ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½-ΡΠΎΠ½ΠΎΠ½Π½ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ Π½Π°Π½ΠΎΠ°Π»ΠΌΠ°Π·ΠΎΠ²
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ
ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ ΡΠ°Π±ΠΎΡΡ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΡΠΏΠΎΡΠΎΠ± ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ΅ΡΠ°Π»Π»-Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΠΊ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΡΡΡΠΊΡΡΡΠ°, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ ΠΎΡΠ²ΠΎΠ΄ΡΡΠ΅Π΅ ΡΠ΅ΠΏΠ»ΠΎ ΠΎΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ². ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ, Π΄Π»Ρ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π½Π° Π³ΡΠ°Π½ΠΈΡΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΈ Π½Π΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π²ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ½ΠΊΠΈΠΉ ΡΠ»ΠΎΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°, Ρ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ ΠΏΠΎΡΡΠ΄ΠΊΠ° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π½ΠΌ, Ρ ΡΠΈΠ»ΡΠ½ΡΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ½-ΡΠΎΠ½ΠΎΠ½Π½ΡΠΌ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Nanoscience and nanotechnologies: Encyclopedia of life support systems / Ed. by V. Kharkin, C. Bai, S.-C.Kim. Oxford, UK: EOLSS Publishers, 2009. p. 991.
- Nanodiamonds: Applications in Biology and Nanoscale Medicine / Ed. by D. Ho. MA, USA: Springer, 2010. p. 288.
- In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans / N. Mohan, C.-S. Chen, H.-H. Hsieh et al. // Nano Letters. 2010. Vol. 10, no. 9. P. 3692−3699.
- Fentori-Treated Functionalized Diamond Nanoparticles as Gene Delivery System / R. Martin, M. Alvaro, J. R. Herance et al. // ACS Nano. 2010. Vol. 4, no. 1. P. 65−74.
- A quantum memory intrinsic to single nitrogen-vacancy centres in diamond / G. D. Fuchs, G. Burkard, P. V. Klimov et al. // Nature Physics. 2011. Vol. 7, no. 10. P. 789−793.
- Plakhotnik T., Chapman R. Nitrogen-vacancy centers in nano-diamond reversibly decrease the luminescence quantum yield under strong pulsed-laser irradiation // New Journal of Physics. 2011. Vol. 13, no. 4. p. 45 001.
- Palladium supported on detonation nanodiamond as a highly effective catalyst of the C=C and acetylenic bond hydrogenation / O. V. Turova, E. V. Starodubtseva, M. G. Vinogradov et al. /7 Catalysis Communications. 2011. Vol. 12, no. 7. P. 577 579.
- Reich K. V., Eidelman E. D. Effect of electron-phonon interaction on field emission from carbon nanostructures // EPL (Europlwsics Letters). 2009. Vol. 85, no. 4. p. 47 007.
- Kidalov S., Shakhov F. Thermal Conductivity of Diamond Composites // Materials. 2009. Vol. 2, no. 4. P. 2467−2495.
- Eiji O. Monodisperse single nanodiamond particulates // Pure Appl. Chem. 2008. Vol. 80, no. 7. P. 1365−1379.
- Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds / L. Rondin, G. Dantelle, A. Slablab et al. // Phys. Rev. B. 2010. Vol. 82, no. 11. p. 115 449.
- Chemical control of the charge state of nitrogen-vacancy centers in diamond / M. V. Hauf, B. Grotz, B. Naydenov et al. // Phys. Rev. B. 2011. Vol. 83, no. 8. p. 81 304.
- Barnard Amanda S., Sternberg Michael. Crystallinity and surface electrostatics of diamond nanocrystals // J. Mater. Chem. 2007. T. 17. C. 4811−4819.
- Barnard Amanda S. Self-assembly in nanodiamond agglutinates // J. Mater. Chem. 2008. T. 18. C. 4038−4041.
- Baidakova M., Vul' A. New prospects and frontiers of nanodiamond clusters // Journal of Physics D: Applied Physics. 2007. Vol. 40, no. 20. p. 6300.
- Unusually tight aggregation in detonation nanodiamond: Identification and disintegration / A. Kruger, F. Kataoka. M. Ozawaet al. // Carbon. 2005. Vol. 43, no. 8. P. 1722 1730.
- Aleksenskiy A., Eydelman E., Vul' A. Y. Deagglomeration of Detonation Nanodiamonds // Nanoscience and Nanotechnology Letters. 2011. Vol. 3. P. 6874.
- Size-Dependent Reactivity of Diamond Nanoparticles / O. A. Williams, J. Hees, C. Dieker et al. // ACS Nano. 2010. Vol. 4, no. 8. P. 4824−4830.
- Lawrence S. Pan D. R. K. Diamond: Electronic Properties and Applications (Electronic Materials: Science and Technology). NY, USA: Springer, 1994. p. 492.
- Olga, A. Shenderova D. M. G.. Ultrananocrystalline Diamond: Synthesis, Properties, and Applications. MA, USA: William Andrew, 2006. p. 620.
- ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π°Π»ΠΌΠ°Π·ΠΎΠ² ΠΈΠ· Π²Π·ΡΡΠ²ΡΠ°ΡΡΡ Π²Π΅ΡΠ΅ΡΡΠ² / Π. Π. ΠΡΠΌΠΊΠΈΠ½, Π. Π. ΠΠ΅ΡΡΠΎΠ², Π. Π. ΠΡΡΠΎΠ² ΠΈ Π΄Ρ.] // ΠΠΎΠΊΠ»Π°Π΄Ρ ΠΠΊΠ°Π΄Π΅ΠΌΠΈΠΈ Π½Π°ΡΠΊ Π‘Π‘Π‘Π . 1988. Π’. 302. Π‘. 611 613.
- Diamonds in detonation soot / N. R. Greiner, D. S. Phillips, J. D. Johnson et al. /7 Nature. 1988. Vol. 333. P. 440−442.
- Study of ultradispersed diamond powders obtained using explosion energy / V. Kuznetsov, M. Aleksandrov, I. Zagoruiko et al. // Carbon. 1991. Vol. 29, no. 4−5. P. 665 668.
- Chang Laii-Yun, Osawa Eiji, Barnard Amanda S. Confirmation of the electrostatic self-assembly of nanodiamonds // Nanoscale. 2011. Π’. 3. C. 958−962.
- Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds / J.-Y. Raty, G. Galli, C. Bostedt et al. // Phys. Rev. Lett. 2003. Vol. 90, no. 3. p. 37 401.
- Shenderova O. A., Zhirnov V. V., Brenner D. W. Carbon Nanostructures // Critical Reviews in Solid State and Materials Sciences. 2002. Vol. 27, no. 3−4. P. 227−356.
- Barnard A. S., Russo S. P., Snook I. K. Ab initio modelling of the stability of nanocrystalline diamond morphologies // Philosophical Magazine Letters. 2003. Vol. 83, no. 1. P. 39−45.
- Gamarnik M. Y. Energetical preference of diamond nanoparticles // Phys. Rev. B. 1996. Vol. 54. P. 2150−2156.
- Raty J., Galli G. Optical properties and structure of nanodiamonds // Journal of Electroanalytical Chemistry. 2005. Vol. 584, no. 1. P. 9 12.
- Defects and impurities in nanodiamonds: EPR, NMR and TEM study / A. Shames, A. Panich, W. Kempinski et al. // Journal of Physics and Chemistry of Solids. 2002. Vol. 63, no. 11. P. 1993 2001.
- Baidakova M., Siklitsky V., Vul A. Ultradisperse-Diamond Nanoclusters. Fractal Structure and Diamond-Graphite Phase Transition // Chaos, Solitons and Fractals. 1999. Vol. 10, no. 12. P. 2153 2163.
- Surface Chemistry and Properties of Ozone-Purified Detonation Nanodiamonds / O. Shenderova, A. Koscheev, N. Zaripov et al. // The Journal of Physical Chemistry C. 2011. Vol. 115, no. 20. P. 9827−9837.
- Deaggregation of Nanodiamond Powders Using Salt- and Sugar-Assisted Milling /
- A. Pentecost, S. Gour, V. Mochalin et al. // ACS Applied Materials and Interfaces. 2010. Vol. 2, no. 11. P. 3289−3294.
- Correlation between viscosity and absorption of electromagnetic waves in an aqueous UNCD suspension / A. Vul', E. Eydelman, M. Inakuma et al. // Diamond and Related Materials. 2007. Vol. 16, no. 12. P. 2023 2028.
- Absorption and scattering of light in nanodiamond hydrosols / A. Y. Vul, E. Eydelman, L. Sharonova et al. // Diamond and Related Materials. 2011. Vol. 20, no. 3. P. 279 284.
- Zhong H., Lukes J. R. Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling // Phys. Rev.
- B. 2006. Vol. 74. p. 125 403.
- Mahan G. D. Thermal transport in AB superlattices // Phys. Rev. B. 2011. Vol. 83, no. 12. p. 125 313.
- Nanoscale thermal transport / D. G. Cahill, W. K. Ford, K. E. Goodson et al. // Journal of Applied Physics. 2003. Vol. 93, no. 2. P. 793−818.
- Thermal conductivity of (Zr, W) N/ScN metal/semiconductor multilayers and superlattices / V. Rawat, Y. K. Koh, D. G. Cahill et al. // Journal of Applied Physics. 2009. Vol. 105, no. 2. p. 24 909.
- Thermal Conductance of InAs Nanowire Composites / A. I. Persson, Y. K. Koh, D. G. Cahill et al. // Nano Letters. 2009. Vol. 9, no. 12. P. 4484−4488.
- Han Z., Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review // Progress in Polymer Science. 2011. Vol. 36, no. 7. P. 914 944.
- Kidalov S. V., Shakhov F. M. Thermal Conductivity of Diamond Composites // Materials. 2009. Vol. 2, no. 4. P. 2467−2495.
- Cola B. A., Xu J., Fisher T. S. Contact mechanics and thermal conductance of carbon nanotube array interfaces // International Journal of Heat and Mass Transfer. 2009. Vol. 52, no. 15−16. P. 3490 3503.
- Wang D., Carlson M. T., Richardson H. H. Absorption Cross Section and Interfacial Thermal Conductance from an Individual Optically Excited SingleWalled Carbon Nanotube // ACS Nano. 2011. Vol. 5, no. 9. p. 7391−7396.
- Heat transport, across the metal-diamond interface / M. Battabyal, O. Beffort, S. Kleiner et al. // Diamond and Related Materials. 2008. Vol. 17, no. 7−10. P. 1438 1442.
- Interfacial thermal transport in atomic junctions / L. Zhang, P. Keblinski, J.-S. Wang et al. // Phys. Rev. B. 2011. Vol. 83. p. 64 303.
- Hu M., Keblinski P., Schelling P. K. Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations /7 Phys. Rev. B. 2009. Vol. 79. p. 104 305.
- Thermal conductivity and thermal boundary resistance of nanostructures / K. Termentzidis, J. Parasurainan, C. A. D. Cruz et al. /7 Nanoscale Research Letters. 2011. Vol. 6. p. 288.
- Luo T., Lloyd J. R. Non-equilibrium molecular dynamics study of thermal energy transport in Au-SAM-Au junctions /7 International Journal of Heat and Mass Transfer. 2010. Vol. 53, no. 1−3. P. 1−11.
- Patel H. A., Garde S., Keblinski P. Thermal Resistance of Nanoscopic Liquid -Liquid Interfaces Dependence on Chemistry and Molecular Architecture // Nano Letters. 2005. Vol. 5, no. 11. P. 2225−2231.
- Majumdar Arun, Reddy Pramod. Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces // Journal of Applied Physics. 2004. T. 84, № 23. C. 4768−4770.
- Sergeev A. Inelastic electron-boundary scattering in thin films // Physica B: Condensed Matter. 1999. Vol. 263−264. P. 217 219.
- Sergeev A. V. Electronic Kapitza conductance due to inelastic electron-boundary scattering .// Phys. Rev. B. 1998. Vol. 58, no. 16. p. 10 199.
- Huberman M. L., Overhauser A. W. Electronic Kapitza conductance at a diamond-Pb interface // Phys. Rev. B. 1994. Vol. 50, no. 5. P. 2865−2873.
- Mahan G. D. Kapitza thermal resistance between a metal and a nonmetal // Phys. Rev. B. 2009. Vol. 79, no. 7. p. 75 408.
- Chakraborty M., Das A. N., Chakrabarti A. Study of the one-dimensional Holstein model with next-nearest-neighbor hopping //' Journal of Physics: Condensed Matter. 2011. Vol. 23, no. 2. p. 25 601.
- Liu Q., Ye J., Zhao Y. Multimode vibronic spectra of the Holstein molecular crystal model // Phys. Chem. Chem. Phys. 2010. Vol. 12. P. 6045−6053.
- Vidmar L., Bonca J., Trugman S. A. Emergence of states in the phonon spectral function of the Holstein polaron below and above the one-phonon continuum /7 Phys. Rev. B. 2010. Vol. 82, no. 10. p. 104 304.
- Field emission from awl-shaped diamond-like carbon by using filtered eathodic arc plasma technique on anodic aluminum oxide template / C. Li, X. C. Li, E. M. Chong et al. // Physica Π Condensed Matter. 2008. Vol. 403. P. 195−199.
- Fowler R,., Nordheim L. Electron Emission in Intense Electric Fields /7 Proceedings of the Royal Society of London. Series A. 1928. Vol. 119, no. 781. P. 173−181.
- Nottingham Effect in Field and T — F Emission: Heating and Cooling Domains, and Inversion Temperature / F. M. Charbonnier, R. W. Strayer, L. W. Swanson et al. // Pliys. Rev. Lett, 1964. Sep. Vol. 13. P. 397−401.
- Influence of film deposition parameters on the field emission properties of diamond-like carbon films / R. Wachter, A. Cordery, S. Proffitt et al. // Diamond and Related Materials. 1998. Vol. 7, no. 2−5. P. 687 691.
- Zhu W., Kochanski G. P., Jin S. Low-Field Electron Emission from Undoped Nanostructured Diamond // Science. 1998. T. 282, № 5393. C. 1471−1473.
- Field emission behavior of nitrogen incorporated diamond-like carbon films / K.-R. Lee, K. Y. Eun, S. Lee et al. // Thin Solid Films. 1996. Vol. 290−291, no. 1. P. 171 175.
- Electron emission from diamond thin films deposited by microwave plasma-chemical vapor deposition method / C. Gu, Z. Jin, Y. Wang et al. // Diamond and Related Materials. 2000. Vol. 9, no. 9−10. P. 1604 1607.
- Lin I.-N., Chen Y.-H., Cheng H.-F. Modification of emission properties of diamond films due to surface treatment process /7 Diamond and R, elated Materials. 2000. Vol. 9, no. 9−10. P. 1574 1581.
- TO. Field emission characteristics of nanostructured thin film carbon materials / A. Obraztsov, A. Volkov, A. Zakhidov et al. /7 Applied Surface Science. 2003. Vol. 215, no. 1−4. P. 214 221.
- Pore size dependence of field emission from nanoscale porous carbon / M. Ojima, S. Hiwatashi, H. Araki et al. // Applied Physics Letters. 2006. Vol. 88, no. 5. p. 53 103.
- Saito Y., Uemura S. Field emission from carbon nanotubes and its application to electron sources /7 Carbon. 2000. Vol. 38, no. 2. P. 169 182.
- Field electron emission from individual carbon nanotubes of a vertically aligned array / V. Semet, V. T. Binh, P. Vincent et al. // Applied Physics Letters. 2002. Vol. 81, no. 2. P. 343−345.
- Shim J. Y., Baik H. K. Effect of non-diamond carbon etching on the field emission property of highly sp2 bonded nanocrystalline diamond films // Diamond and Related Materials. 2001. Vol. 10, no. 3−7. P. 847 851.
- Structuring nanodiamond cone arrays for improved field emission / W. J. Zhang, Y. Wu, W. K. Wong et al. // Applied Physics Letters. 2003. Vol. 83, no. 16. P. 3365−3367.
- Cold field emission from CVD diamond films observed in emission electron microscopy / C. Wang, A. Garcia, D. C. Ingram et al. /7 Electronics Letters. 1991. Vol. 27. P. 1459−1461.
- Pshenichnyuk S., Yumaguzin Y. Field emission energy distributions of electrons from tungsten tip emitters coated with diamond-like film prepared by ion-beam deposition /7 Diamond and Related Materials. 2004. Vol. 13, no. 1. P. 125 -132.
- Mechanisms of field emission from diamond coated Mo emitters / R. Schlesser, M. McClure, B. McCarson et al. // Diamond and Related Materials. 1998. Vol. 7, no. 2−5. P. 636 639.
- Xu N. S., Tzeng Y., Latham R. V. A diagnostic study of the field emission characteristics of individual micro-emitters in CVD diamond films // Journal of Physics D: Applied Physics. 1994. Vol. 27, no. 9. p. 1988.
- Reich K. V., Eidelman E. D., Vul' A. Y. Determination of temperature difference in carbon nanostruetures in field emission // Journal of Technical Physics. 2007. Vol. 52. P. 943−946.
- Field emission properties of carbon nanotubes / 0. Groning, O. M. Kuttel, C. Emmenegger et al. // Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 2000. Vol. 18, no. 2. P. 665−678.
- Dideykin A., Eidelman E., VuP A. The mechanism of autoelectron emission in carbon nanostructures // Solid State Communications. 2003. Vol. 126. P. 495 498.
- Free standing graphene-diamond hybrid films and their electron emission properties / D. Varshney, C. Venkateswara Rao, M. J.-F. Guinel et al. /7 Journal of Applied Physics. 2011. Vol. 110, no. 4. p. 44 324.
- Varshney D., Weiner B. R., Morell G. Growth and field emission study of a monolithic carbon nanotube/diamoiid composite // Carbon. 2010. Vol. 48, no. 12. P. 3353 3358.
- Galperin M., Ratner M. A., Nitzan A. Molecular transport junctions: vibrational effects // Journal of Physics: Condensed Matter. 2007. Vol. 19, no. 10. p. 103 201.
- Experimental Test of the Numerical Renormalization-Group Theory for Inelastic Scattering from Magnetic Impurities /' C. Bauerle, F. Mallet, F. Schopfer et al. // Phys. Rev. Lett. 2005. Vol. 95, no. 26. p. 266 805.
- Micklitz T., Costi T. A., Rosch A. Magnetic field dependence of dephasing rate due to diluted Kondo impurities /7 Phys. Rev. B. 2007. Vol. 75, no. 5. p. 54 406.
- Dora B., Gulacsi M. Inelastic scattering from local vibrational modes // Phys. Rev. B. 2008. Vol. 78, no. 16. p. 165 111.
- Observation of Strong Electron Dephasing in Highly Disordered Cu93Ge4Au3 Thin Films / S. M. Huang, T. C. Lee, H. Akimoto et al. /,/ Phys. Rev. Lett. 2007. Vol. 99, no. 4. p. 46 601.
- Cervenka J., van de Ruit K., Flipse C. F. J. Giant inelastic tunneling in epitaxial graphene mediated by localized states // Phvs. Rev. B. 2010. T. 81, № 20. c. 205 403.
- Devreese J. T., Alexandrov A. S. Frohlich polaron and bipolaron: recent developments // Reports on Progress in Physics. 2009. Vol. 72, no. 6. p. 66 501.
- Olsen T. Inelastic scattering in a local polaron model with quadratic coupling to bosons // Phys. Rev. B. 2009. Vol. 79, no. 23. p. 235 414.
- A Model of Field Emission from Carbon Nanotubes Decorated by Nanodiamonds / A. Vul, K. Reich, E. Eidelman et al. // Advanced Science Letters. 2010. Vol. 3, no. 2. P. 110−117.
- Dispersions of surface states on diamond (100) and (111) / R. Graupner, M. Hollering, A. Ziegler et al. // Phys. Rev. B. 1997. Vol. 55, no. 16. P. 1 084 110 847.
- Optical gap between dangling-bond states of a single-domain diamond C (lll) — (2×1) by reflectance anisotropy spectroscopy / G. Bussetti, C. Goletti, P. Chiaradia et al. // EPL (Europhysics Letters). 2007. Vol. 79, no. 5. p. 57 002.
- Diamond (111) and (100) surface: ab initio study of the atomic and electronic structure / A. Scholze, W. Schmidt, P. Kackell et al. // Materials Science and Engineering B. 1996. Vol. 37, no. 1−3. P. 158 161.
- Tight-binding calculations of quasiparticle wave functions for C (lll)2xl / M. Marsili, O. Pulci, F. Bechstedt et al. // Phys. Rev. B. 2008. Vol. 78, no. 20. p. 205 414.
- Pandey Ii. C. New dimerized-chain model for the reconstruction of the diamond (lll)-(2×1) surface /,/" Phys. Rev. B. 1982. Vol. 25, no. 6. P. 4338−4341.
- Electronic properties and quantum transport in Graphene-based nanostructures / Dubois, S. M.-M., Zanolli, Z., Declerck, X. et al. // Eur. Phys. J. B. 2009. Vol. 72-, no. 1. P. 1−24.
- Nicol E. J., Carbotte J. P. Optical conductivity of bilayer graphene with and without an asymmetry gap // Phys. Rev. B. 2008. Vol. 77, no. 15. p. 155 409.
- Mahan G. D. Many-particle physics. NY, USA: Plenum Press, 1993. p. 1044.
- Egger R., Gogolin A. O. Vibration-induced correction to the current through a single molecule // Phys. Rev. B. 2008. Vol. 77, no. 11. p. 113 405.
- Theory of inelastic scattering from quantum impurities / L. Borda, L. Fritz, N. Andrei et al. /7 Phys. Rev. B. 2007. Vol. 75, no. 23. p. 235 112.
- Effect of sp2-phase nanostructure on field emission from amorphous carbons / A. Ilie, A. C. Ferrari, T. Yagi et al. // Applied Physics Letters. 2000. Vol. 76. p. 2627.
- McClure J.W. Energy Band Structure of Graphite // IBM Journal of Research and Development. 1964. T. 8. C. 255−261.
- Holstein T. Studies of polaron motion, part ii. the small polaron. // Annals of Physics. 1959. Vol. 8. P. 343−389.
- Polarons in Carbon Nanotubes / M. Verissimo-Alves, R. B. Capaz, B. Koiller et- al. il Physical Review Letters. 2001. Vol. 86. P. 3372−3375.
- Stuart J. T., Diprima R. C. The Eckhaus and Benjamin-Feir Resonance Mechanisms // Royal Society of London Proceedings Series A. 1978. Vol. 362. P. 27−41.
- ΠΡ ΠΌΠ΅Π΄ΠΈΠ΅Π² H. H., ΠΠ½ΠΊΠ΅Π²ΠΈΡ Π. Π‘ΠΎΠ»ΠΈΡΠΎΠ½Ρ. ΠΠΎΡΠΊΠ²Π°: Π€ΠΈΠ·ΠΌΠ°ΡΠ»ΠΈΡ, 2003. Ρ. 348.
- The field emission from carbon nanotubes / G. Fursey. D. Novikov, G. Dyuzhev et al. /7 Applied Surface Science. 2003. Vol. 215, no. 1−4. P. 135 140.
- Cini M. Theory of the Auger effect in solids: Plasrnon effects in electron spectroscopies of valence states // Phys. Rev. B. 1978. Vol. 17. P. 2486−2493.
- Cini M., D’Andrea A. Exactly solved electron-boson models in condensed matter and molecular physics by a generalised recursion method // Journal of Physics C: Solid State Physics. 1988. Vol. 21, no. 2. p. 193.
- Lorentzen L. Plenary Papers A Priori Truncation Error Bounds for Continued Fractions // Rocky Mountain Journal of Mathematics. 2003. Vol. 33, no. 2. P. 409−474.
- Handbook of Continued Fractions for Special Functions / A. Cuyt, V. Brevik Petersen, B. Verdonk et al. NY, USA: Springer-Verlag, 2008.
- Phonon spectral function of the Holstein polaron / J. Loos, M. Hohenadler, A. Alvermann et al. // Journal of Physics: Condensed Matter. 2006. Vol. 18, no. 31. p. 7299.
- Ginzburg V., Kirzhnits D. High-temperature superconductivity. NY: Consultants Bureau, 1982. p. 464.
- Stoner R. J., Maris H. J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K // Phys. Rev. B. 1993. Vol. 48. P. 16 373−16 387.
- Thermal conductance and phonon transmissivity of metal-graphite interfaces / A. J. Schmidt, K. C. Collins, A. J. Minnich et al. // Journal of Applied Physics. 2010. Vol. 107, no. 10. p. 104 907.
- Collins K. C., Chen S., Chen G. Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces // Journal of Applied Physics. 2010. Vol. 97, no. 8. p. 83 102.
- Size-induced acoustic hardening and optic softening of phonons in InP, Ce02, Sn02, CdS, Ag, and Si nanostructures / C. Q. Sun, L. K. Pan, C. M. Li et al. // Phys. Rev. B. 2005. Vol. 72. p. 134 301.