Помощь в написании студенческих работ
Антистрессовый сервис

Влияние структурных свойств глобулярных белков на их механическую стабильность и термостабильность

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Механические свойства белков являются важными для широкого круга биологических процессов, таких как межклеточная адгезия, сокращение мышц, транслокация белков через мембрану. Понимание того, как природные белки достигают требуемой механической стабильности необходимо не только для понимания процессов происходящих в природе, но и для конструирования новых, основанных на этих данных, биоматериалов… Читать ещё >

Влияние структурных свойств глобулярных белков на их механическую стабильность и термостабильность (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. Обзор литературы
    • 1. 1. Разворачивание белков в атомно-силовой микроскопии
    • 1. 2. Влияние силы на свободно-энергетический барьер разворачивания белка
    • 1. 3. Анализ данных по механическому разворачиванию белков
    • 1. 4. Ядро сворачивания белка. Ф-величины
    • 1. 5. Экспериментальное и теоретическое исследование процессов механического разворачивания различных белков
      • 1. 5. 1. Взаимосвязь между топологией белка и его механической стабильностью
      • 1. 5. 2. Влияние ориентации элементов вторичной структуры относительно направления
  • приложения силы на механическую стабильность белка
    • 1. 5. 3. Влияние взаимодействий боковых групп аминокислотных остатков на механическую стабильность белка
    • 1. 5. 4. Влияние денатуранта на механическую стабильность белка
    • 1. 5. 5. Промежуточные состояния на пути механического разворачивания белка
    • 1. 5. 6. Зависимость величины максимальной силы разворачивания от длины белка
    • 1. 6. Термостабильность белков
  • Глава 2. Моделирование молекулярной динамики
    • 2. 1. Метод молекулярной динамики
    • 2. 2. Т1РЗР модель воды
    • 2. 3. Поддержание постоянной температуры и давления
    • 2. 4. Алгоритм вычисления взаимодействий валентно не связанных частиц (метод сканирования по пространству)
    • 2. 5. Численное интегрирование уравнений движения
  • Глава 3. Постановка вычислительных экспериментов
    • 3. 1. Объекты исследования
      • 3. 1. 1. Нативные иммуноглобулинсвязывающие домены белков Ь и О
      • 3. 1. 2. Иммуноглобулинсвязывающий домен белка Ь с введёнными аминокислотными заменами
    • 3. 2. Проведение молекулярно-динамических экспериментов
    • 3. 3. Характеристики исследуемых моделей белков, рассчитываемые из полученных траекторий
  • Глава 4. Моделирование механического разворачивания нативных иммуноглобулинсвязывающих доменов белков Ьив
    • 4. 1. Постоянная скорость (у=сопз1-)
    • 4. 2. Постоянная сила (Р=сопз1)
    • 4. 3. Пути механического разворачивания белков Ьив
    • 4. 4. Расчет ядер сворачивания белков
  • Глава 5. Моделирование механического разворачивания белка Ь с точечными аминокислотными заменами
  • Глава 6. Поиск структурных факторов, ответственных за стабильность белков из термофильных организмов
    • 6. 1. Критерии отбора белков в базу
    • 6. 2. Структурные характеристики, рассчитываемые для белков из термофильных и мезофильных организмов
  • ВЫВОДЫ

Трехмерная структура белка определяется балансом разных взаимодействий. Водородные связи, солевые мостики, гидрофобный эффект — все играет важную роль в сворачивании белка и приобретении им конечной нативной структуры. Физические свойства белков прямо связаны с их функциональной активностью и реакцией на внешние воздействия в различных биологических процессах. Они определяют структурную устойчивость и термостабильность макромолекул. Важное значение имеют зависимости механических свойств белков от температуры, степени их гидратации и свойств растворителя. Исследование физических характеристик белков является важной и актуальной задачей.

Механические свойства белков являются важными для широкого круга биологических процессов, таких как межклеточная адгезия, сокращение мышц, транслокация белков через мембрану. Понимание того, как природные белки достигают требуемой механической стабильности необходимо не только для понимания процессов происходящих в природе, но и для конструирования новых, основанных на этих данных, биоматериалов для медицинского и промышленного применения. А для этого необходимо знать то, как поведет себя тот или иной белок при различных способах воздействия на него.

Разворачивание отдельных белков растяжением их за концы стало возможным благодаря развитию атомно-силовой микроскопии (АСМ), которая открыла новые перспективы в изучении процесса сворачивания белков. Эксперименты по разворачиванию белков с помощью атомно-силового микроскопа обычно проводятся на многодоменных белках, либо для цепочки «сшитых» одинаковых или разных белков.

Компьютерные методы моделирования молекулярной динамики позволяют на атомном уровне исследовать процессы механического разворачивания глобулярных белков. В этих экспериментах получают профиль зависимости силы от величины растяжения.

Экспериментально, при помощи АСМ при растяжении белков было обнаружено, что (3-структурные белки выдерживают существенно большие нагрузки, чем а-спиральные или а/(3 структурные белки. Считается, что упаковка элементов вторичной структуры белка является критическим фактором в определении его механической стабильности и термостабильности. Так, несколько водородных связей между соседними р-участками в р-листе стабилизируют структуру значительно сильнее, чем такое же количество гидрофобных контактов между спиралями в а-спиральных белках. Однако, не существует простого соотношения между структурой белка и его механической стабильностью и термостабильностью. Даже небольшие изменения в аминокислотной последовательности могут существенно повлиять на механические свойства белка и термостабильность. Направление приложения силы также является критическим фактором в определении механической стабильности. Детальное исследование путей силового разворачивания белка необходимо для понимания молекулярной природы механической стабильности белков.

Цель и задачи исследования

Целью данной работы было исследование путей механического разворачивания белков при приложении к их концам дополнительной внешней силы, а также поиск структурных факторов, ответственных за термостабильность белков из термофильных организмов.

Для достижения данной цели были поставлены следующие задачи:

1. Провести моделирование методом молекулярной динамики с использованием явной модели растворителя процесс силового разворачивания похожих по структуре, но различающихся по аминокислотной последовательности иммуноглобулинсвязывающих доменов белков Ь и в (эти белки являются хорошими модельными объектами и достаточно широко изучены экспериментально различными методами).

2. Выявить зависимость характеристик механического разворачивания белков от величины силы и скорости растяжения.

3. Установить пути и характер разворачивания белков под действием приложенных к его концам сил.

4. На примере белка Ь изучить влияние точечных аминокислотных замен на его механические свойства.

5. Выявить сходства и различия, похожих по структуре белков из термофильных и мезофильных организмов.

Научная новизна работы. Впервые, с использованием метода молекулярной динамики было показано, что процесс механического разворачивания небольших белков Ьий (63 и 56 аминокислотных остатков) проходит не по простому двухстадийному механизму, а через короткоживущие промежуточные состояния. В дальнейшем данное предположение было подтверждено экспериментально. Показано, что белки из термофильных организмов содержат больше межатомных контактов на остаток по сравнению со своими гомологами из мезофильных организмов. Вклад в увеличение числа контактов дают внешние аминокислотные остатки, доступные растворителю.

Практическая значимость работы. Полученные результаты представляют интерес для понимания молекулярной природы механической стабильности белков и термостабильности.

выводы.

1. Показано, что белок О более механически стабилен по сравнению с белком Ь, так как для его разворачивания требуется большее время и большая сила. Но с ростом величины приложенной силыскорости растяжения это различие исчезает.

2. Показано, что на пути механического разворачивания белков Ьий появляются короткоживущие промежуточные состояния.

3. Установлено наличие трех путей разворачивания белков Ь и в. Во всех случаях нативные структуры белков сначала распадаются на две структурные единицы. В первом случае этими структурными единицами являются [К-шпилька + а-спираль] и [С-шпилька], во втором — [Ы-шпилька] и [С-шпилька] (а-спираль не примыкает ни к одному из этих блоков) и в третьем — |ТЧ-шпилька] и [а-спираль + С-шпилька]. В первом случае сначала разрушается С-концевая |3-шпилька, во-втором — а-спираль, а в третьем — Ы-концевая Р-шпилька. Первый из сценариев разворачивания имеет большую вероятность (он встречается в 50 и 48 случаях из 74 для белков Ь и в соответственно), чем два других для обоих белков.

4. На примере белка Ь показано, что механическая стабильность белковой глобулы определяется не только мотивом и компактностью укладки вторичных структур белка, но и особенностями и составом аминокислот в соединяющих их нерегулярных участках (петлях) полипептидной цепи.

5. Установлено, что поверхностные слои аминокислот белков из термофильных и мезофильных организмов достоверно отличаются по своему аминокислотному составу и по среднему числу межатомных контактов на остаток.

Автор выражает огромную благодарность своим научным руководителям Балабаеву Николаю Кирилловичу и Галзитской Оксане Валериановне.

Показать весь текст

Список литературы

  1. Rounsevell R., Forman J.R., Clarke J. Atomic force microscopy: mechanical unfolding of proteins // Methods. 2004. V. 34. P. 100−111.
  2. Bornschlogl T., Rief M. Single-molecule protein unfolding and refolding using atomic force microscopy // Methods Mol. Biol. 2011. V. 783. P. 233 250.
  3. Serdyuk I.N., Zaccai N.R., Zaccai J. Methods in Molecular Biophysics: Structure, Dynamics, Function. Cambridge University Press 2007 New York.
  4. Fisher T.E., Oberhauser A.F., Carrion-Vazquez M., Marszalek P.E., Fernandez J.M. The study of protein mechanics with the atomic force microscope // TIBS. 1999. V. 24. P. 379−384.
  5. Tozzini V. Coarse-grained models for proteins // Current Opinion in Structural Biology. 2005. V. 15. P. 144−150.
  6. Cavalli A., Vendruscolo M., Paci E. Comparison of sequence-based and structure-based energy functions for the reversible folding of a peptide // Biophysical Journal. 2005. V. 88. P. 3158−3166.
  7. Lazaridis T., Karplus M. Effective energy function for proteins in solution // Proteins. 1999. V. 35. P. 133 152.
  8. Roux B., Simonson T. Implicit solvent models // Biophysical Chemistry. 1999. V. 78. P. 1−20.
  9. Altmann S.M., Griinberg R.G., Lenne P.F., Ylanne J., Raae A., Herbert K., Saraste M., Nilges M., Horber J.K. Pathways and intermediates in forced unfolding of spectrin repeats // Structure. 2002. V. 10. P. 1085−1096.
  10. Schlierf M., Li H., Fernandez J.M. The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 7299−7304.
  11. Li L., Huang H.H., Badilla C.L., Fernandez J.M. Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module // J. Mol. Biol. 2005. V. 345. P. 817−826.
  12. Abu-Lail N.I., Ohashi T., Clark R.L., Erickson H.P., Zauscher S. Understanding the elasticity of fibronectin fibrils: Unfolding strengths of FN-III and GFP domains measured by single molecule force spectroscopy // Matrix Biol. 2006. V. 25. P. 175−184.
  13. Dietz H., Rief M. Exploring the energy landscape of GFP by single-molecule mechanical experiments // Proc. Natl. Acad. Sci. USA. 2004. V. 101. P. 16 192−16 197.
  14. Hertadi R., Gruswitz F., Silver L., Koide A., Koide S., Arakawa H., Ikai A. Unfolding mechanics of multiple OspA substructures investigated with single molecule force spectroscopy // J. Mol. Biol. 2003. V. 333. P. 9 931 002.
  15. Schwaiger I., Kardinal A., Schleicher M., Noegel A.A., Rief M. A mechanical unfolding intermediate in an actin-crosslinking protein // Nat. Struct. Mol. Biol. 2004. V. 11. P. 81−85.
  16. Hagen S.J., Hofrichter J., Szabo A., Eaton W.A. Diffusion-limited contact formation in unfolded cytochrome c: estimating the maximum rate of protein folding // Proc. Natl. Acad. Sci. USA. 1996. V. 93. P. 11 615−11 617.
  17. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds // Biophys. J. 1997. V. 72. P. 1541−1555.
  18. Bustamante С., Erie D.A., Keller D. Biochemical and structural applications of scanning force microscopy // Current Opinion in Structural Biology. 1994. V. 4. P. 750−760.
  19. Zinober R.C., Brockwell D.J., Beddard G.S., Blake A.W., Olmsted P.D., Radford S.E., Smith D.A. Mechanically unfolding proteins: the effect of unfolding history and the supramolecular scaffold // Smith, Protein Sci. 2002. V. 11. P. 2759−2765.
  20. Rief M., Gautel M., Oesterhelt F., Fernandez J.M., Gaub H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM // Science. 1997. V. 276. P. 1109−1112.
  21. Best, R.B., Brockwell D.J., Toca-Herrera J.L., Blake A.W., Smith D.A., Radford S.E., Clarke J. Force mode atomic force microscopy as a tool for protein folding studies // Anal. Chim. Acta. 2003. V. 479. P. 87−105.
  22. Best R.B., Fowler S.B., Toca-Herrera J.L., Clarke J. A simple method for probing the mechanical unfolding pathway of proteins in detail // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 12 143−12 148.
  23. A.B., Птицын О. Б. Физика белка. Курс лекций с цветными и стереоскопическими иллюстрациями и задачами с решениями // Москва 2005 Книжный дом университет 456 с.
  24. A., Kellis J. Т., Jr., Serrano L., Bycroft M., Fersht A. R. Transient Folding Intermediates Characterized by Protein Engineering // Nature. 1990. V. 346. P. 440−445.
  25. Fersht A. R. Nucleation Mechanisms in Protein Folding // Current Opinion in Structural Biology. 1997. V. 7. P. 3- 9.
  26. Kim D.E., Fisher C., Baker D. A breakdown of symmetry in the folding transition state of protein L // J. Mol. Biol. 2000. V. 298. P. 971−984.
  27. McCallister E.L., Aim E., Baker D. Critical role of P-hairpin formation in protein G folding // Nature structural biology. 2000. V. 7. P. 669−673.
  28. Brockwell D.J. Force denaturation of proteins an unfolding story // Current Nanoscience. 2007. V. 3. P. 3−15.
  29. Carrion-Vazquez M., Oberhauser A.F., Fisher T.E., Marszalek P.E., Li H., Fernandez J.M. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering // Prog. Biophys. Mol. Biol. 2000. V. 74. P. 63−91.
  30. Lenne P.F., Raae A.J., Altmann S.M., Saraste M., Horber J.K.H. States and transitions during forced unfolding of a single spectrin repeat // FEBS Letters. 2000. V. 476. P. 124−128.
  31. Chyan C.L., Lin F.C., Peng H., Yuan J.M., Chang C.H., Lin S.H., Yang G. Reversible Mechanical Unfolding of Single Ubiquitin Molecules // Biophysical Journal. 2004. V. 87. P. 3995−4006.
  32. Bertoncini P., Schoenauer R., Agarkova I., Hegner M., Perriard J.C. Guntherodt H.J. Study of the mechanical properties of myomesin proteins using dynamic force spectroscopy // J. Mol. Biol. 2005. V. 348. P. 1127— 1137.
  33. Schoenauer R., Bertoncini P., Machaidze G., Aebi U., Perriard J.C., Hegner M., Agarkova I. Myomesin is a molecular spring with adaptable elasticity. J. Mol. Biol. 2005. V. 349. P. 367−379.
  34. Lee G., Abdi K., Jiang Y., Michaely P., Bennett V., Marszalek P.E. Nanospring behaviour of ankyrin repeats // Nature. 2006. V. 440. P. 246 249.
  35. Forman J.R., Qamar S., Paci E., Sandford R.N., Clarke J. The remarkable mechanical strength of Polycystin-1 supports a direct role in mechanotransduction//J. Mol. Biol. 2005. V. 349. P. 861−871.
  36. Li L., Wetzel S., Pluckthun A., Fernandez J.M. Stepwise unfolding of ankyrin repeats in a single protein revealed by atomic force microscopy // Biophysical Journal. 2006. V. 90. P. L30-L32.
  37. Junker J.P., Hell K., Schlierf M., Neupert W., Rief M. Influence of substrate binding on the mechanical stability of mouse dihydrofolate reductase // Biophysical Journal. 2005. V. 89. P. L46-L48.
  38. Ainavarapu S.R., Li L., Badilla C.L., Fernandez J.M. Ligand binding modulates the mechanical stability of dihydrofolate reductase // Biophys. J. 2005. V. 89. P. 3337−3344.
  39. Oberhauser A.F., Badilla-Fernandez C., Carrion-Vazquez M., Fernandez J.M. The mechanical hierarchies of fibronectin observed with single-molecule AFM // J. Mol. Biol. 2002. V. 319. P. 433−447.
  40. Li H., Linke W.A., Oberhauser A.F., Carrion-Vazquez M., Kerkvliet J.G., Lu H., Marszalek P.E., Fernandez J.M. Reverse engineering of the giant muscle protein titin //Nature. 2002. V. 418. P. 998−1002.
  41. Wilcox A.J., Choy J., Bustamante C., Matouschek A. Effect of protein structure on mitochondrial import // Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 15 435−15 440.
  42. Carrion-Vazquez M., Oberhauser A.F., Fowler S.B., Marszalek P.E., Broedel S.E., Clarke J., Fernandez J.M. Mechanical and chemical unfolding of a single protein: a comparison // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 3694−3699.
  43. Brockwell D.J., Paci E., Zinober R.C., Beddard G.S., Olmsted P.D., Smith D.A., Perham R.N., Radford S.E. Pulling geometry defines the mechanical resistance of a p-sheet protein //Nat. Struct. Biol. 2003. V. 10. P. 731- 737.
  44. Carrion-Vazquez M., Li H., Lu H., Marszalek P.E., Oberhauser A.F., Fernandez J.M. The mechanical stability of ubiquitin is linkage dependent // Nat. Struct. Biol. 2003. V. 10. P. 738−743.
  45. Brockwell D. J., Beddard G.S., Paci E., West D.K., Olmsted P.D., Smith D.A., Radford S.E. Mechanically unfolding the small, topologically simple protein L. Biophysical Journal. 2005. V. 89. P. 506−519.
  46. Best R.B., Li B., Steward A., Daggett V., Clarke J. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation // Biophys. J. 2001. V. 81. P. 23 442 356.
  47. Li H., Fernandez J.M. Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy // J. Mol. Biol. 2003. V. 334. P. 75−86.
  48. Law R., Carl P., Harper S., Dalhaimer P., Speicher D.W., Discher D.E. Cooperativity in forced unfolding of tandem spectrin repeats // Biophys. J. 2003. V. 84. P. 533−544.
  49. Law R., Liao G., Harper S., Yang G., Speicher D.W., Discher D.E. Pathway shifts and thermal softening in temperature-coupled forced unfolding of spectrin domains //Biophys. J. 2003. V. 85. P. 3286−3293.
  50. Bhasin N., Law R., Liao G., Safer D., Ellmer J., Discher B.M., Sweeney H.L., Discher D.E. Molecular extensibility of mini-dystrophins and a dystrophin rod construct // J. Mol. Biol. 2005. V. 352. P. 795−806.
  51. Cao Y., Lam C., Wang M., Li H. Nonmechanical protein can have significant mechanical stability // Angew. Chem. Int. Ed. Engl. 2006. V. 45. P. 642−645.
  52. Cao Y., Li H. How do chemical denaturants affect the mechanical folding and unfolding of proteins? // J. Mol. Biol. 2008. V. 375. P. 316−324.
  53. Jagannathana B., Elmsa P.J., Bustamantea C., Marqusee S. Direct observation of a force-induced switch in the anisotropic mechanical unfolding pathway of a protein // Proc. Natl. Acad. Sci. USA. 2012.
  54. Aggarwal V., Kulothungan S.R., Balamurali M.M., Saranya S.R., Varadarajan R., Ainavarapu S.R. Ligand-modulated parallel mechanical unfolding pathways of maltose-binding proteins // J. Biol. Chem. 2011 V. 286. P. 28 056−28 065.
  55. Cao Y, Li H. Polyprotein of GB1 is an ideal artificial elastomeric protein // Nat. Mater. 2007. V. 6. P. 109−114.
  56. Paci E., Karplus M. Unfolding proteins by external eorces and temperature: the importance of topology and energetics // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 6521−6526.
  57. D.K., Brockwell D.J., Olmsted P.D., Radford Sh.E., Paci E. (2006) Mechanical resistance of proteins explained using simple molecular models // Biophysical Journal. 2006. V. 90. P. 287−297.
  58. West D.K., Olmsted P.D., Paci E. Free energy for protein folding from nonequilibrium simulations using the Jarzynski equality // The journal of chemical physics. 2006. V. 125. P. 204 910−204 917.
  59. Lu H., Schulten K. Steered molecular dynamics simulations of force-induced protein domain unfolding // Proteins. 1999. V. 35. P. 453−463.
  60. Lu H., Isralewitz B., Krammer A., Vogel V., Schulten K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation // Biophysical Journal. 1998. V. 75. P. 662−671.
  61. Lu H., Schulten K. The key event in force-induced unfolding of titin’s immunoglobulin domains. // Biophysical Journal. 2000. V. 79. P. 51−65.
  62. West D.K., Olmsted P.D., Paci E. Mechanical unfolding revisited through a simple but realistic model // The Journal of Chemical Physics. 2006. V. 124. P. 154 909.
  63. Sharma D., Perisic O., Peng Q., Cao Y., Lam C., Lu H., Li H. Single-molecule force spectroscopy reveals a mechanically stable protein fold and the rational tuning of its mechanical stability // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 9278−9283.
  64. Sulkowska J.I., Cieplak M. Stretching to understand proteins a survey of the Protein Data Bank. // Biophysical Journal. 2008. V. 94. P. 6−13.
  65. Li P., Makarov D.E. Simulation of the mechanical unfolding of ubiquitin: probing different unfolding reaction coordinates by changing the pulling geometry // Journal of Chemical Physics. 2004. V. 121. P. 4826−4832.
  66. Mitternacht S., Luccioli S., Torcini A., Imparato A., Irback A. Changing the mechanical unfolding pathway of FnllllO by tuning the pulling strength // Biophys J. 2009. V. 96. p. 429141.
  67. Caraglio M., Imparato A., Pelizzola A. Direction-dependent mechanical unfolding and green fluorescent protein as a force sensor // Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2011 V. 84. P. 21 918.
  68. Glyakina A.V., Balabaev N.K., Galzitskaya O.V. Mechanical unfolding of proteins L and G with constant force: similarities and differences // J. Chem. Phys. 2009. V. 131. P. 45 102.
  69. Glyakina A.V., Balabaev N.K., Galzitskaya O.V. Multiple unfolding intermediates obtained by molecular dynamics simulations under stretching for immunoglobulin-binding domain of protein G // The Open Biochem. J. 2009. V. 3. P. 66−77.
  70. Glyakina A.V., Balabaev N.K., Galzitskaya O.V. Two-, three-, and four-state events occur in the mechanical unfolding of small protein L using molecular dynamics simulations // Protein and Peptide Letters. 2010. V. 17. P. 92−103.
  71. Rohs R., Etchebest C., Lavery R. Unraveling proteins: A molecular mechanics study // Biophysical Journal. 1999. V. 76. P. 2760−2768.
  72. Shimada J., Shakhnovich E.I. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 11 175−11 180.
  73. Geierhaas C.D., Paci E., Vendruscolo M., Clarke J. Comparison of the transition states for folding of two Ig-like proteins from different superfamilies // J. Mol. Biol. 2004. V. 343. P. 1111−1123.
  74. Abe H., Go N. Noninteracting Local-Structure Model of Folding and Unfolding Transition in Globular Proteins. II. Application to Two-Dimensional Lattice Proteins // Biopolymers. 1981. V. 20. P. 1013−1031.
  75. Berezovsky I.N., Shakhnovich E.I. Physics and evolution of thermophilic adaptation//Proc. Natl. Acad. Sci. USA. 2005. V. 102. P. 12 742−12 747.
  76. Robinson-Rechavi M., Alibes A., Godzik A. Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritime // J. Mol. Biol. 2006. V. 356. P. 547−557.
  77. Liang H.K., Huang C.M., Ko M.T., Hwang J.K. Amino acid coupling patterns in thermophilic proteins // Proteins. 2005. V. 59. P. 58−63.
  78. Plaxco K.W., Simons K.T., Baker D. Contact order, transition state placement and the refolding rates of single-domain proteins. // J. Mol. Biol. 1998. V. 277. P. 985−994.
  79. Gallivan J.P., Dougherty D.A. Cation-pi interactions in structural biology // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 9459−9464.
  80. Schuler B., Kremer W., Kalbitzer H.R., Jaenicke R. Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19 °F NMR // Biochemistry. 2002. V. 41. P. 11 670−11 680.
  81. Robinson-Rechavi M., Godzik A. Structural genomics of Thermotoga maritime proteins show that contact order is a major determinant of protein thermostability // Structure. 2005. V. 13. P. 857−860.
  82. Das R., Gerstein M. The stability of thermophilic proteins: a study based on comprehensive genome comparison // Funct. Integr. Genomics. 2000. V. 1. P. 76−88.
  83. Kumar S., Tsai C.J., Nussinov R. Thermodynamic differences among homologous thermophilic and mesophilic proteins // Biochemistry. 2001. V. 40. P. 14 152−14 165.
  84. A.B., Лобанов М. Ю., Галзитская O.B. Поиск структурных факторов, ответственных за стабильность белков из термофильных организмов // Молекулярная биология. 2007. Т. 41, С. 681−687.
  85. Glyakina A.V., Garbuzynskiy S.O., Lobanov M.Yu., Galzitskaya O.V. Different Packing of External Residues Can Explain Differences in the Thermostability of Proteins from Thermophilic and Mesophilic Organisms // Bioinformatics. 2007. V. 23. P. 2231−2238.
  86. Wang J., Cieplak P., Kollman P.A. How well a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? // J. Сотр. Chem. 2000. V. 21. P. 10 491 074.
  87. Jorgensen W.L., Chandrasekhar J., Madura J.D. Comparison of simple potential functions for simulating liquid water // J. Chem. Phys. 1983. V. 79. P. 926−935.
  88. Lemak A.S., Balabaev N.K. A comparison between collisional dynamics and brownian dynamics // Mol. Simul. 1995. V. 15. P. 223−231.
  89. Lemak A.S., Balabaev N.K. Molecular dynamics simulation of polymer chain in solution by collisional dynamics method // J. Сотр. Chem. 1996. V. 17. P. 1685−1695.
  90. Berendsen H.J.C., Postma J.P.M., Gunsteren W.F., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath // J. Chem. Phys. 1984. V. 81. P. 3684−3690.
  91. B.JI., Шайтан K.B. Динамический аттрактор в термостате Берендсена и медленная динамика биомакромолекул // Биофизика. 2002. Т. 47. С. 611−617.
  92. Lemak A.S., Balabaev N.K. On the Berendsen thermostat // Mol. Simul. 1994. V. 13. P. 177−187.
  93. Методы компьютерного моделирования для исследования полимеров и биополимеров. Отв. Ред. В. А. Иванов, A. J1. Рабинович, А. Р. Хохлов. М.: Книжный дом «ЛИБРОКОМ», 2009, 696с.
  94. Метод молекулярной динамики в физической химии. М.: Наука, 1996. 334 с.
  95. Allen М.Р., Tildesley D.J. Computer Simulation of Liquids. Oxford: Clarendon, 1987. 385 c.
  96. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features // Biopolymers. 1983. V. 22. P. 2577−2637.
  97. S.A., Bakajin O., Ball Т., Chen Y., Decamp S.J., Корка M., Jager M., Singh V.R., Wedemeyer W.J., Weiss S., Yao S., Lapidus L.J. Ruggedness in the folding landscape of protein L // HFSP J. 2008. V. 2. P. 388−395.
  98. Morrone A., Giri R., Toofanny R.D., Travaglini-Allocatelli C., Brunori M., Daggett V., Gianni S // Biophys. J. 2011. V. 101. P. 2053- 2060.
  99. Garbuzynskiy S.O., Finkelstein A.V., Galzitskaya O.V. Outlining Folding Nuclei in Globular Proteins // J. Mol. Biol. 2004. V. 336. P. 509−525.
  100. Stone M.J., Gupta S., Snyder N., Regan L. Comparison of protein backbone entropy and beta-sheet stability: NMR-derived dynamics of protein G B1 domain mutants // J. Am. Chem. Soc. 2001. V. 123. P. 185— 186.
  101. Gillespie B., Plaxco K.W. Nonglassy kinetics in the folding of a simple single-domain protein // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 12 014−12 019.
  102. Fukuchi S., Nishikawa K. Protein surface amino acid compositions distinctively differ between thermphilic and mesophilic bacteria // J. Mol. Biol. 2001. V. 309. P. 835−843.
  103. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool // J. Mol. Biol. 1990. V. 215. P. 403−410.
Заполнить форму текущей работой