ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π’Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Π°Ρ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π° Archaeoglobus fulgidus ΠΈ Π΅Ρ‘ свойства

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ сайт-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·Π° ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π·Π°ΠΌΠ΅Π½Π° остатка Glu 170 Π² ΠΌΠΎΡ‚ΠΈΠ²Π΅ 168DXE170 ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ 3'-5'-экзонуклСазной активностизамСны остатков Lys493, Thr496, Asn497 Π² ΠΌΠΎΡ‚ΠΈΠ²Π΅ K493X2T496N497SXY500G приводят ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ ΠΈ Π²Ρ‹ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡŽ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, установлСно, Ρ‡Ρ‚ΠΎ аминокислотныС остатки Glu 170, Lys493, Thr496, Asn497 ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π’Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Π°Ρ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π° Archaeoglobus fulgidus ΠΈ Π΅Ρ‘ свойства (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • БПИБОК Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π™
  • ГЛАВА. ! Π’Π•Π ΠœΠžΠ‘Π’ΠΠ‘Π˜Π›Π¬ΠΠ«Π• Π”ΠΠš-ΠŸΠžΠ›Π˜ΠœΠ•Π  АЗЫ: БВРУКВУРНАЯ ΠžΠ Π“ΠΠΠ˜Π—ΠΠ¦Π˜Π―, Π‘Π’ΠžΠ™Π‘Π’Π’Π И ΠŸΠ ΠΠšΠ’Π˜Π§Π•Π‘ΠšΠžΠ• ΠŸΠ Π˜ΠœΠ•ΠΠ•ΠΠ˜Π• ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
    • 1. Π›. ΠšΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·
      • 1. 2. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ активности Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·
      • 1. 2. Π›. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ 5'-3'-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ активности
        • 1. 2. 2. 3'-5'-экзонуклСазная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ
        • 1. 2. 3. 5'-3'-экзонуклСазная Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ.1Π’
      • 1. 3. ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·
      • 1. 4. Бтруктурная организация ΠΈ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π· сСмСйства Π’
        • 1. 4. 1. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π· сСмСйства Π’
          • 1. 4. 1. 1. М^-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ Π΄ΠΎΠΌΠ΅Π½
          • 1. 4. 1. 2. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½Ρ‹ΠΉ Π΄ΠΎΠΌΠ΅Π½
          • 1. 4. 1. 3. Π”ΠΎΠΌΠ΅Π½Ρ‹ «ΠΏΠ°Π»ΡŒΡ†Ρ‹»
          • 1. 4. 1. 4. 3'-5'-экзонуклСазный Π΄ΠΎΠΌΠ΅Π½
          • 1. 4. 1. 5. БовмСстноС ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π΄ΠΎΠΌΠ΅Π½ΠΎΠ²
      • 1. 5. Π’Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹
        • 1. 5. 1. Π’Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ сСмСйства А
        • 1. 5. 2. Π’Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ ΠΈΠ· Π°Ρ€Ρ…Π΅Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ сСмСйства Π’
      • 1. 6. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ использованиС Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π· Π² Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ
  • ГЛАВА 2. Π’Π•Π ΠœΠžΠ‘Π’ΠΠ‘Π˜Π›Π¬ΠΠΠ― Π”ΠΠš-ΠŸΠžΠ›Π˜ΠœΠ•Π ΠΠ—Π ARCHAEOGLOBUSFULGIDUS
    • V. C16 И Π•Π• Π‘Π’ΠžΠ™Π‘Π’Π’Π. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ²
      • 2. 1. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π° (Π½ΠΎΠΌΠ΅Ρ€ AF0497, GenBank (БША)) ΠΈΠ· Π³Π΅Π½ΠΎΠΌΠ°
    • A. fulgidus
      • 2. 2. Бвойства Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠΉ Afu-uon
        • 2. 2. 1. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ 3'-5'-экзонуклСазной ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ активностСй Afu-uon
        • 2. 2. 2. ΠœΡƒΡ‚Π°Π³Π΅Π½Π΅Π· с Π·Π°ΠΌΠ΅Π½ΠΎΠΉ Π² Π±Π΅Π»ΠΊΠ΅ Afn-non. аминокислотного остатка Glul
        • 2. 2. 3. Π’Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΎΠΏΡ‚ΠΈΠΌΡƒΠΌ 4/ΠΈ (Π΅Ρ…ΠΎ")-ΠΏΠΎΠ»
        • 2. 2. 4. ВлияниС рН ΡΡ€Π΅Π΄Ρ‹ Π½Π° Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ 4/^(Π΅Ρ…ΠΎ")-ΠΏΠΎΠ»
        • 2. 2. 5. ВлияниС ΠΎΠ΄Π½ΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΈ Π΄Π²ΡƒΡ…Π²Π°Π»Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΎΠ² Π½Π° ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½Ρ‹Π΅ свойства 4/ΠΈ (Π΅Ρ…ΠΎ')-ΠΏΠΎΠ»
        • 2. 2. 6. ΠŸΡ€ΠΎΡ†Π΅ΡΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ4/ΠΌ (Π΅Ρ…ΠΎ")-гюл
        • 2. 2. 7. Амплификация Π”ΠΠš4/ΠΈ (Π΅Ρ…ΠΎ")-ΠΏΠΎΠ»., 4/ΠΈ-ΠΏΠΎΠ»
      • 2. 3. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎ-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ исслСдования Afu-uon
        • 2. 3. 1. Π’Ρ‹Π±ΠΎΡ€ участка для провСдСния ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·Π° Π³Π΅Π½Π° afu-ΠΏΠΎΠ»
        • 2. 3. 2. ΠŸΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΎΠ±Ρ‰Π°Ρ схСма провСдСния ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·Π°
        • 2. 3. 3. ΠŸΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° исходных ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² для провСдСния ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·Π°
        • 2. 3. 4. ΠœΡƒΡ‚Π°Π³Π΅Π½Π΅Π· Π² Π±Π΅Π»ΠΊΠ΅ Afu (txo')-non. для получСния конструкции с ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ сайтами рСстрикции EcoRV ΠΈ Vha464l
        • 2. 3. 5. ΠœΡƒΡ‚Π°Π³Π΅Π½Π΅Π· с Π·Π°ΠΌΠ΅Π½ΠΎΠΉ Π² Π±Π΅Π»ΠΊΠ΅ А/ΠΈ (Π΅Ρ…ΠΎ')-ΠΏΠΎΠ». аминокислотного остатка Lys
        • 2. 3. 6. ΠœΡƒΡ‚Π°Π³Π΅Π½Π΅Π· с Π·Π°ΠΌΠ΅Π½ΠΎΠΉ Π² Π±Π΅Π»ΠΊΠ΅4/ΠΈ (Π΅Ρ…ΠΎ")-ΠΏΠΎΠ». аминокислотного остатка Asn
        • 2. 3. 7. ΠœΡƒΡ‚Π°Π³Π΅Π½Π΅Π· с Π·Π°ΠΌΠ΅Π½ΠΎΠΉ Π² Π±Π΅Π»ΠΊΠ΅ Afu (exo~)-non. аминокислотного остатка Thr
        • 2. 3. 8. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ 4А (Π΅Ρ…ΠΎ")"ΠΏΠΎΠ»
      • 2. 4. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ свойств Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° (T-Afu-non.)
        • 2. 4. 1. ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° T-Afu-поя
        • 2. 4. 2. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ свойств Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π’-А/ΠΈ-ΠΏΠΎΠ»
  • ГЛАВА 3. Π­ΠšΠ‘ΠŸΠ•Π Π˜ΠœΠ•ΠΠ’ΠΠ›Π¬ΠΠΠ― ЧАБВЬ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования
    • 3. 1. Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹ ΠΈ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Ρ‹
    • 3. 2. Π₯имичСскиС Ρ€Π΅Π°Π³Π΅Π½Ρ‚Ρ‹ ΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹
    • 3. 3. ΠŸΡ€ΠΈΠ±ΠΎΡ€Ρ‹ ΠΈ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Ρ‹
    • 3. 4. ΠžΠ±Ρ‰ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ
      • 3. 4. 1. Врансформация ΠΊΠ»Π΅Ρ‚ΠΎΠΊΠ•. coli Ml
      • 3. 4. 2. Амплификация Π³Π΅Π½Π° afu-ΠΏΠΎΠ»
      • 3. 4. 3. Π˜Π΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Afu-uon. Π² ΡˆΡ‚Π°ΠΌΠΌΠ΅ Π•. coli Ml
      • 3. 4. 4. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠΉ Afu-ΠΏΠΎΠ»
      • 3. 4. 5. Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ активности Afu-ΠΏΠΎΠ»
      • 3. 4. 6. ИсслСдованиС Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских характСристик 4/ΠΌ (Π΅Ρ…ΠΎ~)-ΠΏΠΎΠ»
      • 3. 4. 7. ИсслСдованиС Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π±Π΅Π»ΠΊΠΎΠ²
      • 3. 4. 8. Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ 3'-5'-экзонуклСазной активности
      • 3. 4. 9. ВСстированиС 5'-3'-эндонуклСазной активности
      • 3. 4. 10. Амплификация Π”ΠΠš с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π“-Π”/ΠΌ-ΠΏΠΎΠ»., Afu-non., Afu (exo')-non
    • 3. 4.11. Π‘ΠΈΠ½Ρ‚Π΅Π· Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π”ΠΠš с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ (ПЦР)
      • 3. 4. 12. Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ
      • 3. 4. 13. ΠšΠΎΠ½ΡΡ‚Ρ€ΡƒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΎΡ‚Π±ΠΎΡ€ Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Π·ΠΌΠΈΠ΄, нСсущих Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹Π΅ Π·Π°ΠΌΠ΅Π½Ρ‹ аминокислотных остатков Π² Π±Π΅Π»ΠΊΠ΅ Afu-non
      • 3. 4. 14. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΎΡ‡ΠΈΡΡ‚ΠΊΠ° ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
      • 3. 4. 15. ΠŸΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π”ΠΠš ΠΈΠ· Π°Π³Π°Ρ€ΠΎΠ·Π½ΠΎΠ³ΠΎ гСля ΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² ΠΈΠ· ΠŸΠΠΠ“
      • 3. 4. 16. Π‘Π΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π”ΠΠš
      • 3. 4. 17. ΠšΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ для Π°Π½Π°Π»ΠΈΠ·Π° Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΈ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡ‚Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ
  • Π’Π«Π’ΠžΠ”Π«

Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ входят Π² Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… биосинтСз Π”ΠΠš. И Ρ…ΠΎΡ‚Ρ эти Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ извСстны Π΄Π°Π²Π½ΠΎ, ΠΈΡ… ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ интСнсивно ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡŽΡ‚ΡΡ, Ρ‡Ρ‚ΠΎ опрСдСляСтся Π·Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ ΠΈΡ… Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΌ практичСским ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ.

Π’ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ‹ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ растущий интСрСс исслСдоватСлСй ΠΊ ΡΠ²ΠΎΠΉΡΡ‚Π²Π°ΠΌ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ стали ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹ΠΌΠΈ инструмСнтами Π² Ρ‚Π°ΠΊΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π°Ρ… ΠΊΠ°ΠΊ полимСразная цСпная рСакция [1] ΠΈ «Π΄ΠΈΠ΄Π΅Π·ΠΎΠΊΡΠΈ» ΠΌΠ΅Ρ‚ΠΎΠ΄ сСквСнирования Π”ΠΠš [2], Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Ρ€Π΅ базируСтся соврСмСнная молСкулярная биология ΠΈ Π±ΠΈΠΎΡ‚Схнология. ΠšΡ€ΠΎΠΌΠ΅ этого, эти Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ интСрСсными ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ для изучСния процСссов Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π”ΠΠš, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ синтСза Π”ΠΠš ΠΏΡ€ΠΈ ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½ΠΎ высоких Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ….

Π’ Π½Π°ΡΡ‚оящСС врСмя Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², относящихся ΠΊ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ таксономичСским Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌ: Bacilus, Thermus. НаиболСС Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎ исслСдованы ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ Taq ΠΈΠ· Thermits aquaticus YT1 ΠΈ Tth ΠΈΠ· Thermus thermophilus HB8. Однако нСвысокая ΠΏΡ€ΠΎΡ†Π΅ΡΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ копирования Π”ΠΠš ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ. Π’ ΡΠ²ΡΠ·ΠΈ с ΡΡ‚ΠΈΠΌ прСдставляСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π½ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΡ… Π³Π΅Π½ΠΎΠ², ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ свойств, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ «Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ·Π°ΠΉΠ½Π°» с Ρ†Π΅Π»ΡŒΡŽ получСния Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ², ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½Ρ‹ΠΌΠΈ свойствами, Ρ€Π°ΡΡˆΠΈΡ€ΡΡŽΡ‰ΠΈΠΌΠΈ спСктр ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, прСдставляСт интСрСс ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π· ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ систСмы Π°Ρ€Ρ…Π΅Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ, ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΌΠΈ для модСлирования основных ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² Π±Π°ΠΊΡ‚Сриях ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚Π°Ρ….

Π’ Π½Π°ΡΡ‚оящСС врСмя Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ ΠΈΠ· Π°Ρ€Ρ…Π΅Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ P. furiosus, Π«. jannachii, P. sp. GB-D, Π’. litoralis, Π’. fumicolans. К ΡΡ‚ΠΎΠΌΡƒ классу Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Ρ‚Π°ΠΊΠΆΠ΅ относится ΠΈ A. fulgidus [3]. На ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ сСквСнирования Π³Π΅Π½ΠΎΠΌΠΎΠ² ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² М. jannachii, A. fulgidus ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ ряд Π³Π΅Π½ΠΎΠ², ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ синтСз Π”ΠΠš ΠΏΡ€ΠΈ достаточно высоких Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… [4], [5]. Однако Π΄ΠΎ Π½Π°ΡΡ‚оящСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π΅ Π±Ρ‹Π»Π° Π²Ρ‹Π΄Π΅Π»Π΅Π½Π° ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π° ΠΈΠ· ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° A. fulgidus, Π½Π΅ Π±Ρ‹Π»Π° исслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π΅Π΅ ΠΏΡ€Π°ΠΊΡ‚ичСского использования. Π­Ρ‚ΠΎ ΠΈ ΡΠ²ΠΈΠ»ΠΎΡΡŒ ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π²Ρ‹Π±ΠΎΡ€Π° этого Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° исслСдования Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅.

ЦСль Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ состоит Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ структурной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ, свойств Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠΉ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Ρ‹ ΠΈΠ· Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Archaeoglobus fulgidus ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ возмоТности практичСского использования этого Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°.

Π’ Ρ…ΠΎΠ΄Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Ρ€Π΅ΡˆΠ°Π»ΠΈΡΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

β€’ Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠΉ Π›/Ρƒ-ΠΏΠΎΠ».

β€’ Анализ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структуры Afu-nosi. Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΉ с Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ родствСнного класса.

β€’ ΠœΡƒΡ‚Π°Π³Π΅Π½Π΅Π· Π³Π΅Π½Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°.

β€’ ИсслСдованиС основных характСристик ΠΈ ΡΠ½Π·ΠΈΠΌΠ°Ρ‚ичСских свойств ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌΠ›/ΠΌ-ΠΏΠΎΠ».

β€’ Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° ΠΈΠ· Afu-ΠΏΠΎΠ». ΠΈ Taq-uon.

β€’ ΠžΡ†Π΅Π½ΠΊΠ° возмоТности практичСского использования Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΠΈ Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π² ΠŸΠ¦Π .

Π Π°Π±ΠΎΡ‚Π° содСрТит ΠΎΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, посвящСнной ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ структурной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ, свойств Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Π΅, ΠΈΡ… ΠΏΡ€Π°ΠΊΡ‚ичСского примСнСния.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Afu-ΠΏΠΎΠ». Показано, Ρ‡Ρ‚ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ относится ΠΊ Π”ΠΠš-ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π°ΠΌ сСмСйства Π’, ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ ΠΈ 3'-5'-экзонуклСазной активностями.

2. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ сайт-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·Π° ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π·Π°ΠΌΠ΅Π½Π° остатка Glu 170 Π² ΠΌΠΎΡ‚ΠΈΠ²Π΅ 168DXE170 ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΈΠ½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ 3'-5'-экзонуклСазной активностизамСны остатков Lys493, Thr496, Asn497 Π² ΠΌΠΎΡ‚ΠΈΠ²Π΅ K493X2T496N497SXY500G приводят ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ ΠΈ Π²Ρ‹ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡŽ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, установлСно, Ρ‡Ρ‚ΠΎ аминокислотныС остатки Glu 170, Lys493, Thr496, Asn497 ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ нСпосрСдствСнноС участиС Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠ³ΠΎ ΠΈ 3'-5'-экзонуклСазного Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² Afu-ΠΏΠΎΠ».

3. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ основныС Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС характСристики ΠΈ ΡΠ½Π·ΠΈΠΌΠ°Ρ‚ичСскиС свойства Afu-ΠΏΠΎΠ»., 4/"(Π΅Ρ…ΠΎ")-ΠΏΠΎΠ». Показано, Ρ‡Ρ‚ΠΎ Afu{Qxo~)-uon. ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ максимальной ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ рН 6,8 — 7,5- ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² Mg2+ - 8 ΠΌΠœΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠšΠ“ ΠΈ NK,+ Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ смСси.

4. Π‘ Ρ†Π΅Π»ΡŒΡŽ получСния ΠΌΡƒΠ»ΡŒΡ‚ΠΈΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° с Π½ΠΎΠ²Ρ‹ΠΌΠΈ свойствами Π±Ρ‹Π» создан Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹ΠΉ Π³Π΅Π½, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ…ΠΈΠΌΠ΅Ρ€Π½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ, состоящий ΠΈΠ· N-ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠ³ΠΎ 5'-3'-экзонуклСазного Π΄ΠΎΠΌΠ΅Π½Π° Taq-ΠΏΠΎΠ»., сформированного 288 аминокислотными остатками (аминокислоты 1−304 Π² Taq-ΠΏΠΎΠ».), ΠΈ ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠΉ Afu-ΠΏΠΎΠ». Показано, Ρ‡Ρ‚ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ 5'-3'-эндонуклСазной ΠΈ Π±ΠΎΠ»Π΅Π΅ высокой 3'-5'-экзонуклСазной Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, сохраняСт ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Π½ΠΎ ΠΎΡ‚личаСтся Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΈΡΡ…ΠΎΠ΄Π½Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ.

5. НайдСны ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ условия для практичСского использования Afu-ΠΏΠΎΠ»., 4/ΠΌ (Π΅Ρ…ΠΎ>ΠΏΠΎΠ». ΠΈ Ρ…ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Braithwaite DK, Ito J. // Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25−21(4):787−802.
  2. Li Y, Korolev S, Waksman G. // Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for ucleotide incorporation. EMBO J. 1998 Dec 15- 17(24):7514−25.
  3. Hopfner KP, Eichinger A, Engh RA, Laue F, Ankenbauer W, Huber R, Angerer B. // Crystal structure of a thermostable type Π’ DNA polymerase from Thermococcus gorgonarius. Proc Natl Acad Sci USA. 1999 Mar 30−96(7):3600−5.
  4. Innis MA, Myambo KB, Gelfand DH, Brow MA. // DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci USA. 1988 Dec-85(24):9436−40.
  5. Wyman C, Botchan M. // DNA replication. A familiar ring to DNA polymerase processivity. Curr Biol. 1995 Apr l-5(4):334−7.
  6. Vlasov VA, Dymshits GM, Lavrik 01. // Structural and functional dynamics of DNA and RNA polymerases. Mol Biol (Mosk). 1998 Jan-Feb-32(l):5−18.
  7. KA. // Conformational coupling in DNA polymerase fidelity. Annu Rev Biochem. 1993−62:685−713.
  8. Hori K, Mark DF, Richardson CC. // Deoxyribonucleic acid polymerase of bacteriophage T 7. Purification and properties of the phage-encoded subunit, the gene 5 protein. J Biol Chem.1979 Nov 25−254(22): 11 591−7.
  9. Jung GH, Leavitt MC, Schultz M, Ito J. // Site-specific mutagenesis of PRD1 DNA polymerase: mutations in highly conserved regions of the family Π’ DNA polymerase. Biochem Biophys Res Commun. 1990 Aug 16−170(3):1294−300.
  10. Esteban J A, Soengas MS, Salas M, Blanco L. // 3'~>5' exonuclease active site of phi 29 DNA polymerase. Evidence favoring a metal ion-assisted reaction mechanism. J Biol Chem. 1994 Dec 16−269(50):31 946−54.
  11. Frey MW, Nossal NG, Capson TL, Benkovic SJ. // Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3'→5' exonuclease activity. Proc Natl Acad SciU S A. 1993 Apr l-90(7):2579−83.
  12. Romberg, A., and Baker, T. A. (1992). // «DNA Replication.» Freeman, New York
  13. Yang B, Gathy KN, Coleman MS. // Mutational analysis of residues in the nucleotide binding domain of human terminal deoxynucleotidyl transferase. J Biol Chem. 1994 Apr 22−269(16): 11 859−68.
  14. Zhu W, Ito J. //Family A and family Π’ DNA polymerases are structurally related: evolutionary implications. Nucleic Acids Res. 1994 Dec 11−22(24):5177−83.
  15. Basu S, Basu A, ModakMJ.//Pyridoxal 5'-phosphate mediated inactivation of Escherichia coli DNA polymerase I: identification of lysine-635 as an essential residue for the processive mode of DNA synthesis. Biochemistry. 1988 Sep 6−27(18):6710−6.
  16. A. // DNA replication. San Francisco: W.H. Freeman and Co., 1980. P. 1−726- Kornberg A Supplement to DNA replication. San Francisco: W.H. Freeman and Co., 1982. P. 1203.
  17. А. А., ΠšΡƒΡ…Π°Π½ΠΎΠ²Π° M.K. Π˜Ρ‚ΠΎΠ³ΠΈ Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. БСрия ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология. 1986. Π’. 22. Π‘. 3−164.
  18. Beese LS, Friedman JM, Steitz Π’А. // Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. Biochemistry.1993 Dec 28,32(51): 14 095−101.
  19. Polesky AH, Dahlberg ME, Benkovic SJ, Grindley ND, Joyce CM. // Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. JBiol Chem. 1992 Apr 25−267(12):8417−28.
  20. Pandey VN, Kaushik N, Sanzgiri RP, Patil MS, Modak MJ, Barik S. // Site directed mutagenesis of DNA polymerase I (Klenow) from Escherichia coli. The significance of Arg682 in catalysis. Eur JBiochem. 1993 May 15−214(l):59−65.
  21. Blanco L, Bernad A, Blasco MA, Salas M. // A general structure for DNA-dependent DNA polymerases. Gene. 1991 Apr-100:27−38.
  22. Morrison A, Bell JB, Kunkel ВА, Sugino A. // Eukaryotic DNA polymerase amino acid sequence required for 3'—5' exonuclease activity. ProcNatl Acad Sci USA. 1991 Nov l-88(21):9473−7.
  23. Beese LS, Steitz Π’А. // Structural basis for the 3−5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan-10(l):25−33.
  24. Derbyshire. V., Pinsonneault. J. K., and Joyce, Π‘. M. // (1995). In «Methods in Enzymology» (J. L. Campbell, ed.), Vol. 262, pp. 363−388. Academic Press. San Diego)
  25. Derbyshire V, Freemont PS, Sanderson MR, Beese L, Friedman JM, Joyce CM, Steitz Π’А. // Genetic and crystallographic studies of the 3', 5'-exonucleolytic site of DNA polymerase I. Science. 1988 Apr 8−240(4849): 199−201.
  26. Derbyshire V, Pinsonneault JK, Joyce CM. // Structure-function analysis of 3'→5'-exonuclease of DNA polymerases. Methods Enzymol. 1995−262:363−85.
  27. Echols H, Goodman MF. // Fidelity mechanisms in DNA replication. Annu Rev Biochem. 1991−60:477−511.
  28. ВА. // DNA replication fidelity. J Biol Chem. 1992 Sep 15−267(26): 18 251−4.
  29. Derbyshire V, Grindley ND, Joyce CM.// The 3−5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO1. J. 1991 Jan-10(l): 17−24.
  30. Beese LS, Derbyshire V, Steitz Π’А. // Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science. 1993 Apr 16−260(5106):352−5.
  31. Freemont PS, Friedman JM, Beese LS, Sanderson MR, Steitz Π’А. // Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc Natl Acad Sci USA. 1988 Dec-85(23):8924−8.
  32. Joyce CM, Steitz Π’А.// Function and structure relationships in DNA polymerases. Annu RevBiochem. 1994−63:777−822.
  33. Cowart M, Gibson KJ, Allen DJ, Benkovic SJ. // Substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Biochemistry. 1989 Mar 7−28(5): 1975−83.
  34. Arnold E, Jacobo-Molina A, Nanni RG, Williams RL, Lu X, Ding J, Clark AD Jr, Zhang A, Ferris AL, Clark P, et al. // Structure of HIV-1 reverse transcriptase/DNA complex at 7 A resolution showing active site locations. Nature. 1992 May 7−357(6373):85−9.
  35. Lyamichev V, Brow MA, Dahlberg JE. // Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science. 1993 May 7−260(5109):778−83.
  36. Lundquist RC, Olivera BM. // Transient generation of displaced single-stranded DNA during nick translation. Cell. 1982 Nov-31(l):53−60.
  37. Holland PM, Abramson RD, Watson R, Gelfand DH. // Detection of specific polymerase chain reaction product by utilizing the 5'—3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA. 1991 Aug 15−88(16):7276−80.
  38. Gutman PD, Minton KW.// Conserved sites in the 5'-3'exonuclease domain of
  39. Escherichia coli DNA polymerase. Nucleic Acids Res. 1993 Sep ll-21(18):4406−7.
  40. Kim Y, Eom SH, Wang J, Lee DS, Suh SW, Steitz Π’А. // Crystal structure of Thermus aquaticus DNA polymerase. Nature. 1995 Aug 17−376(6541):612−6.
  41. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° ΠΈ Π±ΠΈΠΎΡΠΈΠ½Ρ‚Π΅Π· Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот / ΠΏΠΎΠ΄. Ρ€Π΅Π΄. Π°ΠΊΠ°Π΄. Π‘ΠΏΠΈΡ€ΠΈΠ½Π° А. Π‘. Москва: Π’Ρ‹ΡΡˆΠ°Ρ школа 1990, Π‘. 46.
  42. Gibbs JS, Chiou НБ, Bastow KF, Cheng YC, Coen DM. // Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate and drug recognition. Proc Natl Acad Sci USA. 1988 Sep-85(18):6672−6.
  43. Larder BA, Kemp SD, Darby G. // Related functional domains in virus DNA polymerases. EMBO J. 1987 Jan-6(l): 169−75.
  44. CW. // The herpes simplex virus type 1 DNA polymerase gene: site of phosphonoacetic acid resistance mutation in strain Angelotti is highly conserved. J Gen Virol. 1987 May-68 (Pt 5): 1429−33.
  45. Bernad A, Zaballos A, Salas M, Blanco L. // Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases. EMBO J. 1987 Dec 20−6(13):4219−25.
  46. Delarue M, Poch 0, Tordo N, Moras D, Argos P. //An attempt to unify the structure of polymerases. Protein Eng. 1990 May-3(6):461−7.
  47. Poch O, Sauvaget I, Delarue M, Tordo N. // Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 1989 Dec 1−8(12):3867−74.
  48. Bernad A, Blanco L, Salas M. // Site-directed mutagenesis of the YCDTDS amino acid motif ofthe phi 29 DNA polymerase. Gene. 1990 Sep 28−94(1):45−51.
  49. Polesky AH, Steitz ВА, Grindley ND, Joyce CM. // Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J Biol Chem. 1990 Aug 25,265(24): 14 579−91.
  50. Reha-Krantz LJ, Nonay RL. // Motif A of bacteriophage T4 DNA polymerase: role in primer extension and DNA replication fide lity. Isolation of new antimutator and mutator DNA polymerases. J Biol Chem. 1994 Feb 25−269(8):5635−43.
  51. Copeland WC, Wang TS. // Mutational analysis of the human DNA polymerase alpha. The most conserved region in alpha-like DNA polymerases is involved in metal-specific catalysis.
  52. J Biol Chem. 1993 May 25−268(15):11 028−40.
  53. Osumi-Davis PA, de Aguilera MC, Woody RW, Woody AY. // Asp537, Asp812 are essential and Lys631, His811 are catalytically significant in bacteriophage T7 RNA polymerase activity. J MolBiol. 1992 Jul 5−226(l):37−45.
  54. Bonner G, Patra D, Lafer EM, SousaR. // Mutations in T7 RNA polymerase that support the proposal for a common polymerase active site structure. EMBO J. 1992 0<Π›-11(10):3767−75.
  55. Polesky AH, Dahlberg ME, Benkovic SJ, Grindley ND, Joyce CM. // Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. J Biol Chem. 1992 Apr 25−267(12):8417−28.
  56. Larder BA, Purifoy DJ, Powell KL, Darby G. // Site-specific mutagenesis of AIDS virus reverse transcriptase. Nature. 1987 Jun 25-Jul l-327(6124):716−7.
  57. Date T, Yamamoto S, Tanihara K, Nishimoto Y, Matsukage A. // Aspartic acid residues at positions 190 and 192 of rat DNA polymerase beta are involved in primer binding. Biochemistry. 1991 May 28−30(21):5286−92.
  58. Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz Π’А. // Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature. 1985 Feb 28-Mar 6−313(6005):762−6.
  59. Sawaya MR, Pelletier H, Kumar A, Wilson SH, Kraut J. // Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science. 1994 Jun 24−264(5167): 1930−5.
  60. RodgersDW, Gamblin SJ, Harris BA, Ray S, Culp JS, Hellmig B, Woolf DJ, Debouck C, Harrison SC. // The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. ProcNatl Acad Sci USA. 1995 Feb 14−92(4): 1222−6.
  61. Sousa R, Chung YJ, Rose JP, Wang Π’Π‘. // Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature. 1993 Aug 12−364(6438):593−9.
  62. Doublie S, Sawaya MR, Ellenberger T. // An open and closed case for all polymerases. Structure Fold Des. 1999 Feb 15−7(2):R31−5.
  63. Carroll SS, Cowart M, Benkovic SJ. // A mutant of DNA polymerase I (Klenow fragment) with reduced fidelity. Biochemistry. 1991 Jan 22−30(3):804−13.
  64. Wang J, Sattar AK, Wang CC, Karam JD, Konigsberg WH, Steitz Π’А. // Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell. 1997 Jun 27−89(7): 1087−99.
  65. Tuerk C, Eddy S, Parma D, Gold L. // Autogenous translational operator recognized by bacteriophage T4 DNA polymerase. J Mol Biol. 1990 Jun 20−213(4):749−61.
  66. Edgell DR, Doolittle WF. //Archaea and the origin (s) of DNA replication proteins. Cell. 1997 Jun 27−89(7):995−8.
  67. Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T. // Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature. 1998 Jan 15−391(6664):251−8.
  68. Copeland WC, Lam NK, Wang TS. // Fidelity studies of the human DNA polymerase alpha. The most conserved region among alpha-like DNA polymerases is responsible for metal-induced infidelity in DNA synthesis. J Biol Chem. 1993 May 25−268(15): 11 041−9.
  69. Blanco L, Bernad A, Salas M. // Evidence favouring the hypothesis of a conserved 3−5' exonuclease active site in DNA-dependent DNA polymerases. Gene. 1992 Mar 1−112(1): 139−44.
  70. Reha-Krantz LJ, Nonay RL.// Genetic and biochemical studies of bacteriophage T4 DNA polymerase 3'→5'-exonuclease activity. J Biol Chem. 1993 Dec 25−268(36):27 100−8.
  71. Abdus Sattar AK, Lin TC, Jones C, Konigsberg WH. // Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
  72. Biochemistry. 1996 Dec 24−35(51): 16 621−9.
  73. Chien A, Edgar DB, Trela JM. // Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. JBacteriol. 1976 Sep-127(3): 1550−7.
  74. Kaledin AS, Sliusarenko AG, Gorodetskii SI. // Isolation and properties of DNA polymerase from extreme thermophylic bacteria Thermus aquaticus YT-1. Biokhimiia. 1980 Apr-45(4):644−51. Russian.
  75. Lawyer FC, Stoffel S, Saiki RK, Myambo K, Drummond R, Gelfand DH. // Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem. 1989 Apr 15−264(ll):6427−37.
  76. Longley MJ, Bennett SE, Mosbaugh DW. // Characterization of the 5' to 3' exonuclease associated with Thermus aquaticus DNA polymerase. Nucleic Acids Res. 1990 Dec 25−18(24):7317−22.
  77. Abramson R, Stoffel S, Gelfand DH. // Extension rate and procecivity of Thermus aquaticus DNA polymerase. FASEB 1990 J4 A2293.
  78. Knittel T, Picard D.// PCR with degenerate primers containing deoxyinosine fails with Pfu DNA polymerase. PCR Methods Appl. 1993 May-2(4):346−7.
  79. Slupphaug G, Alseth I, Eftedal I, Volden G, Krokan HE. // Low incorporation of dUMP by some thermostable DNA polymerases may limit their use in PCR amplifications. Anal Biochem. 1993 May 15,211(1): 164−9.
  80. WM. // The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene. 1992 Mar 1−112(1):29−35.
  81. Ruttimann C, Cotoras M, Zaldivar J, Vicuna R. // DNA polymerases from the extremely thermophilic bacterium Thermus thermophilus HB-8. Eur J Biochem. 1985 May 15−149(l):41−6.
  82. Carballeira N, Nazabal M, Brito J, Garcia O. // Purification of a thermostable DNA polymerase from Thermus thermophilus HB8, useful in the polymerase chain reaction.
  83. Biotechniques. 1990 Sep-9(3):276−81.
  84. Bechtereva ВА, Pavlov YI, Kramorov VI, Migunova B, Kiselev 01. // DNA sequencing with thermostable Tet DNA polymerase from Thermus thermophilus. Nucleic Acids Res. 1989 Dec 25−17(24): 10 507.
  85. Kaledin AS, Sliusarenko AG, Gorodetskii SI. // Isolation and properties of DNA-polymerase from the extreme thermophilic bacterium Thermus flavus. Biokhimiia. 1981 Sep-46(9): 1576−84. Russian.
  86. Kaledin AS, Sliusarenko AG, Gorodetskii SI. // Isolation and properties of DNA polymerase from the extreme thermophilic bacterium Thermus ruber. Biokhimiia. 1982 Nov-47(l 1): 178 591. Russian.
  87. Park JH, Kim JS, Kwon ST, Lee DS. // Purification and characterization of Thermus caldophilus GK24 DNA polymerase. Eur JBiochem. 1993 May 15−214(l):135−40.
  88. Day DJ, Saul DJ, Reeves RA, Bergquist PL. A solid-phase assay for thermophilic DNA polymerases. Anal Biochem. 1993 May 15−211(1): 174−6.
  89. Mattila P, Korpela J, Tenkanen T, Pitkanen K. // Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase—an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res. 1991 Sep 25−19(18):4967−73.
  90. Мол. Π‘ΠΈΠΎΠ». ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π‘.ΠΠ»ΡŒΠ±Π΅Ρ€Ρ‚Π΅, Π”. Π‘Ρ€Π΅ΠΉ, М. Рэфф ΠΈΠ·Π΄. Москва, ΠœΠΈΡ€, 1994.
  91. DeLong EF, Wu KY, Prezelin BB, Jovine RV. // High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct 20−371(6499).695−7.
  92. Barns SM, Delwiche CF, Palmer JD, Pace NR. // Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA. 1996 Aug 20−93(17):9188−93.
  93. Rees DC, Adams MW. // Hyperthermophiles: taking the heat and loving it. Structure. 1995 Mar 15−3(3):251−4.
  94. Edgell DR, Klenk HP, Doolittle WF. // Gene duplications in evolution of archaeal family Π’ DNA polymerases. J Bacterid. 1997 Apr- 179(8):2632−40.
  95. MathurEJ, Adams MW, Callen WN, Cline JM. // The DNA polymerase gene from the hyperthermophilic marine archaebacterium, Pyrococcus furiosus, shows sequence homology with alpha-like DNA polymerases. Nucleic Acids Res. 1991 Dec 25−19(24):6952.
  96. Uemori T, Ishino Y, Toh H, Asada K, Kato I. // Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus. Nucleic Acids Res. 1993 Jan 25−21(2):259−65.
  97. Lundberg KS, Shoemaker DD, Adams MW, Short JM, Sorge J A, Mathur EJ. // High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene. 1991 Dec l-108(l):l-6.
  98. Jannasch, J., W., Wirsen, Π‘. O., Molyneaux, S. J., and Langworthy, T-A. // (1992). Appl. Environ. Microbiol. 58, 3472−3481.
  99. Ishino Y, Komori K, Cann DC, Koga Y. // A novel DNA polymerase family found in Archaea. J Bacteriol. 1998 Apr- 180(8):2232−6.
  100. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. // Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20−23 0(4732): 1350−4.
  101. Keohavong P, Kat AG, Cariello NF, Thilly WG. // DNA amplification in vitro using T4 DNA polymerase. DNA. 1988 Jan-Feb-7(l):63−70.
  102. Keohavong P, Wang CC, Cha RS, Thilly WG. // Enzymatic amplification and characterization of large DNA fragments from genomic DNA. Gene. 1988 Nov 15−71(1):211−6.
  103. Tabor S, Richardson CC.// DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA. 1987 Jul-84(14):4767−71.
  104. WM. // PCR amplification of u p to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci USA. 1994 Mar15−91(6):2216−20.
  105. Cheng S, Chang SY, Gravitt P, Respess R. // Long PCR. Nature. 1994 Jun 23−369(6482):684−5.
  106. J. // 'Long PCR' leaps into larger DNA sequences. Science. 1994 Mar 18−263(5153):1564−5.
  107. B. // Cycle sequencing protocol using deep VentR (exo-) DNA polymerase and reduced dNTP and alpha-35S.dATP concentrations. Biotechniques. 1996 Jul-21(l): 18−9.
  108. Tabor S, Richardson CC. II A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci USA. 1995 Jul 3−92(14):6339−43.
  109. Laemmli UK.// Cleavage of structural p roteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15−227(259):680−5.
  110. Dang C, Jayasena SD. // Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR. J Mol Biol. 1996 Nov 29−264(2):268−78.
  111. Pisani FM, De Martino C, Rossi M.// A DNA polymerase from the archaeon Sulfolobus solfataricus shows sequence similarity to family Π’ DNA polymerases. Nucleic Acids Res. 1992 Jun ll-20(ll):2711−6.
  112. Pisani FM, Rossi M.// Evidence that an archaeal alpha-like DNA polymerase has amodular organization of its associated catalytic activities. J Biol Chem. 1994 Mar 18−269(11):7887−92.
  113. Konisky J, Paule SM, Carinato ME, Kansy JW. // The DNA polymerase gene from the methanogenic archaeon Methanococcus voltae. J Bacteriol. 1994 Oct- 176(20):6402−3.
  114. Klimczak LJ, Grummt F, Burger KJ. (1986) Biochemistry 25, 4850−4855.
  115. Klimczak LJ, Grummt F, Burger KJ.// Purification and characterization of DNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Nucleic Acids Res. 1985 Jul 25−13(14):5269−82.
  116. , S.G. (1990) Cloning with PCR, Academic Press, San Diego, California.
  117. New England Biolabs catalog 1998/1999
  118. Yeh MF, Trela JM. // Purification and characterization of a repressible alkaline phosphatase from Thermus aquaticus. J Biol Chem. 1976 May 25−251(10):3134−9.
  119. Catterall JF, Welker NE.// Isolation and properties of a thermostable restriction endonuclease (ENDO R-Bst 1503). J Bacteriol. 1977 Feb-129(2): 1110−20.
  120. Wedler FC, Kenney RM, Ashour AE, Carfi J. // Two regulatory isozymes of glutamine synthetase from Bacillus caldolyticus, an extreme thermophile. Biochem Biophys Res Commun. 1978 Mar 15−81(1): 122−6.
  121. Chien A, Edgar DB, Trela JM. // Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 1976 Sep-127(3): 1550−7.
  122. Kaledin AS, Sliusarenko AG, Gorodetskii SI. // Isolation and properties of DNA polymerase from extreme thermophylic bacteria Thermus aquaticus YT-1 Biokhimiia. 1980 Apr- 45 (4): 644−51. Russian.
  123. Fabry M, Sumegi J, Venetianer P. // urification and properties of the RNA polymerase of an extremely thermophilic bacterium: Thermus aquaticus T2. Biochim Biophys Acta, 1976 Jul -435(3):228−35.
  124. Perler FB, Kumar S, Kong H. // Thermostable DNA polymerases. Adv Protein Chem. 96−48: 377−435.
  125. , H. (1998) J. Biotechnology, 64, 39−52.
  126. Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami Π’, Oka M, Imanaka T. // Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol. 1997 Nov-63(l 1):4504−10.
  127. Delarue M, Poch 0, Tordo N, Moras D, Argos P.// An attempt to unify the structure of polymerases. Protein Eng. 1990 May-3(6):461−7.
  128. Beese LS, Friedman JM, Steitz Π’А. // Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. Biochemistry. 1993 Dec 28−32(51): 14 095−101.
  129. Li Y, Korolev S, Waksman G. // Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 1998 Dec 15−17(24):7514−25.
  130. Doublie S, Tabor S, Long AM, Richardson CC, Ellenberger T. // Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature. 1998 Jan 15−391(6664):251−8.
  131. Polesky AH, Steitz ВА, Grindley ND, Joyce CM. // Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichiacoli. J Biol Chem. 1990 Aug 25−265(24): 14 579−91.
  132. Catalano CE, Allen DJ, Benkovic SJ.// Interaction of Escherichia coli DNA polymerase I with azidoDNA and fluorescent DNA probes: identification of protein-DNA contacts. Biochemistry. 1990 Apr 17−29(15):3612−21.
  133. Jung GH, Leavitt MC, Schultz M, Ito J. // Site-specific mutagenesis ofPRDl DNA polymerase: mutations in highly conserved regions of the family Π’ DNA polymerase. Biochem Biophys Res Commun. 1990 Aug 16- 170(3): 1294−300.
  134. Blasco MA, Lazaro JM, Bernad A, Blanco L, Salas M. // Phi 29 DNA polymerase active site. Mutants in conserved residues Tyr254 and Tyr390 are affected in dNTP binding. J Biol Chem. 1992 Sep 25−267(27): 19 427−34.
  135. Jung GH, Leavitt MC, Schultz M, Ito J. // Site-specific mutagenesis of PRD1 DNA polymerase: mutations in highly conserved regions of the family Π’ DNA polymerase. Biochem Biophys Res Commun. 1990 Aug 16−170(3):1294−300.
  136. Blanco L, Bernad A, Blasco MA, Salas M. // A general structure for DNA-dependent DNA polymerases. Gene. 1991 Apr- 100:27−3 8.
  137. Dong Q, Copeland WC, Wang TS. // Mutational studies of human DNA polymerase alpha. Identification of residues critical for deoxynucleotide binding and misinsertion fidelity of DNA synthesis. J Biol Chem. 1993 Nov 15−268(32):24 163−74.
  138. Zhu W, Leavitt MC, Jung G, Ito J. // Mutagenesis of a highly conserved lysine 340 of the PRD1 DNA polymerase. Biochim Biophys Acta. 1994 Oct 18−1219(2):260−6.
  139. Dong Q, Wang TS. // Mutational studies of human DNA polymerase alpha. Lysine 950 in the third most conserved region of alpha-like DNA polymerases is involved in binding the deoxynucleoside triphosphate. J Biol Chem. 1995 Sep 15−270(37):21 563−70.
  140. Wang J, Sattar AK, Wang CC, Karam JD, Konigsberg WH, Steitz Π’А. // Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell. 1997 Jun 27−89(7): 1087−99.
  141. F. // Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25- 16(22): 10 881−90.
  142. Higgins DG, Sharp PM. // CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene. 1988 Dec 15−73(l):237−44.
  143. Higgins DG, Sharp PM. // Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr-5(2):151−3.
  144. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. // Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20−230(4732): 1350−4.
  145. Mullis KB, Faloona FA. // Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987−155:335−50.
  146. Vallette F, Mege E, Reiss A, Adesnik M. // Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 1989 Jan 25- 17(2):723−33.
  147. Higuchi R, Krummel B, Saiki RK.// A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11−16(15):7351−67.
  148. Yon J, Fried M. // Precise gene fusion by PCR. Nucleic Acids Res. 1989 Jun 26−17(12):4895.
  149. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR. // Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15−77(1):61−8.
  150. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. // Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15,77(1):51−9.
  151. Niu XD, Stoops JK, Reed LJ. // Overexpression and mutagenesis of the catalytic domain of dihydrolipoamide acetyltransferase from Saccharomyces cerevisiae. Biochemistry. 1990 Sep 9(37): 8614−9.
  152. Yang G, Lin T, Karam J, Konigsberg WH. // Steady-state kinetic characterization of RB69 DNA polymerase mutants that affect dNTP incorporation. Biochemistry. 1999 Jun 22−3 8(25): 8094−101.
  153. Jung GH, Leavitt MC, Schultz M, Ito J. // Site-specific mutagenesis of PRD1 DNA polymerase: mutations in highly conserved regions of the family Π’ DNA polymerase. Biochem Biophys Res Commun. 1990 Aug 16−170(3): 1294−300.
  154. KaushikN, Pandey VN, ModakMJ.// Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket. Biochemistry. 1996 Jun 4−35(22):7256−66.
  155. Dong Q, Copeland WC, Wang TS. // Mutational studies of human DNA polymerase alpha. Identification of residues critical for deoxynucleotide binding and misinsertion fidelity of DNA synthesis. J Biol Chem. 1993 Nov 15−268(32):24 163−74.
  156. Saturno J, Lazaro JM, Esteban FJ, Blanco L, Salas M. // o29 DNA polymerase residue Lys383, invariant at motif Π’ of DNA-dependent polymerases, is involved in dNTP binding. J Mol Biol. 1997 Jun 13−269(3):313−25.
  157. Nixon. A.N. Ostermeier.M. and Benkovie.S.J. // Hybrid enzymes: manipulating enzyme design. Trends Biotechnol. 1998 Jun- 16(6):258−64.
  158. Kim Y, Eom SH, Wang J, Lee DS, Suh SW, Steitz Π’А. // Crystal structure of Thermus aquaticus DNA polymerase. Nature. 1995 Aug 17−376(6541):612−6.
  159. Michael R. Slater et all. Patent PRMG-1 175 Thermophilic DNA polymerase from Thermotoga Neapoletana 1995.
  160. P. // Hybrid enzymes. Curr Opin Biotechnol. 1999 Aug- 10(4):336−40.
  161. Sambrook, J., Fritsch, E.F., Maniatis, T. // (1989) Molecular cloning, Cold Spring Harbor, N.Y.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ