠš-зависимая-Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ
    • 3. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎΠ΅ исслСдованиС Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ РНП
      • 3. 1. ΠœΠ΅Ρ‚ΠΎΠ΄ Ρ„ΠΎΡ‚ΠΎΠ°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ³ΠΎ химичСского сшивания
      • 3. 2. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π°Ρ„Ρ„ΠΈΠ½Π½Ρ‹Ρ… эпитопов Π² ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΡƒΡŽ структуру Π•Π²12Ρ€
      • 3. 3. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ комплСкса
  • Π“Π»Π°Π²Π° III. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 1. Π Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹.
    • 2. Π‘ΠΈΠΎΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹
    • 3. Π¨Ρ‚Π°ΠΌΠΌΡ‹
      • 3. 1. Escherichia col
      • 3. 2. Saccharomyces cerevisiae
    • 4. Π‘ΡƒΡ„Π΅Ρ€Ρ‹, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅
    • 5. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ суммарного Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠ³ΠΎ экстракта
    • 6. Π€Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ S100 экстракта Π² Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π΅ плотности Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½Π° 15−40%
    • 7. АнионообмСнная хроматография Π½Π° DEAE-Π°Π³Π°Ρ€ΠΎΠ·Π΅
    • 8. РНК-Π±Π»ΠΎΡ‚-гибридизация
    • 9. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ активности
    • 10. ДСтСкция Π½ΡƒΠΊΠ»Π΅Π°Π·Π½ΠΎΠΉ активности
    • 11. Π”Π΅Π»Π΅Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ РНК Π² ΡΠΎΡΡ‚Π°Π²Π΅ хромосомы
      • 11. 1. Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Escherichia col
      • 11. 2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ суммарной Π”ΠΠš Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
      • 11. 3. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ конструкций для Π΄Π΅Π»Π΅Ρ†ΠΈΠΈ TLC
        • 11. 3. 1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° Π”ΠΠš, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ Π³Π΅Π½Ρƒ
  • TLC1 ΠΈ 5'-ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰Π΅Π³ΠΎ Ρ€Π°ΠΉΠΎΠ½Π°
    • 11. 3. 2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструкции pYTR+
      • 11. 3. 2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструкции pYTR+TRP
      • 11. 4. Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Saccharomyces cerevisiae
      • 11. 5. Анализ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… трансформантов
      • 11. 5. 1. ПЦР.НО
      • 11. 5. 2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ суммарной РНК Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
    • 12. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структуры ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Максама-Π“ΠΈΠ»Π±Π΅Ρ€Ρ‚Π°
    • 13. ДСтСкция Π”ΠΠš-зависимой-Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅ΠΉ активности
    • 14. Π€ΠΎΡ‚ΠΎΠ°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ΅ химичСскоС сшиваниС
    • 15. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π°Ρ„Ρ„ΠΈΠ½Π½Ρ‹Ρ… эпитопов Π² ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΡƒΡŽ структуру Est2p
      • 15. 1. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ конструкций для ввСдСния Π°Ρ„Ρ„ΠΈΠ½Π½Ρ‹Ρ… эпитопов
        • 15. 1. 1. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° Π”ΠΠš, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ 3'Ρ€Π°ΠΉΠΎΠ½Ρƒ Π³Π΅Π½Π° EST2 ΠΈ ΠΏΡ€ΠΈΠ»Π΅Π³Π°ΡŽΡ‰Π΅ΠΉ ΠΊ Π½Π΅ΠΌΡƒ области
        • 15. 1. 2. ΠŸΠΎΠ»ΡƒΡ‡Π΅ΠΈΠ΅ конструкции ΠœΠ•Π 
        • 15. 1. 3. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструкции MES
        • 15. 1. 4. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структуры Π”ΠΠš ΠΏΠΎ Π‘энгСру
        • 15. 1. 5. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструкций pMEMl ΠΈ Ρ€ΠœΠ•Πœ
        • 15. 1. 6. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструкции pMEZ
      • 15. 2. Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π”ΠΠš ΠΈ Π°Π½Π°Π»ΠΈΠ· трансформантов
        • 15. 2. 1. ПЦР
        • 15. 2. 2. Π˜ΠΌΠΌΡƒΠ½ΠΎΠ±Π»ΠΎΡ‚ΠΈΠ½Π³
    • 16. Π˜ΠΌΠΌΡƒΠ½Π½ΠΎΠ΅ осаТдСниС Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ комплСкса
    • 17. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ комплСкса с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ MALDI- ΠΈ ESI-масс-спСктромСтрии
  • Π’Ρ‹Π²ΠΎΠ΄Ρ‹

Около 30 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄ руский ΡƒΡ‡Π΅Π½Ρ‹ΠΉ А. М. Оловников сформулировал ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΊΠΎΠ½Ρ†ΠΎΠ² Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… эукариотичСских хромосом [1]. Она состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Π΅ Π”ΠΠš-зависимыС-Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ синтСз Π”ΠΠš с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π·Π°Ρ‚Ρ€Π°Π²ΠΊΠΈ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ 3'-ΠΊΠΎΠ½Ρ†Π° растущСй Ρ†Π΅ΠΏΠΈ [2], послС удалСния РНК-Π·Π°Ρ‚Ρ€Π°Π²ΠΊΠΈ Π—'-ΠΊΠΎΠ½Π΅Ρ† Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΉ Ρ†Π΅ΠΏΠΈ Π”ΠΠš остаСтся Π½Π΅Π΄ΠΎ-Ρ€Π΅ΠΏΠ»ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΈ Π΄ΠΎΡ‡Π΅Ρ€Π½ΡΡ ΠΊΠ»Π΅Ρ‚ΠΊΠ° послС сСгрСгации ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ хромосому, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ с ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΊΠΎΠ½Ρ†ΠΎΠ² выступаСт Π—'-ΠΎΠ΄Π½ΠΎΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΉ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ Π”ΠΠš (Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ Π—'-овСрхэнг). ΠŸΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ дСлСния Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅ΠΌΡƒ ΡƒΠΊΠΎΡ€ΠΎΡ‡Π΅Π½ΠΈΡŽ хромосомной Π”ΠΠš ΠΏΡ€ΠΈ условии отсутствия компСнсаторного ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° [1]. И Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ [3], Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… соматичСских ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (фибробластов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°) происходит постСпСнноС ΡƒΠΊΠΎΡ€ΠΎΡ‡Π΅Π½ΠΈΠ΅ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² хромосом. Достигнув Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ критичСского значСния (Ρ‡Ρ‚ΠΎ составляСт ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 40−50 ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΡƒΠ΄Π²ΠΎΠ΅Π½ΠΈΠΉ), ΡƒΠΊΠΎΡ€ΠΎΡ‡Π΅Π½ΠΈΠ΅ хромосом замСдлялось, Π½ΠΎ Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ остановкой ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ дСлСния. ΠšΡ€Π°ΠΉΠ½Π΅ интСрСсным оказалось Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ укорочСния хромосом Π½Π΅ ΠΏΡ€ΠΎΠΈΡΡ…ΠΎΠ΄ΠΈΡ‚ Π² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Ρ… Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, Ρ‡ΡŒΡ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ поистинС ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Π° для ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π²Ρ‹ΡΡˆΠΈΡ… эукариот. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π²ΠΎΠ·Π½ΠΈΠΊΠ»Π° тСория ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠΈ, Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ составляСт 40−50 Π΄Π΅Π»Π΅Π½ΠΈΠΉ Π² ΡΠ»ΡƒΡ‡Π°Π΅ соматичСских ΠΈ ΠΏΡ€Π°ΠΊΡ‚ичСски Π½Π΅ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ Π² ΡΠ»ΡƒΡ‡Π°Π΅ Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΈ, Π²ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ компСнсируСт ΡƒΠΊΠΎΡ€ΠΎΡ‡Π΅Π½ΠΈΠ΅ хромосомной Π”ΠΠš [1]. Однако Ρ‚ΠΎΠ»ΡŒΠΊΠΎ спустя 12 Π»Π΅Ρ‚ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… эукариот Π’Π΅^Π°ΠΊΡƒΡ‚Π΅ΠΏΠ° ΠœΠ΅Π³Ρ‚ΠΎΡ€Π¬Π˜Π° исслСдоватСлям ΡƒΠ΄Π°Π»ΠΎΡΡŒ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ — Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρƒ, ΡΠ²Π»ΡΡŽΡ‰ΡƒΡŽΡΡ Ρ‡Π°ΡΡ‚ΡŒΡŽ прСдсказанного ΠžΠ»ΠΎΠ²Π½ΠΈΠΊΠΎΠ²Ρ‹ΠΌ компСнсаторного ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° [4].

ΠšΠΎΠ½Ρ†Ρ‹ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… эукариотичСских хромосом ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой особыС Π”ΠΠš-Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Π΅ структуры: тСломСрная Π”ΠΠš состоит ΠΈΠ· ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π° Ρ‚Π°Π½Π΄Π΅ΠΌΠ½Ρ‹Ρ… ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΎΠ² (ΠΎΡ‚ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… дСсятков Π΄ΠΎ Ρ‚ысяч) ΠΈ Π°ΡΡΠΎΡ†ΠΈΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… с Π½ΠΈΠΌΠΈ Π±Π΅Π»ΠΊΠΎΠ² [5]. Π’Π΅Π»ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΉ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠ΅ (6−25 Π½.ΠΎ.) ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ΄Π½Π° Ρ†Π΅ΠΏΡŒ Π±ΠΎΠ³Π°Ρ‚Π° остатками Π³ΡƒΠ°Π½ΠΈΠ½Π° (О-Ρ†Π΅ΠΏΡŒ). ИмСнно эта О-Ρ†Π΅ΠΏΡŒ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ Π—'-ΠΎΠ΄Π½ΠΎΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΉ Π²Ρ‹ΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰ΠΈΠΉ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ (О-овСрхэнг) Π½Π° ΠΊΠΎΠ½Ρ†Π°Ρ… Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Ρ… хромосом.

Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€ Π½Π΅ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π·Π°Ρ‰ΠΈΡ‚ΠΎΠΉ хромосом ΠΎΡ‚ Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ ΠΈ ΡΠ»ΠΈΡΠ½ΠΈΡ, ΠΊΠ°ΠΊ ΠΏΠΎΠ»Π°Π³Π°Π»ΠΈ Ρ€Π°Π½ΡŒΡˆΠ΅ [6]. Π’Π΅Π»ΠΎΠΌΠ΅Ρ€Π½Ρ‹Π΅ кластСры ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ°Ρ… транскрипционного молчания (Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΉ эффСкт полоТСния — ВЭП) [7, 8], расхоТдСния хромосом Π² ΠΌΠΈΡ‚ΠΎΠ·Π΅ [9, 10], ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° [11], Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ хромосом ΠΈ Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ ядра [12, 13].

Π”Π»ΠΈΠ½Π° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€ рСгулируСтся благодаря многочислСнным Π±Π΅Π»ΠΊΠ°ΠΌ, ассоциированным с Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Π”ΠΠš [5]. НСпосрСдствСнно синтСз Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Ρ‹ осущСствляСтся слоТным Ρ€ΠΈΠ±ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ΄Π½Ρ‹ΠΌ комплСксом — Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·ΠΎΠΉ. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈ сразу послС открытия активности, ΡƒΠ΄Π»ΠΈΠ½ΡΡŽΡ‰Π΅ΠΉ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ‹, Π² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ·Π°Ρ‚Π°Ρ… ΠΌΠ½ΠΎΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ [4], Ρ‡Ρ‚ΠΎ синтСз Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Π”ΠΠš осущСствляСтся с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ транскрипции ΠΏΠΎ Π ΠΠš-ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅, которая являСтся ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ комплСкса. Π’ ΡΠΎΡΡ‚Π°Π²Π΅ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ РНК находится нСбольшая ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ (9−30 Π½.ΠΎ.), называСмая ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹ΠΌ участком, которая взаимодСйствуСт с ΠΎΠ΄Π½ΠΎΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΌ 3'-Π²Ρ‹ΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰ΠΈΠΌ ΠΊΠΎΠ½Ρ†ΠΎΠΌ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Ρ‹ с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ РНК-Π”ΠΠš дуплСкса (рис. 1). Π£Π΄Π»ΠΈΠ½Π΅Π½ΠΈΠ΅ Π—'-ΠΊΠΎΠ½Ρ†Π° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ†Π΅ΠΏΠΈ ΠΏΠΎ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠΌΡƒ участку Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ РНК осущСствляСт ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ-транскриптазиая ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Π° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ (Π’Π•Π©). По Π΄ΠΎΡΡ‚ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΊΠΎΠ½Ρ†Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ€Π°ΠΉΠΎΠ½Π°, элонгация останавливаСтся, ΠΎΠ΄Π½Π°ΠΊΠΎ Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ 3-ΠΊΠΎΠ½Π΅Ρ† Π½Π΅ Π΄ΠΈΡΡΠΎΡ†ΠΈΠΈΡ€ΡƒΠ΅Ρ‚, Π° Π»ΠΈΡˆΡŒ пСрСмСщаСтся Π² Π½Π°Ρ‡Π°Π»ΠΎ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ районатранслоцируСт — ΠΈ ΡΠΈΠ½Ρ‚Π΅Π· продолТаСтся снова. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ Π·Π°Π΄Π°ΡŽΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π°, Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΠΊ ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΌ Ρ€Π°ΡƒΠ½Π΄Π°ΠΌ элонгации-транслокации (процСссивности) ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π΄Π»ΠΈΠ½Ρƒ самих Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€.

Рисунок 1. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠ°Ρ схСма удлинСния Π—'-ΠΊΠΎΠ½Ρ†Π° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Π”ΠΠš Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½Ρ‹ΠΌ РНП.

Π•ΡΡ‚ΡŒ основания ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ своСго Ρ€ΠΎΠ΄Π° «ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΌΠΈ часами», ΠΎΡ‚ΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌΠΈ врСмя ΠΆΠΈΠ·Π½ΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ: Π΄Π»ΠΈΠ½Π° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ с ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ соматичСской ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, достигая Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ критичСского значСния, ΠΊΠΎΠ³Π΄Π° ΠΊΠ»Π΅Ρ‚ΠΊΠ° пСрСстаСт Π΄Π΅Π»ΠΈΡ‚ΡŒΡΡ. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ тСломСразная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ отсутствуСт, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ рСпрСссирована экспрСссия Π³Π΅Π½Π°, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ-Ρ‚Ρ€Π°Π½ΡΠΊΡ€ΠΈΠΏΡ‚Π°Π·Π½ΡƒΡŽ ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ.

Π’Π΅Π½Π°ΠΌΠ΅Ρ€ΡˆΠ½Π°Ρ обратная транскриптаза БвязываниС) «Π­Π»ΠΎΠ½Π³Π°Ρ†ΠΈΡ) Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹. Однако ΠΏΡ€ΠΈ спонтанной ΠΈΠ»ΠΈ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΈΠΌΠΌΠΎΡ€Ρ‚Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ (нСопластичСская трансформация ΠΈΠ»ΠΈ трансформация ΠΎΠ½ΠΊΠΎΠ³Π΅Π½Π°ΠΌΠΈ) Π΄Π»ΠΈΠ½Π° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅Ρ‚ся ΠΈ ΠΎΡΡ‚аСтся ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… дСлСниях, Π° Ρ‚СломСразная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Π·ΠΊΠΎ возрастаСт. Π˜Π½Ρ‚Π΅Ρ€Π΅ΡΠ½ΠΎ, Ρ‡Ρ‚ΠΎ Ρƒ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ активности ΠΊΡ€Π°ΠΉΠ½Π΅ высок, Ρ‡Ρ‚ΠΎ Π΄Π΅Π»Π°Π΅Ρ‚ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρƒ Π·Π°ΠΌΠ°Π½Ρ‡ΠΈΠ²Ρ‹ΠΌ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ Π² Π°Π½Ρ‚ΠΈΡ€Π°ΠΊΠΎΠ²Ρ‹Ρ… исслСдованиях. Но Π½Π°ΡΡ‚оящий «Π±ΡƒΠΌ» ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π»ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Ρ…ΠΎΠ΄Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ экспСримСнта [14]: Ρ€Π°Π»ΠΈΡ‡Π½Ρ‹Π΅ соматичСскиС ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… отсутствовала тСломСразная обратная транскриптаза, трансформировали Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Π”ΠΠš, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π΅Π½ Π’Π•Π¨. ΠšΠ»Π΅Ρ‚ΠΊΠΈ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… «Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»» составлял 40−50 ΡƒΠ΄Π²ΠΎΠ΅Π½ΠΈΠΉ, ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π²Π°Π»ΠΈ этот Π±Π°Ρ€ΡŒΠ΅Ρ€ ΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Π»ΠΈ Π΄Π΅Π»ΠΈΡ‚ΡŒΡΡ, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ся Ρ€Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ, Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ ΡˆΠΈΡ€ΠΎΠΊΠΈΠ΅ пСрспСктивы Π² ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Ρ‚Π°ΠΊΠΈΡ… ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€.

НСсмотря ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΉ интСрСс ΠΊ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°ΠΌ ΠΈ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π΅, вопрос ΠΎ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π΅ комплСкса ΠΈ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ Π΅Π³ΠΎ активности Π² Π½Π°ΡΡ‚оящСС врСмя ΠΏΠΎΠΊΠ° остаСтся ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ. Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ многочислСнныС Π΄Π°Π½Π½Ρ‹Π΅, ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠΌΠΈΠΌΠΎ РНК ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ транскриптазы Π² ΡΠΎΡΡ‚Π°Π² Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ РНП входят ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ активности ΠΈ ΠΎΠ±ΡƒΡΠ»Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… особСнностСй комплСкса. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ рСгуляция активности Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ связана с ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ°ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ развития (Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ, развития Ρ€Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ, Π°ΠΏΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΈ Π΄Ρ€.), исслСдования, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π½Π° ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ структуры ΠΈ Ρ„ункционирования Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ РНП, ΡΠ²Π»ΡΡŽΡ‚ΡΡ достаточно Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ.

Π”Ρ€ΠΎΠΆΠΆΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½Ρ‹ΠΌ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ Π² ΡΠ»ΡƒΡ‡Π°Π΅ структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ исслСдования Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹. ΠšΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ Π½Π΅ ΡΠ²Π»ΡΠ΅Ρ‚ся ΡΡ‚ΠΎΠ»ΡŒ дорогостоящим ΠΈ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΈΠΌ процСссом, ΠΊΠ°ΠΊ Π² ΡΠ»ΡƒΡ‡Π°Π΅ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€ Π²Ρ‹ΡΡˆΠΈΡ… эукариот. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, соврСмСнный ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ развития Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠΈ Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ позволяСт достаточно просто Π΄Π΅Π»Π΅Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ»ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒ любой Π³Π΅Π½ Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ контСкста хромосомы. Высокая гомология родствСнных Π³Π΅Π½ΠΎΠ² Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ΠΈ Π²Ρ‹ΡΡˆΠΈΡ… эукариот Π΄Π°Π΅Ρ‚ основания ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ идСнтификация ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΎΠ² ΠΈ Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°Ρ….

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, основными Π·Π°Π΄Π°Ρ‡Π°ΠΌΠΈ настоящСго исслСдования явились Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅, частичная очистка Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ комплСкса Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ БасскаготусСя сСгСу1я1Π°Π΅, ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… особСнностСй Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° стратСгии опрСдСлСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ состава Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ комплСкса.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π’Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ Π΄Π²Π° Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½Ρ‹Ρ… комплСкса.

2. Показано, Ρ‡Ρ‚ΠΎ с Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½Ρ‹ΠΌ комплСксом сСгСу1я1Π°Π΅ ассоциирована Π”ΠΠš-зависимая-Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π°.

3. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, основанный Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Ρ„ΠΎΡ‚ΠΎΠ°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ³ΠΎ химичСского сшивания, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΡƒΡŽ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈ Π”ΠΠš-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ².

4. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ ряд Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ², ΡΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ Π•Π·12Ρ€, слитый с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Π°Ρ„Ρ„ΠΈΠ½Π½Ρ‹ΠΌΠΈ эпитопами, ΠΏΠΎΠ΄ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ввСсти ΡΡ‚Π°Π΄ΠΈΡŽ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ Π² ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρƒ очистки Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ комплСкса.

5. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠ³ΠΎ осаТдСния ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ масс-спСктромСтрии Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ с Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π½Ρ‹ΠΌ комплСксом Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ ассоциированы ΠΊΠΎΡ€ΠΎΠ½ΠΈΠ½ ΠΈ Π°ΠΊΡ‚ΠΈΠ½.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Olovnikov A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. (1973) J.Theor. Biol., 41, 181−190
  2. Kornberg A. DNA replication. (1988) J. Biol. Chem., 263,1 -4.
  3. Hayflick J., and Moorhead P. The serial cultivation of human diploid cell strains. (1961) Exp. Cell Res., 25, 585−621
  4. Greider C.W., and Blackburn E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts (1985) Cell, 43, 405−413.
  5. C.W. (1995) Π² Telomeres, edn. 1, Colg Spring Harbor Laboratory Press, 35−68
  6. McClintock B. The fusion of broken ends of chromosomes following nuclear fusion. (1942) Proc. Natl. Acad. Sci. USA, 28, 458−463
  7. Gottschling D.E., Aparicio O.M., Billington B.L., and Zakian V.A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. (1990) Cell, 63, 751−62.
  8. Aparicio O.M., and Gottschling D.E. Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. (1994) Genes Dev., 8, 1133−1146.
  9. Chua P.R., and Roeder G.S. Taml, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference. (1997) Genes Dev., 11,1786−1800.
  10. Conrad M.N., Dominguez A.M., and Dresser M.E. Ndj lp, a meiotic telomere protein required for normal chromosome synapsis and segregation in yeast. (1997) Science, 276, 1252−1255.
  11. Nugent C.I., Hughes T.R., Lue N.F., and Lundblad V. Cdcl3p: a single-stranded telomeric DNA-binding protein with dual role in yeast telomere maintenance. (1996) Science, 274, 249−252
  12. Palladino F., Laroche T., Gilson E., Axelrod A., Pillus L., and Gasser S.M. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. (1993) Cell, 75, 543−555.
  13. Klein F., Laroche T., Cardenas M.E., Hofmann J.F., Schweizer D., and Gasser S.M. Localization of RAP 1 and topoisomerase II in nuclei and meiotic chromosomes of yeast. (1992) J Cell. Biol, 117,935−948.
  14. Yu G.L., Bradley J.D., Attardi L.D., and Blackburn E.H. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. (1990) Nature, 344,126−132.
  15. Romero D.P., and Blackburn E.H. A conserved secondary structure for telomerase RNA. (1991) Cell, 67, 343−353
  16. Hinkley C.S., Blasco M.A., Funk W.D., Feng J., Villeponteau B., Greider C.W., and Herr W. The mouse telomerase RNA 5'-end lies just upstream of the telomerase template sequence. (1998) Nucl. Acid. Res., 26, 532−536.
  17. Zhao J.Q., Hoare S.F., McFarlane R., Muir S., Parkinson E.K., Black D.M., Keith W.N. Cloning and characterization of human and mouse telomerase RNA gene promoter sequences. (1998) Oncogene, 16, 1345−1350.
  18. Chapon C., Cech T.R., and Zaug A.J. Polyadenilation of telomerase RNA in budding yeast. (1997) RNA, 3,1337−1351.
  19. McCormic-Graham M., and Romero D.P. Ciliate telomerase RNA structural features. (1995) Nucl. Asid. Res., 23,1091−1097.
  20. Singer M.S., and Gottschling D.E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase (1994) Science, 266,404−409
  21. Feng J., Funk W.D., Wang S.S., Weinrich S.L., Avilion A.A., Chiu C.P., Adams R.R., Chang E., Allsopp R. C, and Yu J. (1995) Science, 269,1236−1241.
  22. Bhattacharyya A., and Blackburn E.H. Architecture of telomerase RNA (1994) EMBOJ., 13, 5721−5731
  23. Greider C.W. Telomere length regulation. (1996) Ann. Rev. Biochem., 65, 337−365
  24. Blasco M.A., Funk W., Villeponteau B., and Greider C.W. (1995) Science, 269, 1267−1270.
  25. Ares M. U2 RNA from yeast is unexpectedly large and contains homology to vertebrate U4, U5, and U6 small nuclear RNAs. (1986) Cell, 47,49−59
  26. Sogin M., Ingold A., Karlok M., Nielsen H., and Engberg J. Phylogenetic evidence for the acquisition of ribosomal RNA introns subsequent to the divergence of some of the major Tetrahymena groups. (1986) EMBOJ., 5, 36 253 630
  27. Shumyatsky G., and Reddy R. Compilation of small RNA sequences. (1992) Nucl. Acid. Res., 20, 2159−2163.
  28. Autexier C., and Greider C.W. Functional reconstitution of wild-type and mutant
  29. Tetrahymena telomerase. (1994) Genes Dev., 8, 563−575.
  30. Gilley D., and Blackburn E.H. Specific RNA residue interaction required for enzymatic functions of Tetrahymena telomerase. (1996) Mol. Cell. Biol, 16, 6675.
  31. Gilley D., Lee M.S., and Blackburn E.H. Altering specific telomerase RNA template residues affects active site function. (1995) Genes Dev., 9, 2214−2226.
  32. Yu G.-L., and Blackburn E.H. Developmentally programmed healing of chromosomes by telomerase in Tetrahymena. (1991) Cell, 67, 823−832.
  33. Ware T.L., Wahg H., and Blackburn E.H. Three telomerases with complete non-telomeric template replacements are catalytically active. (2000) EMBO J., 19, 3119−3131.
  34. McCormick-Graham M., and Romero D.P. A single telomerase RNA is sufficient for the synthesis of variable telomeric DNA repeats in ciliates of the genus Paramecium. (1996) Mol. Cell. Biol, 16,1871−1879.
  35. McCormic-Graham M., Haynes W.J., and Romero D.P. Variable telomeric repeat synthesis in Paramecium tetraurelia is consistent with misincorporation by telomerase. (1997) EMBO J., 16,3233−3242.
  36. Ye A.J., Haynes W.J., Romero D.P. Expression of mutated Paramecium telomerase RNAs in vivo leads to templating errors that resemble those made by retroviral reverse transcriptase. (1999) Mol. Cell Biol, 19,2887−2894.
  37. Collins K., and Greider C.W. Tetrahymena telomerase catalyzes nucleolytic cleavage and nonprocessive elongation. (1993) Genes Dev., 7, 1364−1376.
  38. Kirk K.E., Harmon B.P., Reichardt I.K., Sedat J.W., and Blackburn E.H. Block in anaphase chromosome separation caused by a telomerase template mutation. (1997) Science, 275,1478−1481.
  39. Funabiki H., Hagan I., Uzawa S., and Yanagida M. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. (1993) J. Cell. Biol., 121, 961−976.
  40. Scherthan H., Bahler J., and Kohli J. Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. (1994) J. Cell. Biol., 127, 273 285.
  41. Prescott J., and Blackburn E.H. Telomerase RNA mutations in Saccharomyces cerevisiae alter telomerase action and reveal nonprocessivity in vivo and in vitro (1997) Gen. Dev., 11, 528−540.
  42. Cohn M., and Blackburn E.H. Telomerase in yeast. (1995) Science, 269, 404−409.
  43. Prescott J., and Blackburn E.H. Functionally interacting telomerase RNAs in the yeast telomerase complex. (1997) Gen. Dev., 11,2790−2800.
  44. McEachern M.J., and Blackburn E.H. Runaway telomere elongation caused by telomerase RNA gene mutations. (1995) Nature, 376, 403−409.
  45. Fulton T.B., and Blackburn E.H. Identification of Kluyveromyces lactis telomerase: discontinuous synthesis along the 30-nucleotide-long templating domain. (1998) Mol. Cell. Biol., 18, 4961−4970.
  46. Cohn M., McEachern M.J., and Blackburn E.H. Telomeric sequence diversity within the genus Saccharomyces. (1998) Curr. Genet., 33, 83−91.
  47. McEachern M.J., Lyer S., Fulton T.B., and Blackburn E.H. Telomere fusion caused by mutating the terminal region of telomeric DNA. (2000) Proc. Natl. Acad. Sci. USA, 97,11 409−11 414.
  48. Prescott J., and Blackburn E.H. Telomerase RNA template mutations reveal sequence-specific requirements for the activation and repression of telomerase action at telomeres. (2000) Mol. Cell. Biol, 20,2941−2948.
  49. Murray A.W., Claus T.E., and Szostak J.W. Characterization of two telomeric DNA processing reactions in Saccharomyces cerevisiae. (1988) Mol. Cell. Biol., 8, 4642−4650.
  50. Nakamura T.M., Cooper J.P., and Cech T.R. Two modes of survival of fission yeast without telomerase. (1998) Science, 282, 493−496.
  51. Lingner J., Hendrick L.L., and Cech T.R. Telomerase RNAs of different ciliates have a common secondary structure and a permutated template. (1994) Genes Dev., 8,1984−1998.
  52. Autexier C., and Greider C.W. Mutational analysis of the Tetrahymena telomerase RNA: identification of residues affecting telomerase activity in vitro. (1998) Nucl. Acids Res., 26, 787−795.
  53. Licht J.D., and Collins K. Telomerase RNA function in recombinant Tetrahymena telomerase. (1999) Genes Dev., 13,1116−1125.
  54. Tinoco I., Publishi J.D., and Wyatt J.R. RNA folding. (1990) Nucleic acids and molecular biology, New York: Springer-Verlag, v.4,205−226.
  55. Lai C.K., Mitchell J.R., and Collins K. RNA binding domain of telomerase reverse transcriptase. (2001) Mol. Cell. Biol, 21, 990−1000.
  56. Zaug A. J., and Cech T.R. Analysis of the structure of Tetrahymena nuclear RNAs in vivo: telomerase RNA, the self-splicing rRNA intron, and U2 snRNA (1995) RNA, 1, 363−374.
  57. Kozlov Y.V., Rupasov V.V., Adyshev D.M., Belgelarskaya S.N., Agranovsky A.A., Mankin A.S., Morozov S.Y., Dolja V.V., and Atabekov J.G. (1984) Nucl. Acid. Res., 12, 4001−4009.
  58. Chen J.L., Blasco M.A., and Greider C.W. Secondary structure of vertebrate telomerase RNA. (2000) Cell, 100, 503−514.
  59. Mitchell J.R., Cheng J., and Collins K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3' end. (1999), Mol. Cell. Biol., 19, 567 576.
  60. Blasco M.A., Lee H.-W., Hande M.P., Samper E., Lansdorp P.M., DePinho R., and Greider C.W. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. (1997) Cell, 91, 25−34.
  61. Martin-Rivera L., and Blasco M.A. Identification of functional domains and dominant negative mutations in vertebrate telomerase RNA using an in vivo reconstitution system. (2001)J. Biol. Chem., 276, 5856−5865.
  62. Gilley D., and Blackburn E.H. The telomerase RNA pseudoknot is critical for the stable assembly of a catalytically active ribonucleoprotein. (1999) Proc. Natl. Acad. Sci. USA, 96,6621−6625
  63. Mitchell J.R., and Collins K. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. (2000) Mol. Cell, 6, 361−371.
  64. Ganot P., Caizergues-Ferrer M., and Kiss T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. (1997) Genes Dev., 11, 941−956.
  65. Roy J., Fulton T.B., and Blackburn E.H. Specific telomerase RNA residues distant from the template are essential for telomerase function (1998) Genes Dev., 12, 3286−3300.
  66. Peterson S.E., Stellwagen A.E., Diede S.J., Singer M.S., Haimberger Z.W., Johnson C.O., Tzoneva M., and Gottschling D.E. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. (2001) Nature Genetics. 27, 64−67.
  67. Lingner J., Hughes T.R., Shevchenko A., Mann M., Lundblad V., and Cech T.R. Reverse transcriptase motifs in the catalytic subunit of telomerase. (1997) Science, 276, 561−567.
  68. Lendvay T.S., Morris D.K., Sah J., Balasubramanian B., and Lundblad V. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. (1996) Genetics, 144, 1399−1412.
  69. Collins K., and Gandhi L. The reverse transcriptase component of the Tetrahymena telomerase ribonucleoprotein complex. (1998) Proc. Natl. Acad. Sci. USA, 95, 8485−8490.
  70. Bryan T.M., Sperger J.M., Chapman K.B., and Cech T.R. Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax. (1998) Proc. Natl. Acad. Sci. USA, 95, 8479−8484.
  71. Nakamura T.M., Morin G.B., Chapman K.B., Weinrich S.L., Andrews W.H., Lingner J., Harley C.B., and Cech T.R. Telomerase catalytic subunit homologsfrom fission yeast and human. (1997) Science, 277, 955−959.
  72. Oguchi K., Liu H., Tamura K., and Takahashi H. Molecular cloning and characterization of AtTERT, a telomerase reverse transcriptase homolog in Arabidopsis thaliana. (1999) FEBSLett., 457,465−469.
  73. Malik H.S., Burke W.D., and Eickbush T.H. Putative telomerase catalytic subunits from Giardia lamblia and Caenorhabditis elegans. (2000) Gene, 251,101−108.
  74. Harrington L., Zhou W., McPhail T., Oulton R., Yeung D.S., Mar V., Bass M.B., and Robinson M.O. Human telomerase contains evolutionarily conserved catalytic and structural subunits. (1997) Genes Dev., 11, 3109−3115.
  75. Greenberg RA, Allsopp RC, Chin L, Morin GB, DePinho RA. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. (1998) Oncogene, 16,1723−1730.
  76. Xiong Y., and Eickbush T.H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. (1990) EMBO J., 9, 3353−3362.
  77. O’Reilly M., Teichmann S.A., aand Rhodes D. Telomerases. (1999) Curr. Opin. Struc. Biol., 9, 56−65.
  78. Biessmann H., Mason J.M., Ferry K., d’Hulst M., Valgeirsdottir K., Traverse K.L., and Pardue M.L. Addition of telomere-associated HeT DNA sequences «heals» broken chromosome ends in Drosophila. (1990) Cell, 61, 663−673.
  79. Pardue M.L., Danilevskaya O.N., Lowenhaupt K., Slot F., and Traverse K.L. Drosophila telomeres: new views on chromosome evolution. (1996) Trends Genet., 12,48−52.
  80. Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. (1993) Cell, 72, 595−605.
  81. Zimmerly S., Guo H., Eskes R., Yang J., Perlman P. S., and Lambowitz A.M. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. (1995) Cell, 83, 529−538.
  82. Ricchetti M., and Buc H. A reiterative mode of DNA synthesis adopted by HIV-1 reverse transcriptase after a misincorporation. (1996) Biochemistry, 35, 1 497 014 983.
  83. Huang H., Chopra R., Vardine G.L., and Harrison S.C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance/ (1998) Science, 282, 1669−1675.
  84. Kohlstaedt L.A., Wang J., Friedman J.M., and Steitz T.A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. (1992) Science, 256, 1783−1790.
  85. Π§Π΅Ρ… T.P., Накамура T.M., ΠΈ Π›ΠΈΠ½Π³Π½Π΅Ρ€ И. Π’Π΅Π»ΠΎΠΌΠ΅Ρ€Π°Π·Π° ΠΊΠ°ΠΊ истинная обратная транскриптаза. (1997) Биохимия, 62, 1407−1410.
  86. Xia J., Peng Y., Mian I.S., and Lue N.F. Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. (2000) Mol. Cell. Biol, 20, 5196−5207.
  87. Friedman K.L., and Cech T.R. Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. (1999) Genes Dev., 13, 2863−2874.
  88. Hammond P.W., Lively T.N., and Cech T.R. The anchor site oftelomerase from Euplotes aediculatus revealed by photo-cross-linking to single- and double-stranded DNA primers. (1997) Mol. Cell. Biol., 17,296−308.
  89. Haering C.H., Nakamura T.M., Baumann P., and Cech T.R. Analysis of telomerase catalytic subunit mutants in vivo and in vitro in Schizosaccharomycespombe. (2000) Proc. Natl. Acad. Sci. USA, 97, 6367−6372.
  90. Weinrich S.L., Pruzan R., Ma L" Ouellette M., Tesmer V.M., Holt S.E., Bodnar A.G., Lichtsteiner S., Kim N.W., Trager J.B., Taylor R.D., Carlos R., Andrews W.H., Wright W.E., Shay J.W., Harley CB, Morin G.B. (1997) Nature Genet., 17, 498−502.
  91. Greider C.W. Telomerase activation one step on the road to cancer. (1999) Trends Genet., 15,109−112.
  92. Jha K.K., Banga S., Patejwala V., and Ozer H.L. SV40-mediated immortalization. (1998) Exp. Cell. Res., 245,1−7.
  93. Hausen H Viruses in human cancer. (1991) Science, 254,1167−1173.
  94. Wright W.E., Pereira-Smith O.M., and Shay J.W. Reversible cellular senescence: a two-stage model for the immortalization of normal diploid fibroblasts. (1989) Mol. Cell. Biol., 9, 3088−3092.
  95. Liu K., Schoonmaker M.M., Levine B.L., June C.H., Hodes R.J., and Weng N.-P. Constitutive and regulated expression of telomerase reverse transcriptase (hTERT) in human lymphocytes. (1999) Proc. Natl. Acad. Sci. USA, 96, 5147−5152.
  96. Wright W.E., Piatyszek M.A., Rainey W.E., Byrd W., and Shay J.W. Telomerase activity in human germline and embryonic tissues and cells. (1996) Dev. Genet., 18, 173−179.
  97. Ulaner G.A., and Giudice L.C. Developmental regulation of telomerase activity in human fetal tissues during gestation. (1997) Mol Hum. Reprod., 3,769−773.
  98. Nakamura T.M., Morin G.B., Chapman K.B., Weinrich S.L., Andrews W.H., Lingner J., Harley C.B., and Cech T.R. Telomerase catalytic subunit homologs from fission yeast and human. (1997) Science, 277, 955−999.
  99. Wang J., Xie L.Y., Allan S/. Beach D., and Hannon G.J. Myc activates telomerase. (1998) Genes Dev., 12, 1769−1774.
  100. Wu K.-J., Grandori C., Amacker M., Simon-Vermont N., Polack A., Lngner J., and Dalla-Favera R. Direct activation of TERT transcription by c-Myc. (1999) Nature Genet., 21,220−224.
  101. Dang C.V. c-myc Targets genes involved in cell growth, apoptosis, and methabolism. (1999) Mol. Cell. Biol., 19,1−11.
  102. Land H., Parada L.F., and Weinberg R.A. Tumorigenic conversion of primary rat embryo fibroblasts requires at least two cooperating oncogenes. (1983) Nature, 304, 596−602.
  103. Falcetti M.L., Falcone G., D’Ambrosio E., Verna R., Alema S., and Levi A. Induction of telomerase activity in v-myc-transformed avian cells. (1999) Oncogene, 18, 1515−1519.
  104. Klingelhutz A.J., Foster S.A., and McDuglas J.K. Telomerase activation by the E6 gene product of human papillomavirus type 16. (1996) Nature, 380, 79−82.
  105. Hiyama E., Hiyama K., Yokoyama T., Matsuura Y., Piatyszek M.A., and Shay J.W. Correlating telomerase activity levels with human neuroblastoma outcomes. (1995) Nature Med., 1, 249−255.
  106. FujimotoK., and Takahashi M. Telomerase activity in human leukemic cell lines is inhibited by antisense pentadecadeoxynucleotides targeted against c-myc mRNA. (1997) Biochem. Biophys. Res. Commun., 241, 775−781.
  107. Cerni C. Telomeres, telomerase, and myc. An update. (2000) Mut. Research, 462, 31−47.
  108. Wick M., Zubov D., and Hagen G. Genomic oragization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). (1999) Gene, 232, 97−106.
  109. Cong Y.-S., Wen J., and Bacchetti S. The human telomerase catalytic subunit hTERT: oragnization of the gene and characterization of the promoter. (1999) Human Mol. Genet., 8,137−142.
  110. Takakura M., Kyo S., Kanaya T., Hirano H., Takeda J., Yutsudo M., and Inoue M. (1999) Cancer Res., 59, 551−557.
  111. Yin L., Hubbard A.K., and Giardina C. NF-kB regulates transcription of the mouse telomerase catalytic subunit. (2000) J. Biol. Chem., 275, 36 671−36 675.
  112. Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, Orimo A, Inoue M. Estrogen activates telomerase. (1999) Cancer Res., 59, 5917−5921.
  113. Wang Z., Kyo S., Takakura M.. Progesteron regulates human telomerase reverse transcriptase gene expression via activation of mitogen-activated protein kinase signaling pathway. (2000) Cancer Res., 60, 5376−5381.
  114. Cruzalegui F. H, Cano E., and Treisman R. ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. (1999) Oncogene, 18, 7948−7957.
  115. Buday L., and Downward J. Epidermal growth factor regulates p21 ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. (1993) Cell, 73,611−620.
  116. Migliaccio A., Di Domenico M., Castoria G., de Falco A., Bontempo P., Nola E., and Auricchio F. Tyrosine kinase/p21 ras /MAP-kinase pathway activation by estra-diol-receptor complex in MCF-7 cells. (1996) EMBOJ., 15,1292−1300.
  117. Pfeffer L.M. Biological properties of recombinant a-interferons: 40th anniversary of the discovery of interferons. (1998) Cancer Res., 58, 2489−2499.
  118. Einhorn S., and Strander H. Interferon treatment of human malignancies—a short review. (1993) Med. Oncol. Tumor. Pharmacother., 10, 25−29.
  119. Xu D., Wang Q., Gruber A., Bjorkolm M., Chen Z., Zaid A., Selivanova G., Peterson K., Wilman K.G., and Pisa P. Downregulation of telomerase reverse transcriptase mRNA expression by wild type p53 in human tumor cells. (2000) Oncogene, 19,5123−5133.
  120. Kallassy M., Martel N., Damour 0., Yamaskai H., and Nakazawa H. Growth arrest of immortalized human keratinocytes and suppression of telomerase activity by p21WAFl gene expression. (1998) Mol. Carcinog., 21,26−36.
  121. Oh S., Song Y., Yim J., and Km T.K. The Wilm’s tumor 1 suppressor gene represses transcription of the human telomerase reverse transcriptase gene. (1999) J. Biol. Sci, 274, 37 473−37 478.
  122. Asker C., Wiman K.G., and Selivanova G. p53-induced apoptosis as a safeguard against cancer. (1999). Biochem. Biophy. Res. Commun., 265,1−6.
  123. Bargonetti J., Chicas A., White D., and Prives C. p53 represses Spl DNA binding and HIV-LTR directed transcription. (1997) Cell. Mol. Biol., 43, 935- 949.
  124. Li H., Cao Y., Berndt M.C., Funger J.W., and Liu J.P. Molecular interactions between telomerase and the tumor suppressor protein p53 in vitro. (1999) Oncogene, 18, 6785- 6794.
  125. Kallassy M., Martel N., Damour O., Yamaskai H., and Nakazawa H. Growth arrest of immortalized human keratinocytes and suppression of telomerase activity by p21WAFl gene expression. (1998) Mol. Carcinog., 21,26−36.
  126. Englert C. WTl-more than a transcription factor? (1998) Trends Biochem. Sci., 23, 389−393.
  127. Hensler P.J., Annab L.A., Barrett J.C., and Pereira-Smith O.M. A gene involved in control of human cellular senescence on human chromosome lq. (1994) Mol. Cell. Biol., 14,2291−2297.
  128. Ulaner G.A., Hu J.F., Vu T.H., Giudice L.C., and Hoffman A.R. Tissue-specific alternate splicing of human telomerase reverse transcriptase (hTERT) influences telomere lengths during human development. (1998) Int. J. Cancer, 58, 41 684 172.
  129. Kilian A., Bowtell D.D., Abud H.E., Hime G.R., Venter D.J., Keese P.K., Duncan E.L., Reddel R.R., and Jefferson R.A. (1997) Hum. Mol. Genet., 6,2011−2019.
  130. Mandal M., and Kumar R. Bcl-2 modulates telomerase activity. (1997) J. Biol. Chem., 272, 14 183−14 187.
  131. Weng N.P., Grander L., and Hodes R.J. Telomere lengthening and telomerase activation during human B cell differentiation. (1997) Proc. Natl. Acad. Sci. USA, 94, 10 827−10 832.
  132. Li H., Zhao L.L., Funder J.W., and Liu J.-P. Protein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells. (1997) J. Biol. Chem., 272,16 729−16 732.
  133. Li H., Zhao L., Yang Z., Funder J.W., and Liu J.-P. Telomerase is controlled by protein kinase Ca in human breast cancer cells. (1998) J. Biol. Chem., 273, 33 436−33 442.
  134. Kang S.S., Kwon T., Kwon D.Y., and Do S.H. Akt protein kinase enhances telomerase activity through phosphorilation of telomerase reverse transcriptase subunit. (1999) J. Biol. Chem., 274,13 085−13 090.
  135. Bodnar A.G., Kim N.W., Effros R.B., and Chiu C.-P. Mechanism of telomerase induction during T cell activation. (1996) Exp. Cell. Res., 228, 58−64.
  136. Ku W.C., Cheng A. J., and Wang T.C. Inhibition of telomerase activity by PKC inhibitors in human nasopharyngeal cancer cells in culture. (1997) Biochem. Biophys. Res. Commun., 241, 730−736.
  137. Franke T.F., Kaplan D.R., Cantly L.C., and Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. (1997) Science, 275, 665−668.
  138. Nugent C.I., and Lundblad V. The telomerase reverse transcriptase: components and regulation. (1998) Genes Dev., 12, 1073−1085.
  139. Collins K., Kobayashi R., and Greider C.W. Purification of Tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme.(1995) Cell, 81, 677−686.
  140. Harrington L., Hull C., Crittenden J., and Greider C. Gel shift and UV cross-linking analysis of Tetrahymena telomerase. (1995) J. Biol. Chem., 270, 88 938 901.
  141. Harrington L., McPhail T., Mar V., Zhou W., Oulton R., Program E., Bass M.B., Arruda I., and Robinson M.O. A mammalian telomerase accociated protein. (1997) Science, 275,973−977.
  142. Goodrivh J.A., and Tjian R. Transcription factors HE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. (1994) Cell, 77, 145−156
  143. Kassavetis G.A., and Geiduschek E.P. RNA polymerase marching forward. (1993)1. Science, 259,944−945
  144. Miller M.C., and Collins K. The Tetrahymena p80/p95 complex is required for proper telomere length maintenance and micronuclear genome stability (2000) Mol. Cell, 6, 827−837.
  145. Nakayama J., Saito M., Nakamura H., Matsuura A., and Ishikawa F. TLP1: a gene encoging a protein component of mammalian telomerase is a novel member of WD repeats family. (1997) Cell, 88, 875−884.
  146. Harrington L., Zhou W., McPhail T., Oulton R., Yeung D.S.K., Mar V., Bass M.B., and Robinson M.O. Human telomerase contains evolutionary conserved catalytical and structural subunits. (1997) Genes. Dev., 11, 3109−3115.
  147. Beattie T.L., Zhou W., Robinson M.O., and Harrington L. Reconstitution of human telomerase activity in vitro. (1998) Curr. Biol, 8,177−180.
  148. Kickhoefer V.A., Stephen A.G., Harrington L., Robinson M.O., and Rome L.H. Vaults and telomerase share a common subunit, TEP1. (1999) J. Biol. Chem., 274, 32 712−32 717.
  149. Dragon F., Pogacic V., and Filipowicz W. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. (2000) Mol. Cell. Biol., 20, 3037−3048.
  150. Mitchell J. R., Wood E., and Collins K. A telomerase component is defective in the human disease dyskeratosis congenita. (1999) Nature, 402, 551−555.
  151. Pogac V., Dragon F., and Filipowitcz W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP 10. (2000) Mol. Cell. Biol., 20, 9028−9040.
  152. Politz J.C., Yarovoi S., Kilroy S.M., Gowda K., Zwieb C., and Pederson T. Signal recognition particle components in the nucleolus. (2000) Proc. Natl. Acad. Sci. USA, 97, 55−60.
  153. Blasco M.A., Gasser S.M., and Lingner J. Telomeres and telomerase. (1999) Genes Dev., 13, 2353−2359.
  154. LaBranche H., Dupuis S., Ben-David Y., Bani M.R., Wellinger R.J., and Chabot B. Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. (1998) Nature Genet., 19,199−202.
  155. Ford L.P., Suh J.M., Wright W.E., and Shay A.J. Heterogeneous nuclear ribonucleoproteins CI and C2 associate with the RNA component of human telomerase. (2000) Mol. Cell. Biol., 20, 9084−9091.
  156. Seto A.G., Zaug A.J., Sobel S.G., Wolin S.L., and Cech T.R. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. (1999) Nature, 401, 177−180.
  157. Lingner J., Cech T.R., Hughes T.R., and Lundblad V. Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity.1997) Proc. Natl. Acad. Sei. USA, 94, 11 190−11 195.
  158. Zhou J., Hidaka K., and Futcher B. The Estl subunit telomerase binds the Tlcl telomerase RNA. (2000) Mol. Cell. Biol., 20, 1947−1955.
  159. Virta-Perlman V.D., Morris D.K., and Lundblad V. Estl has the properties of a single-stranded telomere end-binding protein. (1996) Genes Dev., 10, 3094−3104.
  160. Aigner S., Lingner J., Goodrich K.J., Grosshans C.A., Shevchenko A., Mann M., and Cech T. Euplotes telomerase contains an La motif protein prodced by apparent translational frameshifting. (2000) EMBOJ., 19, 6230−6239.
  161. HughesT.R., Evans S.K., Weilbaecher R.G., and Lundblad V. The Est3 protein is a subunit of yeast telomerase. (2000) Curr. Biol., 10, 809−812.
  162. Pardue M.L., Danilevskaya O.N., Lowenhaupt K., Slot F., and Traverse K.L. Drosophila telomeres: new views on chromosome evolution. (1996) Trends Genet., 12, 48−52.
  163. Holt S.E., Aisner D.L., Baur J., Tesmer V.M., Dy M., Oullette M., Toft D.O., Trager J.B., Morin G.B., Wright W.E., Shay J.W., and White M.A. Functional requirement of p23 and Hsp90 in telomerase complexes. (1999) Genes Dev., 13, 817−827.
  164. Forsythe H.L., Jarvis J.L., Turner J.W., Elmore L.W., and Holt S.E. Stable association of hsp90 and p23, but not hsp70, with active human telomerase. (2001) J. Biol. Chem., accepted on March, 23, in press.
  165. Featherstone C., and Jackson S.P. Ku, a DNA repair protein with multiple cellular functions? (1999) Mutat. Res., 434, 3−15.
  166. Gravel S., Larrivee M., Labrecque P., and Wellinger R.J. Yeast Ku as a regulator of chromosomal DNA end structure. (1998) Science, 280, 741−744.
  167. Polotnianka R.M., Li J., and Lustig A.J. The yeast Ku heterodimer is essential forprotection of the telomere against nu-cleolytic and recombinational activities. (1998) Curr. Biol, 8, 831−834.
  168. Allsopp R.C., Vaziri H., Patterson C., Goldstein S., Younglai E.V., Futcher A.V., Greider C.W., and Harley C.B. Telomere length predicts replicative capacity of human fibroblasts. (1992) Proc. Natl. Acad. Sci USA, 89,10 114−10 118.
  169. Kolquist K.A., Ellisen L.W., Counter C.M., Meyerson M., Tan L.K., Weinberg R.A., Haber D.A., and Gerald W.L. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues (1998) Nat. Genet., 19,182−186.
  170. Collins K., Koybayashi R., and Greider C.W. Purification of Tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme (1995) Cell, 81, 677−686.
  171. Lundblad V., and Blackburn E.H. An alternative pathway for yeast telomere maintenance rescues estl- senescence (1993) Cell, 81, 1127−1135.
  172. Lendvay T.S., Morris D.K., Sah J., Balasubramanian B., and Lundblad V. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes (1996) Genetics, 144,1399−1412.
  173. Steiner B.R., Hidaka K., and Futcher B. Association of the Estl protein with telomerase activity in yeast (1996) Proc. Natl. Acad. Sci USA, 93, 2817−2821.
  174. Lohr D. Isolation of yeast nuclei and chromatin for studies of transcription-related processes (1985) Yeast: a practical approach, IRL Press, 125−145.
  175. Ansari A., and Schwer B. SLU7 and a novel activity, SSF1, act during the PRP16dependent step of yeast pre-mRNA splicing (1995) EMBOJ., 14, 4001−4009.
  176. P., Charbonneau M. ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ сообщСния.
  177. Lue N.F., and Wang J.C. ATP-dependent processivity of a telomerase activity from Saccharomyces cerevisiae (1995) J. Biol. Chem., 270, 21 453−21 456.
  178. Lue N.F., and Peng Y. Negative regulation of yeast telomerase activity through an interaction with an upstream region of the DNA primer. (1998) Nucl. Acid. Res., 26,1487−1494.
  179. Diede S., and Gottschling D.E. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. (1999) Cell, 99, 723−733.
  180. Lue N.F., and Xia J. Species-specific and sequence-specific recognition of the dG-rich strand of telomeres by yeast telomerase. (1998) Nucl. Acid. Res., 26, 14 951 502.
  181. Kyrion G., Boakye K.A., and Lustig A.J. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae (1992) Mol. Cell. Biol., 12, 5159−5173.
  182. Marcand S., Gilson E., and Shore D. A protein-counting mechanism for telomere length regulation in yeast (1997) Science, 275, 986−990.
  183. Wotton D., and Shore D. A novel Raplp-interacting factor, Rif2p, cooperates with Riflp to regulate telomere length in Saccharomyces cerevisia (1997) Gen. Dev., 11,748−760.
  184. Marcand S., Brevet V., and Gilson E. Progressive cis-inhibition of telomerase upon telomere elongation. (1999) EMBOJ., 18, 3509−3519.
  185. Greene E.C., and Shippen D.E. Developmentally programmed assembly of higher order telomerase complexes with distinct biochemical and structural properties.1998) Gen. Dev., 12,2921−2931.
  186. Bednenko J., Melek M., Greene E.C., and Shippen D.E. Developmental regulated initiation of DNA synthesis by telomerase: evidence for factor-assisted de novo telomere formation. (1997) EMBO J., 16, 2507−2518.
  187. Greene E.C., Bednenko J., and Shippen D.E. Flexible positioning of the telomerase-associated nuclease leads to preferential elimination of nontelomeric DNA. (1998)Mol Cell. Biol., 18, 1544−1552.
  188. Melek M., Greene E.C., and Shippen D.E. Processing of nontelomeric 3' ends by telomerase: default template alignment and endonucleolytic cleavage. (1996) Mol. Cell. Biol, 16, 3437−3445.
  189. Rudd M.D., Izban M.G., and Luse D.S. The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes (1994) Proc. Natl Acad. Sci. USA, 91, 8057−8061.
  190. Surratt C., Milan S.C., and Chamberlin M.J. Spontaneous cleavage of RNA in ternary complexes of Escherichia coli RNA polymerase and its significance for the mechanism of transcription. (1991) Proc. Natl Acad. Sci. USA, 88, 7983−7987.
  191. Borukhov S.V., Sagitov V., and Goldfarb A. Transcript cleavage factors from E. coli. (1993) Cell, 72,459−466.
  192. Reines D., Ghanoui P., Li Q., and Mote J. The RNA polymerase II elongation complex. Factor-dependent transcription elongation involves nascent RNA cleavage (1992) J. Biol Chem., 267, 15 516−15 522.
  193. Niu H., Xia J., and Lue N. Characterization of the interaction between the nuclease and reverse transcriptase activity of the yeast telomerase complex (2000) Mol Cell Biol, 20, 6806−6815.
  194. Maxam A.M., and Gilbert W. A new method for sequencing DNA. (1977) Proc.
  195. Natl. Acad. Sci. USA, 74, 560−564.
  196. Perach M, and Hizi A. Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. (1999) Virology, 259, 176−189.
  197. Prasad R., Widen S.G., Singhal R.K., Watkins J., Prakash L., and Wilson S.H. Yeast open reading frame YCR14C encodes a DNA beta-polymerase-like enzyme. (1993) Nucl. Acids Res., 21, 5301−5307.
  198. M.J. (1995) Methods in Enzymology, 262, 49−62.
  199. K.M. Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Π‘-Ρ†Π΅ΠΏΠΈ. (1997) Биохимия, 62, 1423−1431.
  200. Lavrik O.I., Zakharenko A.G., Prasad R., Vlasov V.A., Bogachev V.S., and Favre A. dNTP, covalently bound to DNA polymerases through a base, active in nucleotidyl transfer reactions (1998) Mol. Biol., 32, 1−8.
  201. Favre A., Saitome C., Fourrey J.-L., Clivio P., and Laugaa P. Thionucleobases as intrinsic photoaffmity probes of nucleic acid structure and nucleic acid-protein interactions. (1997) J. Photochem. Photobiol., 42,109−124.
  202. M.P. (1990) Methods in Enzymology, 182, 318−331.
  203. Knop M., and Schiebel E. Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with
  204. Op. (1997) EMBO J., 16,6985−6995.
  205. Siegers K., Waldmann T., Leroux M.R., Grein K., Shevchenko A., Schiebel E., Hartl F.U. Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. (1999) EMBO J., 18, 75−84.
  206. Smith D.B., and Johnson K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. (1988) Gene, 67, 3140.
  207. Kellerman, O.K. and Ferenci, T. (1982) Methods in Enzymology, 90,459−463.
  208. Evan G.I., Lewis G.K., Ramsay G., and Bishop J.M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product (1985) Mol. Cell. Biol., 5,3610−3616.
  209. Bi E., and Pringle J.R. ZDS1 and ZDS2, genes whose products may regulate Cdc42p in Saccharomyces cerevisiae (1996) Mol. Cell. Biol. 16, 5264−5275.
  210. Munro S., and Pelham H.R. A C-terminal signal prevents secretion of luminal ER proteins (1987) Cell, 48, 899−907.
  211. Longtine M.S., Fares H., and Pringle J.R. Role of the yeast Gin4p protein kinase in septin assembly and the relationship between septin assembly and septinfunction. (1998) J: Cell. Biol., 143,719−736.
  212. Tyers M., Tokiwa G. and Futcher B. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Clnl, Cln2 and other cyclins. (1993) EMBOJ., 12,1955−1968.
  213. Knop M., Siegers K., Pereira G., Zachariae W., Winsor B., Nasmyth K., and Schiebel E. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. (1999) Yeast, 15, 963−972.
  214. Dougherty W.G., and Semler D.L. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. (1993) Microbiol. Rev., 57, 781−822.
  215. Ruiz J.F., Dominguez O., Lain de Lera T., Garcia-Diaz M., Bernad A., and Blanco L. DNA polymerase mu, a candidate hypermutase? (2001) Philosophical Transactions: Biological Sciences, 356, 99−109.
  216. Wigge P.A., Jensen O.N., Holmes S., Soues S., Mann M., and Kilmartin J.V. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. (1998) J. Cell. Biol., 141, 967−977.
  217. Zachariae W., Shevchenko A., Andrews P.D., Ciosk R., Galova M., Stark M.J., and Mann M. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. (1998) Science, 279, 1216−1219.
  218. Zhao Y., Qin J., and Chait B.T. (1998) 46th ASMS Conference, Orlando, FL, 767.
  219. Neubauer G., King A., Rappsilber J., Calvio C., Watson M., Ajuh P., Sleeman J., Lamond A., and Mann M. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex (1998) Nat. Genet., 20, 46−50.
  220. Steiner B.R., Hidaka K., and Futcher B. Association of the Estl protein with telomerase activity in yeast (1996) Proc. Natl. Acad. Sci. USA, 93,2817−2821.
  221. Neer E.J., and Smith T.F. G protein heterodimers: new structures propel new questions. (1996) Cell, 84, 175−178.
  222. Pelham R.J., and Chang F. Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe (2001) Nat. Cell. Biol., 3,235
  223. Neer E.J., Schimdt C.J., Nambudrioad R., and Smith T.F. (1994) Nature, 371, 297−300.
  224. Saito T., Matsuda Y., Suzuki T., Hayashi A., Yuan X., Saito M., Nakayama J., Hori T., and Ishikawa F. Comparative gene mapping of the human and mouse TEP1 genes, which encode one protein component of telomerases. (1997) Genomics, 46, 46−50.
  225. Kirk K.E., Harmon B.P., Reichardt I.K., Sedat J.W., and Blackburn E.H. Block in anaphase chromosome separation caused by a telomerase template mutation (1997) Science, 275, 1478−1481.
  226. Konkel L.M., Enomoto S., Chamberlain E.M., McCune-Zierath P., Iyadurai S.J., and Berman J. A class of single-stranded telomeric DNA-binding proteins required for Raplp localization in yeast nuclei. (1995) Proc. Natl. Acad. Sci. USA, 92, 5558−5562.
  227. Π€.Π•., ΠΈ Π›ΡŒΡŽΠΈΡ Π­.Π”. Π’Π΅Π»ΠΎΠΌΠ΅Ρ€Ρ‹ Saccharomyces cerevisiae. (1997)1. Биохимия, 62,1442−1452.
  228. Le S., Moore J.K., Haber J.E., and Greider C.W. RAD50 and RAD51 Define two pathways that collaborate to maintain telomeres in the absence of telomerase. (1999) Genetics, 152,143−152.
  229. Teng S.-C., Chang J., McCowan Π’., and Zakian V.A. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad5 Op-dependent, Rif-inhibited recombinational process. (2000) Mol. Cell, 6, 947−952.
  230. Cooper J.P., Watanabe Y., and Nurse P. Fission yeast Tazl protein is required for meiotic telomere clustering and recombination. (1998) Nature, 392, 828−831.
  231. Capco D.G., Wan K.M., and Penman S. The nuclear matrix: three-dimensional architecture and protein composition. (1982) Cell, 29, 847−858.
  232. Nakayasu H., and Ueda K. Association of actin with the nuclear matrix from bovine lymphocytes. (1983) Exp. Cell Res., 143, 55−62.
  233. Peters K.E., Okada T.A., and Comings D.E. Chinese hamster nuclear proteins. An electrophoretic analysis of interphase, metaphase and nuclear matrix preparations. (1982) Eur. J. Biochem., 129,221−232.
  234. Lallena M.J., Martinez C., Valcarcel J., and Correas I. Functional association of nuclear protein 4.1 with pre-mRNA splicing factors (1998) J. Cell Sci., Ill, 1963−1971.
  235. Zhao, K., Wang W., Rando O.J., Xue Y., Swiderek K., Kuo A., and Crabtree G.R. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. (1998) Cell, 95, 625−636.
  236. А. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ химия Π±Π΅Π»ΠΊΠ°. (1989) Москва, «ΠœΠΈΡ€». Π‘. 301.
  237. Maniatis Π’., Fritsch E.F., and Sambrook J. Molecular cloning a laboratory manual. (1982) Cold Sping Harbor Laboratory Press, New York.
  238. Rothstein R. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. In Guthrie C., and Fink G.R. Guide to yeastgenetics and molecular biology. (1991) Methods in enzymology, 194,281−302.
  239. Kohrer K., and Domdey H. Preparation of high molecular weight RNA. In Guthrie C., and Fink G.R. Guide to yeastgenetics and molecular biology. (1991) Methods in enzymology, 194, 398−405.
  240. Kunkel T.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. (1985) Proc. Natl. Acad. Sci. USA, 82, 488−492.
  241. Horvath A., and Riezman H. Rapid protein extraction from Saccharomyces cerevisiae. (1994) Yeast, 10, 1305−1310.
  242. Shevchenko A., Wilm M, Vorm O., and Mann M. Mass spectrometric sequencing of proteins from silver stained polyacrylamidegels. (1996) Anal. Chem., 68, 850−858.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ