Π’Π΅ΡΠΌΠΎΡΡΠ°Π±ΠΈΠ»ΡΠ½Π°Ρ ΠΠΠ-ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°Π·Π° Archaeoglobus fulgidus ΠΈ Π΅Ρ ΡΠ²ΠΎΠΉΡΡΠ²Π°
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ
ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ°ΠΉΡ-Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΡΡΠ°Π³Π΅Π½Π΅Π·Π° ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π·Π°ΠΌΠ΅Π½Π° ΠΎΡΡΠ°ΡΠΊΠ° Glu 170 Π² ΠΌΠΎΡΠΈΠ²Π΅ 168DXE170 ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΈΠ½Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ 3'-5'-ΡΠΊΠ·ΠΎΠ½ΡΠΊΠ»Π΅Π°Π·Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈΠ·Π°ΠΌΠ΅Π½Ρ ΠΎΡΡΠ°ΡΠΊΠΎΠ² Lys493, Thr496, Asn497 Π² ΠΌΠΎΡΠΈΠ²Π΅ K493X2T496N497SXY500G ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΠΈ Π²ΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ°Π·Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ΅ΡΠΌΠ΅Π½ΡΠ°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΠ΅ ΠΎΡΡΠ°ΡΠΊΠΈ Glu 170, Lys493, Thr496, Asn497 ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Braithwaite DK, Ito J. // Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25−21(4):787−802.
- Li Y, Korolev S, Waksman G. // Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for ucleotide incorporation. EMBO J. 1998 Dec 15- 17(24):7514−25.
- Hopfner KP, Eichinger A, Engh RA, Laue F, Ankenbauer W, Huber R, Angerer B. // Crystal structure of a thermostable type Π DNA polymerase from Thermococcus gorgonarius. Proc Natl Acad Sci USA. 1999 Mar 30−96(7):3600−5.
- Innis MA, Myambo KB, Gelfand DH, Brow MA. // DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci USA. 1988 Dec-85(24):9436−40.
- Wyman C, Botchan M. // DNA replication. A familiar ring to DNA polymerase processivity. Curr Biol. 1995 Apr l-5(4):334−7.
- Vlasov VA, Dymshits GM, Lavrik 01. // Structural and functional dynamics of DNA and RNA polymerases. Mol Biol (Mosk). 1998 Jan-Feb-32(l):5−18.
- Johnson KA. // Conformational coupling in DNA polymerase fidelity. Annu Rev Biochem. 1993−62:685−713.
- Hori K, Mark DF, Richardson CC. // Deoxyribonucleic acid polymerase of bacteriophage T 7. Purification and properties of the phage-encoded subunit, the gene 5 protein. J Biol Chem.1979 Nov 25−254(22): 11 591−7.
- Jung GH, Leavitt MC, Schultz M, Ito J. // Site-specific mutagenesis of PRD1 DNA polymerase: mutations in highly conserved regions of the family Π DNA polymerase. Biochem Biophys Res Commun. 1990 Aug 16−170(3):1294−300.
- Esteban J A, Soengas MS, Salas M, Blanco L. // 3'~>5' exonuclease active site of phi 29 DNA polymerase. Evidence favoring a metal ion-assisted reaction mechanism. J Biol Chem. 1994 Dec 16−269(50):31 946−54.
- Frey MW, Nossal NG, Capson TL, Benkovic SJ. // Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3'→5' exonuclease activity. Proc Natl Acad SciU S A. 1993 Apr l-90(7):2579−83.
- Romberg, A., and Baker, T. A. (1992). // «DNA Replication.» Freeman, New York
- Yang B, Gathy KN, Coleman MS. // Mutational analysis of residues in the nucleotide binding domain of human terminal deoxynucleotidyl transferase. J Biol Chem. 1994 Apr 22−269(16): 11 859−68.
- Zhu W, Ito J. //Family A and family Π DNA polymerases are structurally related: evolutionary implications. Nucleic Acids Res. 1994 Dec 11−22(24):5177−83.
- Basu S, Basu A, ModakMJ.//Pyridoxal 5'-phosphate mediated inactivation of Escherichia coli DNA polymerase I: identification of lysine-635 as an essential residue for the processive mode of DNA synthesis. Biochemistry. 1988 Sep 6−27(18):6710−6.
- Romberg A. // DNA replication. San Francisco: W.H. Freeman and Co., 1980. P. 1−726- Kornberg A Supplement to DNA replication. San Francisco: W.H. Freeman and Co., 1982. P. 1203.
- ΠΡΠ°Π΅Π²ΡΠΊΠΈΠΉ Π. Π., ΠΡΡ Π°Π½ΠΎΠ²Π° M.K. ΠΡΠΎΠ³ΠΈ Π½Π°ΡΠΊΠΈ ΠΈ ΡΠ΅Ρ Π½ΠΈΠΊΠΈ. Π‘Π΅ΡΠΈΡ ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ. 1986. Π’. 22. Π‘. 3−164.
- Beese LS, Friedman JM, Steitz Π’Π. // Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. Biochemistry.1993 Dec 28,32(51): 14 095−101.
- Polesky AH, Dahlberg ME, Benkovic SJ, Grindley ND, Joyce CM. // Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. JBiol Chem. 1992 Apr 25−267(12):8417−28.
- Pandey VN, Kaushik N, Sanzgiri RP, Patil MS, Modak MJ, Barik S. // Site directed mutagenesis of DNA polymerase I (Klenow) from Escherichia coli. The significance of Arg682 in catalysis. Eur JBiochem. 1993 May 15−214(l):59−65.
- Blanco L, Bernad A, Blasco MA, Salas M. // A general structure for DNA-dependent DNA polymerases. Gene. 1991 Apr-100:27−38.
- Morrison A, Bell JB, Kunkel Π’Π, Sugino A. // Eukaryotic DNA polymerase amino acid sequence required for 3'—5' exonuclease activity. ProcNatl Acad Sci USA. 1991 Nov l-88(21):9473−7.
- Beese LS, Steitz Π’Π. // Structural basis for the 3−5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan-10(l):25−33.
- Derbyshire. V., Pinsonneault. J. K., and Joyce, Π‘. M. // (1995). In «Methods in Enzymology» (J. L. Campbell, ed.), Vol. 262, pp. 363−388. Academic Press. San Diego)
- Derbyshire V, Freemont PS, Sanderson MR, Beese L, Friedman JM, Joyce CM, Steitz Π’Π. // Genetic and crystallographic studies of the 3', 5'-exonucleolytic site of DNA polymerase I. Science. 1988 Apr 8−240(4849): 199−201.
- Derbyshire V, Pinsonneault JK, Joyce CM. // Structure-function analysis of 3'→5'-exonuclease of DNA polymerases. Methods Enzymol. 1995−262:363−85.
- Echols H, Goodman MF. // Fidelity mechanisms in DNA replication. Annu Rev Biochem. 1991−60:477−511.
- Kunkel Π’Π. // DNA replication fidelity. J Biol Chem. 1992 Sep 15−267(26): 18 251−4.
- Derbyshire V, Grindley ND, Joyce CM.// The 3−5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO1. J. 1991 Jan-10(l): 17−24.
- Beese LS, Derbyshire V, Steitz Π’Π. // Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science. 1993 Apr 16−260(5106):352−5.
- Freemont PS, Friedman JM, Beese LS, Sanderson MR, Steitz Π’Π. // Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc Natl Acad Sci USA. 1988 Dec-85(23):8924−8.
- Joyce CM, Steitz Π’Π.// Function and structure relationships in DNA polymerases. Annu RevBiochem. 1994−63:777−822.
- Cowart M, Gibson KJ, Allen DJ, Benkovic SJ. // Substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Biochemistry. 1989 Mar 7−28(5): 1975−83.
- Arnold E, Jacobo-Molina A, Nanni RG, Williams RL, Lu X, Ding J, Clark AD Jr, Zhang A, Ferris AL, Clark P, et al. // Structure of HIV-1 reverse transcriptase/DNA complex at 7 A resolution showing active site locations. Nature. 1992 May 7−357(6373):85−9.
- Lyamichev V, Brow MA, Dahlberg JE. // Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science. 1993 May 7−260(5109):778−83.
- Lundquist RC, Olivera BM. // Transient generation of displaced single-stranded DNA during nick translation. Cell. 1982 Nov-31(l):53−60.
- Holland PM, Abramson RD, Watson R, Gelfand DH. // Detection of specific polymerase chain reaction product by utilizing the 5'—3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA. 1991 Aug 15−88(16):7276−80.
- Gutman PD, Minton KW.// Conserved sites in the 5'-3'exonuclease domain of
- Escherichia coli DNA polymerase. Nucleic Acids Res. 1993 Sep ll-21(18):4406−7.
- Kim Y, Eom SH, Wang J, Lee DS, Suh SW, Steitz Π’Π. // Crystal structure of Thermus aquaticus DNA polymerase. Nature. 1995 Aug 17−376(6541):612−6.
- ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ. Π‘ΡΡΡΠΊΡΡΡΠ° ΠΈ Π±ΠΈΠΎΡΠΈΠ½ΡΠ΅Π· Π½ΡΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²ΡΡ ΠΊΠΈΡΠ»ΠΎΡ / ΠΏΠΎΠ΄. ΡΠ΅Π΄. Π°ΠΊΠ°Π΄. Π‘ΠΏΠΈΡΠΈΠ½Π° Π. Π‘. ΠΠΎΡΠΊΠ²Π°: ΠΡΡΡΠ°Ρ ΡΠΊΠΎΠ»Π° 1990, Π‘. 46.
- Gibbs JS, Chiou ΠΠ‘, Bastow KF, Cheng YC, Coen DM. // Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate and drug recognition. Proc Natl Acad Sci USA. 1988 Sep-85(18):6672−6.
- Larder BA, Kemp SD, Darby G. // Related functional domains in virus DNA polymerases. EMBO J. 1987 Jan-6(l): 169−75.
- Knopf CW. // The herpes simplex virus type 1 DNA polymerase gene: site of phosphonoacetic acid resistance mutation in strain Angelotti is highly conserved. J Gen Virol. 1987 May-68 (Pt 5): 1429−33.
- Bernad A, Zaballos A, Salas M, Blanco L. // Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J. 1987 Dec 20−6(13):4219−25.
- Delarue M, Poch 0, Tordo N, Moras D, Argos P. //An attempt to unify the structure of polymerases. Protein Eng. 1990 May-3(6):461−7.
- Poch O, Sauvaget I, Delarue M, Tordo N. // Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 1989 Dec 1−8(12):3867−74.
- Bernad A, Blanco L, Salas M. // Site-directed mutagenesis of the YCDTDS amino acid motif ofthe phi 29 DNA polymerase. Gene. 1990 Sep 28−94(1):45−51.
- Polesky AH, Steitz Π’Π, Grindley ND, Joyce CM. // Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J Biol Chem. 1990 Aug 25,265(24): 14 579−91.
- Reha-Krantz LJ, Nonay RL. // Motif A of bacteriophage T4 DNA polymerase: role in primer extension and DNA replication fide lity. Isolation of new antimutator and mutator DNA polymerases. J Biol Chem. 1994 Feb 25−269(8):5635−43.
- Copeland WC, Wang TS. // Mutational analysis of the human DNA polymerase alpha. The most conserved region in alpha-like DNA polymerases is involved in metal-specific catalysis.
- J Biol Chem. 1993 May 25−268(15):11 028−40.
- Osumi-Davis PA, de Aguilera MC, Woody RW, Woody AY. // Asp537, Asp812 are essential and Lys631, His811 are catalytically significant in bacteriophage T7 RNA polymerase activity. J MolBiol. 1992 Jul 5−226(l):37−45.
- Bonner G, Patra D, Lafer EM, SousaR. // Mutations in T7 RNA polymerase that support the proposal for a common polymerase active site structure. EMBO J. 1992 0<Π-11(10):3767−75.
- Polesky AH, Dahlberg ME, Benkovic SJ, Grindley ND, Joyce CM. // Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. J Biol Chem. 1992 Apr 25−267(12):8417−28.
- Larder BA, Purifoy DJ, Powell KL, Darby G. // Site-specific mutagenesis of AIDS virus reverse transcriptase. Nature. 1987 Jun 25-Jul l-327(6124):716−7.
- Date T, Yamamoto S, Tanihara K, Nishimoto Y, Matsukage A. // Aspartic acid residues at positions 190 and 192 of rat DNA polymerase beta are involved in primer binding. Biochemistry. 1991 May 28−30(21):5286−92.
- Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz Π’Π. // Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature. 1985 Feb 28-Mar 6−313(6005):762−6.
- Sawaya MR, Pelletier H, Kumar A, Wilson SH, Kraut J. // Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science. 1994 Jun 24−264(5167): 1930−5.
- RodgersDW, Gamblin SJ, Harris BA, Ray S, Culp JS, Hellmig B, Woolf DJ, Debouck C, Harrison SC. // The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. ProcNatl Acad Sci USA. 1995 Feb 14−92(4): 1222−6.
- Sousa R, Chung YJ, Rose JP, Wang ΠΠ‘. // Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature. 1993 Aug 12−364(6438):593−9.
- Doublie S, Sawaya MR, Ellenberger T. // An open and closed case for all polymerases. Structure Fold Des. 1999 Feb 15−7(2):R31−5.
- Carroll SS, Cowart M, Benkovic SJ. // A mutant of DNA polymerase I (Klenow fragment) with reduced fidelity. Biochemistry. 1991 Jan 22−30(3):804−13.
- Wang J, Sattar AK, Wang CC, Karam JD, Konigsberg WH, Steitz Π’Π. // Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell. 1997 Jun 27−89(7): 1087−99.
- Tuerk C, Eddy S, Parma D, Gold L. // Autogenous translational operator recognized by bacteriophage T4 DNA polymerase. J Mol Biol. 1990 Jun 20−213(4):749−61.
- Edgell DR, Doolittle WF. //Archaea and the origin (s) of DNA replication proteins. Cell. 1997 Jun 27−89(7):995−8.
- Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T. // Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature. 1998 Jan 15−391(6664):251−8.
- Copeland WC, Lam NK, Wang TS. // Fidelity studies of the human DNA polymerase alpha. The most conserved region among alpha-like DNA polymerases is responsible for metal-induced infidelity in DNA synthesis. J Biol Chem. 1993 May 25−268(15): 11 041−9.
- Blanco L, Bernad A, Salas M. // Evidence favouring the hypothesis of a conserved 3−5' exonuclease active site in DNA-dependent DNA polymerases. Gene. 1992 Mar 1−112(1): 139−44.
- Reha-Krantz LJ, Nonay RL.// Genetic and biochemical studies of bacteriophage T4 DNA polymerase 3'→5'-exonuclease activity. J Biol Chem. 1993 Dec 25−268(36):27 100−8.
- Abdus Sattar AK, Lin TC, Jones C, Konigsberg WH. // Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
- Biochemistry. 1996 Dec 24−35(51): 16 621−9.
- Chien A, Edgar DB, Trela JM. // Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. JBacteriol. 1976 Sep-127(3): 1550−7.
- Kaledin AS, Sliusarenko AG, Gorodetskii SI. // Isolation and properties of DNA polymerase from extreme thermophylic bacteria Thermus aquaticus YT-1. Biokhimiia. 1980 Apr-45(4):644−51. Russian.
- Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, Gelfand DH. // Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem. 1989 Apr 15−264(ll):6427−37.
- Longley MJ, Bennett SE, Mosbaugh DW. // Characterization of the 5' to 3' exonuclease associated with Thermus aquaticus DNA polymerase. Nucleic Acids Res. 1990 Dec 25−18(24):7317−22.
- Abramson R, Stoffel S, Gelfand DH. // Extension rate and procecivity of Thermus aquaticus DNA polymerase. FASEB 1990 J4 A2293.
- Knittel T, Picard D.// PCR with degenerate primers containing deoxyinosine fails with Pfu DNA polymerase. PCR Methods Appl. 1993 May-2(4):346−7.
- Slupphaug G, Alseth I, Eftedal I, Volden G, Krokan HE. // Low incorporation of dUMP by some thermostable DNA polymerases may limit their use in PCR amplifications. Anal Biochem. 1993 May 15,211(1): 164−9.
- Barnes WM. // The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene. 1992 Mar 1−112(1):29−35.
- Ruttimann C, Cotoras M, Zaldivar J, Vicuna R. // DNA polymerases from the extremely thermophilic bacterium Thermus thermophilus HB-8. Eur J Biochem. 1985 May 15−149(l):41−6.
- Carballeira N, Nazabal M, Brito J, Garcia O. // Purification of a thermostable DNA polymerase from Thermus thermophilus HB8, useful in the polymerase chain reaction.
- Biotechniques. 1990 Sep-9(3):276−81.
- Bechtereva Π’Π, Pavlov YI, Kramorov VI, Migunova B, Kiselev 01. // DNA sequencing with thermostable Tet DNA polymerase from Thermus thermophilus. Nucleic Acids Res. 1989 Dec 25−17(24): 10 507.
- Kaledin AS, Sliusarenko AG, Gorodetskii SI. // Isolation and properties of DNA-polymerase from the extreme thermophilic bacterium Thermus flavus. Biokhimiia. 1981 Sep-46(9): 1576−84. Russian.
- Kaledin AS, Sliusarenko AG, Gorodetskii SI. // Isolation and properties of DNA polymerase from the extreme thermophilic bacterium Thermus ruber. Biokhimiia. 1982 Nov-47(l 1): 178 591. Russian.
- Park JH, Kim JS, Kwon ST, Lee DS. // Purification and characterization of Thermus caldophilus GK24 DNA polymerase. Eur JBiochem. 1993 May 15−214(l):135−40.
- Day DJ, Saul DJ, Reeves RA, Bergquist PL. A solid-phase assay for thermophilic DNA polymerases. Anal Biochem. 1993 May 15−211(1): 174−6.
- Mattila P, Korpela J, Tenkanen T, Pitkanen K. // Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase—an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res. 1991 Sep 25−19(18):4967−73.
- ΠΠΎΠ». ΠΠΈΠΎΠ». ΠΊΠ»Π΅ΡΠΊΠΈ Π.ΠΠ»ΡΠ±Π΅ΡΡΠ΅, Π. ΠΡΠ΅ΠΉ, Π. Π ΡΡΡ ΠΈΠ·Π΄. ΠΠΎΡΠΊΠ²Π°, ΠΠΈΡ, 1994.
- DeLong EF, Wu KY, Prezelin BB, Jovine RV. // High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct 20−371(6499).695−7.
- Barns SM, Delwiche CF, Palmer JD, Pace NR. // Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA. 1996 Aug 20−93(17):9188−93.
- Rees DC, Adams MW. // Hyperthermophiles: taking the heat and loving it. Structure. 1995 Mar 15−3(3):251−4.
- Edgell DR, Klenk HP, Doolittle WF. // Gene duplications in evolution of archaeal family Π DNA polymerases. J Bacterid. 1997 Apr- 179(8):2632−40.
- MathurEJ, Adams MW, Callen WN, Cline JM. // The DNA polymerase gene from the hyperthermophilic marine archaebacterium, Pyrococcus furiosus, shows sequence homology with alpha-like DNA polymerases. Nucleic Acids Res. 1991 Dec 25−19(24):6952.
- Uemori T, Ishino Y, Toh H, Asada K, Kato I. // Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus. Nucleic Acids Res. 1993 Jan 25−21(2):259−65.
- Lundberg KS, Shoemaker DD, Adams MW, Short JM, Sorge J A, Mathur EJ. // High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene. 1991 Dec l-108(l):l-6.
- Jannasch, J., W., Wirsen, Π‘. O., Molyneaux, S. J., and Langworthy, T-A. // (1992). Appl. Environ. Microbiol. 58, 3472−3481.
- Ishino Y, Komori K, Cann DC, Koga Y. // A novel DNA polymerase family found in Archaea. J Bacteriol. 1998 Apr- 180(8):2232−6.
- Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. // Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20−23 0(4732): 1350−4.
- Keohavong P, Kat AG, Cariello NF, Thilly WG. // DNA amplification in vitro using T4 DNA polymerase. DNA. 1988 Jan-Feb-7(l):63−70.
- Keohavong P, Wang CC, Cha RS, Thilly WG. // Enzymatic amplification and characterization of large DNA fragments from genomic DNA. Gene. 1988 Nov 15−71(1):211−6.
- Tabor S, Richardson CC.// DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA. 1987 Jul-84(14):4767−71.
- Barnes WM. // PCR amplification of u p to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci USA. 1994 Mar15−91(6):2216−20.
- Cheng S, Chang SY, Gravitt P, Respess R. // Long PCR. Nature. 1994 Jun 23−369(6482):684−5.
- Cohen J. // 'Long PCR' leaps into larger DNA sequences. Science. 1994 Mar 18−263(5153):1564−5.
- Mariame B. // Cycle sequencing protocol using deep VentR (exo-) DNA polymerase and reduced dNTP and alpha-35S.dATP concentrations. Biotechniques. 1996 Jul-21(l): 18−9.
- Tabor S, Richardson CC. II A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci USA. 1995 Jul 3−92(14):6339−43.
- Laemmli UK.// Cleavage of structural p roteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15−227(259):680−5.
- Dang C, Jayasena SD. // Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR. J Mol Biol. 1996 Nov 29−264(2):268−78.
- Pisani FM, De Martino C, Rossi M.// A DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family Π DNA polymerases. Nucleic Acids Res. 1992 Jun ll-20(ll):2711−6.
- Pisani FM, Rossi M.// Evidence that an archaeal alpha-like DNA polymerase has amodular organization of its associated catalytic activities. J Biol Chem. 1994 Mar 18−269(11):7887−92.
- Konisky J, Paule SM, Carinato ME, Kansy JW. // The DNA polymerase gene from the methanogenic archaeon Methanococcus voltae. J Bacteriol. 1994 Oct- 176(20):6402−3.
- Klimczak LJ, Grummt F, Burger KJ. (1986) Biochemistry 25, 4850−4855.
- Klimczak LJ, Grummt F, Burger KJ.// Purification and characterization of DNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Nucleic Acids Res. 1985 Jul 25−13(14):5269−82.
- Scharf, S.G. (1990) Cloning with PCR, Academic Press, San Diego, California.
- New England Biolabs catalog 1998/1999
- Yeh MF, Trela JM. // Purification and characterization of a repressible alkaline phosphatase from Thermus aquaticus. J Biol Chem. 1976 May 25−251(10):3134−9.
- Catterall JF, Welker NE.// Isolation and properties of a thermostable restriction endonuclease (ENDO R-Bst 1503). J Bacteriol. 1977 Feb-129(2): 1110−20.
- Wedler FC, Kenney RM, Ashour AE, Carfi J. // Two regulatory isozymes of glutamine synthetase from Bacillus caldolyticus, an extreme thermophile. Biochem Biophys Res Commun. 1978 Mar 15−81(1): 122−6.
- Chien A, Edgar DB, Trela JM. // Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 1976 Sep-127(3): 1550−7.
- Kaledin AS, Sliusarenko AG, Gorodetskii SI. // Isolation and properties of DNA polymerase from extreme thermophylic bacteria Thermus aquaticus YT-1 Biokhimiia. 1980 Apr- 45 (4): 644−51. Russian.
- Fabry M, Sumegi J, Venetianer P. // urification and properties of the RNA polymerase of an extremely thermophilic bacterium: Thermus aquaticus T2. Biochim Biophys Acta, 1976 Jul -435(3):228−35.
- Perler FB, Kumar S, Kong H. // Thermostable DNA polymerases. Adv Protein Chem. 96−48: 377−435.
- Harald, H. (1998) J. Biotechnology, 64, 39−52.
- Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami Π, Oka M, Imanaka T. // Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol. 1997 Nov-63(l 1):4504−10.
- Delarue M, Poch 0, Tordo N, Moras D, Argos P.// An attempt to unify the structure of polymerases. Protein Eng. 1990 May-3(6):461−7.
- Beese LS, Friedman JM, Steitz Π’Π. // Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. Biochemistry. 1993 Dec 28−32(51): 14 095−101.
- Li Y, Korolev S, Waksman G. // Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 1998 Dec 15−17(24):7514−25.
- Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T. // Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature. 1998 Jan 15−391(6664):251−8.
- Polesky AH, Steitz Π’Π, Grindley ND, Joyce CM. // Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichiacoli. J Biol Chem. 1990 Aug 25−265(24): 14 579−91.
- Catalano CE, Allen DJ, Benkovic SJ.// Interaction of Escherichia coli DNA polymerase I with azidoDNA and fluorescent DNA probes: identification of protein-DNA contacts. Biochemistry. 1990 Apr 17−29(15):3612−21.
- Jung GH, Leavitt MC, Schultz M, Ito J. // Site-specific mutagenesis ofPRDl DNA polymerase: mutations in highly conserved regions of the family Π DNA polymerase. Biochem Biophys Res Commun. 1990 Aug 16- 170(3): 1294−300.
- Blasco MA, Lazaro JM, Bernad A, Blanco L, Salas M. // Phi 29 DNA polymerase active site. Mutants in conserved residues Tyr254 and Tyr390 are affected in dNTP binding. J Biol Chem. 1992 Sep 25−267(27): 19 427−34.
- Jung GH, Leavitt MC, Schultz M, Ito J. // Site-specific mutagenesis of PRD1 DNA polymerase: mutations in highly conserved regions of the family Π DNA polymerase. Biochem Biophys Res Commun. 1990 Aug 16−170(3):1294−300.
- Blanco L, Bernad A, Blasco MA, Salas M. // A general structure for DNA-dependent DNA polymerases. Gene. 1991 Apr- 100:27−3 8.
- Dong Q, Copeland WC, Wang TS. // Mutational studies of human DNA polymerase alpha. Identification of residues critical for deoxynucleotide binding and misinsertion fidelity of DNA synthesis. J Biol Chem. 1993 Nov 15−268(32):24 163−74.
- Zhu W, Leavitt MC, Jung G, Ito J. // Mutagenesis of a highly conserved lysine 340 of the PRD1 DNA polymerase. Biochim Biophys Acta. 1994 Oct 18−1219(2):260−6.
- Dong Q, Wang TS. // Mutational studies of human DNA polymerase alpha. Lysine 950 in the third most conserved region of alpha-like DNA polymerases is involved in binding the deoxynucleoside triphosphate. J Biol Chem. 1995 Sep 15−270(37):21 563−70.
- Wang J, Sattar AK, Wang CC, Karam JD, Konigsberg WH, Steitz Π’Π. // Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell. 1997 Jun 27−89(7): 1087−99.
- Corpet F. // Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25- 16(22): 10 881−90.
- Higgins DG, Sharp PM. // CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15−73(l):237−44.
- Higgins DG, Sharp PM. // Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr-5(2):151−3.
- Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. // Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20−230(4732): 1350−4.
- Mullis KB, Faloona FA. // Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987−155:335−50.
- Vallette F, Mege E, Reiss A, Adesnik M. // Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 1989 Jan 25- 17(2):723−33.
- Higuchi R, Krummel B, Saiki RK.// A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11−16(15):7351−67.
- Yon J, Fried M. // Precise gene fusion by PCR. Nucleic Acids Res. 1989 Jun 26−17(12):4895.
- Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR. // Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15−77(1):61−8.
- Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. // Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15,77(1):51−9.
- Niu XD, Stoops JK, Reed LJ. // Overexpression and mutagenesis of the catalytic domain of dihydrolipoamide acetyltransferase from Saccharomyces cerevisiae. Biochemistry. 1990 Sep 9(37): 8614−9.
- Yang G, Lin T, Karam J, Konigsberg WH. // Steady-state kinetic characterization of RB69 DNA polymerase mutants that affect dNTP incorporation. Biochemistry. 1999 Jun 22−3 8(25): 8094−101.
- Jung GH, Leavitt MC, Schultz M, Ito J. // Site-specific mutagenesis of PRD1 DNA polymerase: mutations in highly conserved regions of the family Π DNA polymerase. Biochem Biophys Res Commun. 1990 Aug 16−170(3): 1294−300.
- KaushikN, Pandey VN, ModakMJ.// Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Biochemistry. 1996 Jun 4−35(22):7256−66.
- Dong Q, Copeland WC, Wang TS. // Mutational studies of human DNA polymerase alpha. Identification of residues critical for deoxynucleotide binding and misinsertion fidelity of DNA synthesis. J Biol Chem. 1993 Nov 15−268(32):24 163−74.
- Saturno J, Lazaro JM, Esteban FJ, Blanco L, Salas M. // o29 DNA polymerase residue Lys383, invariant at motif Π of DNA-dependent polymerases, is involved in dNTP binding. J Mol Biol. 1997 Jun 13−269(3):313−25.
- Nixon. A.N. Ostermeier.M. and Benkovie.S.J. // Hybrid enzymes: manipulating enzyme design. Trends Biotechnol. 1998 Jun- 16(6):258−64.
- Kim Y, Eom SH, Wang J, Lee DS, Suh SW, Steitz Π’Π. // Crystal structure of Thermus aquaticus DNA polymerase. Nature. 1995 Aug 17−376(6541):612−6.
- Michael R. Slater et all. Patent PRMG-1 175 Thermophilic DNA polymerase from Thermotoga Neapoletana 1995.
- Beguin P. // Hybrid enzymes. Curr Opin Biotechnol. 1999 Aug- 10(4):336−40.
- Sambrook, J., Fritsch, E.F., Maniatis, T. // (1989) Molecular cloning, Cold Spring Harbor, N.Y.