Помощь в написании студенческих работ
Антистрессовый сервис

Влияние флавоноидов на каналообразующую активность токсинов и антимикробных агентов в липидных бислоях

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Модификация флавоноидами каналообразующей активности сирингомицина Е и цекропина, А является результатом изменения дипольного потенциала, вызванного адсорбцией флавоноидов на мембране. Непосредственное взаимодействие 5- (7-) и 4'-гидроксилированных флавоноидов с сенсором напряжения а-гемолизинового канала ответственно за изменение его потенциал-чувствительности. В случае макролидных полиеновых… Читать ещё >

Влияние флавоноидов на каналообразующую активность токсинов и антимикробных агентов в липидных бислоях (реферат, курсовая, диплом, контрольная)

Содержание

  • Актуальность исследования
  • Цели и задачи исследования
  • Научная новизна исследования
  • Теоретическое и практическое значение работы
  • ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Флавоноиды
      • 1. 1. 1. Классификация флавоноидов
      • 1. 1. 2. Биологическая роль флавоноидов
      • 1. 1. 3. Мембранная активность флавоноидов
    • 1. 2. Характеристика объектов исследования
      • 1. 2. 1. Липопептиды Pseudomoncis syringae
      • 1. 2. 2. Пептиды Hyalophora cecropia
      • 1. 2. 3. Порообразующие токсины Staphylococcus aureus
      • 1. 2. 4. Полиеновые макролидные антибиотики Slreptomyces
  • ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Материалы
    • 2. 2. Методы исследования
      • 2. 2. 1. Формирование липидных бислойных мембран
      • 2. 2. 2. Гистограммы флуктуаций трансмембранного тока и времени жизни одиночных каналов
      • 2. 2. 3. Средненормированный трансмембранный ток
      • 2. 2. 4. Изменение дипольного потенциала мембран при введении флавоноидов
      • 2. 2. 5. Селективность каналов
      • 2. 2. 6. Равновесный трансмембранный ток
      • 2. 2. 7. Удельная электропроводность растворов
  • ГЛАВА 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 3. 1. Сирингомицин Е
    • 3. 2. Цекропины
    • 3. 3. Альфа-гемолизин
    • 3. 4. Полиеновые макролидные антибиотики

Актуальность исследования.

Плазматическая мембрана является первичной мишенью взаимодействия токсинов и лекарственных веществ с клеткой. Во многих случаях взаимодействие экзогенных соединений с мембраной приводит к нарушению ее барьерных функций за счет образования ион-проницаемых трансмембранных пор, последующему разрушению мембраны и гибели клетки. Когда токсичность экзогенных соединений в отношении клеток млекопитающих связана с образованием ионных каналов, актуальной фармакохимической задачей является поиск веществ, способных уменьшать их каналообразующую активность. Если мишенями являются грибковые или бактериальные клетки, интерес представляют соединения, увеличивающие мембранную активность антибиотиков.

В качестве потенциальных регуляторов каналообразующей активности токсинов и антимикробных агентов можно рассматривать флавоноиды. Флавоноидами называется группа фенольных соединений преимущественно растительного происхождения. Амфифильность молекул флавоноидов позволяет им легко встраиваться в биологические мембраны и изменять их физико-химические свойства, в том числе, дипольный потенциал. Дипольный скачок потенциала на границе раздела мембрана-раствор возникает в результате определенной взаимной ориентации молекул липидов и воды, при этом углеводородная область бислоя оказывается заряженной положительно относительно окружающей мембрану водной фазы [Andersen et al., 1976; Franklin and Cafiso, 1993; Cseh et al., 2000]. Известно, что уменьшение дипольного потенциала мембраны при адсорбции флавоноида флоретина вызывает изменение каналообразующей активности некоторых антимикробных пептидов и липопептидов, в частности, грамицидина А, аламетицина, сирингомицина Е и сурфактина [Rokitskaya et al., 1997; Luchian and Mereuta, 2006; Ostroumova et al., 2008; Ostroumova et al., 2010]. Интерес к флавоноидам обусловлен также широким спектром их биологической активностиони обладают Р-витаминной активностью, гипотензивным, седативным, кардиопротекторным, противовоспалительным и противомикробным действием [Cowan et al., 1999; Middleton et al., 2000; Havsteen, 2002; Soobrattee et al., 2005; Singh et al., 2008]. При этом многие флавоноиды мало токсичны для клеток млекопитающих, что указывает на перспективы создания новых фармакологических препаратов на их основе.

Для получения надежных результатов, позволяющих выявить механизмы влияния флавоноидов на процессы формирования и функционирования ион-проницаемых пор, образуемых в мембранах токсинами и антимикробными соединениями, необходимо широкое варьирование липидного состава мембран и их ионного окружения, что в случае клеточных мембран не всегда представляется возможным. Поэтому использование модельных липидных бислоев является актуальным методическим подходом. Поскольку составной частью каждой клеточной мембраны является липидный бислой, взаимодействие токсинов и антимикробных соединений с бислойными липидными мембранами в значительной мере отражает характер их биологической активности.

Цели и задачи исследования.

Цель работы — установление молекулярных механизмов влияния флавоноидов на каналообразующую активность токсинов и антимикробных агентов в модельных липидных мембранах. Для реализации этой цели были поставлены следующие задачи:

1. поиск адекватных экспериментальных моделей: выбор каналообразующих агентов, мембранных систем и флавоноидов;

2. измерение изменения дипольного потенциала липидных бислоев при адсорбции тестируемых флавоноидов;

3. определение характеристик одиночных ион-проводящих пор и кинетики трансмембранного тока, протекающего через модифицированные токсинами и антимикробными соединениями липидные бислои, в отсутствие и в присутствии флавоноидов;

4. выявление закономерностей влияния флавоноидов на формирование и функционирование ионпроводящих пор, образованных токсинами и потенциальными фармакологическими агентами в липидных бислоях.

Научная новизна исследования.

Среди флавоноидов обнаружены новые, ранее не известные, дипольные модификаторы: кверцетин, мирицетин, биоханин, А и генистеин. Впервые показано, что величину индуцированного флавоноидом уменьшения дипольного потенциала мембраны определяют распределение электронной плотности вблизи карбонильной группы и общая гидрофобность молекулы. Впервые установлено, что частично закрытые состояния а-гемолизиного канала обладают катионной селективностью. Обнаружены флавоноиды, способные увеличивать потенциал-чувствительность одиночного а-гемолизинового канала при взаимодействии с его сенсором напряжения. Исследование влияния флавоноидов на каналообразующую активность полиеновых макролидных антибиотиков позволило установить определяющую роль стабильности полиен-стериновых комплексов при формировании и функционировании каналов.

Теоретическое и практическое значение работы.

Представленные результаты позволяют расширить представления о мембранной активности флавоноидов. Впервые получены данные о том, что влияние флавоноидов на каналообразующую активность токсинов и антимикробных агентов может быть результатом не только индуцированного ими изменения дипольного потенциала мембраны, но, и обусловлено непосредственным взаимодействием флавоноидов с каналообразующими молекулами. Результаты работы содействуют пониманию важности участия диполь-дипольных и заряд-дипольных взаимодействий в процессах формирования и функционирования ионных каналов. Полученные в работе данные существенны также для понимания механизмов перехода а-гемолизинового канала между подсостояниями проводимости. Флавоноиды, увеличивающие активность полиеновых макролидных антибиотиков в эргостерин-содержащих бислоях, могут рассматриваться как потенциальные синергисты противогрибкового действия полиенов и использоваться при создании более эффективных фармакологических препаратов. Результаты работы могут быть использованы в курсах лекций по молекулярной и клеточной биологии, фармакологии и биофизике.

выводы.

1. Молекулярные механизмы влияния флавоноидов на каналообразующую активность цитотоксинов и антимикробных агентов включают изменение дипольного потенциала мембран и взаимодействие флавоноидов с каналообразующими молекулами.

2. Дипольный потенциал мембран влияет на каналообразующую активность сирингомицина Е и цекропина А.

3. Увеличение потенциал-чувствительности закрывания а-гемолизинового канала в присутствии 5- (7-) и 4'-гидроксилированных флавоноидов является результатом их взаимодействия с сенсором напряжения канала.

4. Каналообразующая активность макролидных полиеновых антимикотиков в стерин-содержащих бислоях при введении флавоноидов определяется суперпозицией двух факторов, величины дипольного потенциала мембран и стабильности полиен-стериновых комплексов, формирующих ион-проводящие поры.

ЗАКЛЮЧЕНИЕ

.

Полученные в работе результаты и проведенный анализ литературных данных позволили предложить общую схему, иллюстрирующую возможные механизмы влияния флавоноидов на каналообразующую активность токсинов и антимикробных агентов.

Механизмы влияния флавоноидов на каналообра зующую активность токсинов и антимикробных агентов опосредованное влияние непосредственное взаимоденствие с каналообразующими молекулами 1 изменение дипольного потенциала. мембраны I изменение: •воротного заряда канала •коэффициента распределения каналообразующего агента между лнпилной п водной фазами.

•энергетического барьера для проникающих ионов 1 Х липопептиды (сиринголпщин Е и потеновые антибиотики белковый токсин (алъфа-сурфактин) и пептиды (цекропин А, (амфотерицинВ, нистатин, гемолизин).

НРА-З-пептид, аламетицин, филитт) грамицидин А).

Модификация флавоноидами каналообразующей активности сирингомицина Е и цекропина, А является результатом изменения дипольного потенциала, вызванного адсорбцией флавоноидов на мембране. Непосредственное взаимодействие 5- (7-) и 4'-гидроксилированных флавоноидов с сенсором напряжения а-гемолизинового канала ответственно за изменение его потенциал-чувствительности. В случае макролидных полиеновых антибиотиков влияние флавоноидов обусловлено суперпозицией обоих факторовкак непосредственного взаимодействия с полиен-стериновыми комплексами, так и изменения дипольного потенциала бислоев при адсорбции флавоноидов. образование: •водородных связей •л-я-электронных взаимодействии.

Показать весь текст

Список литературы

  1. Х.М. 2008. Структура, физико-химические свойства и мембранная функция полиеновых макролидных антибиотиков. Москва:"Наука", Баку:"Элм", -516с.
  2. В.А. и Потапович А.И. 2004. Биорадикалы и биоантиоксиданты. Монография. Мн.: БГУ, — 174с.
  3. О.С., Малев В. В., Щагина Л. В. 2006. Кооператвность функционирования ионных каналов, образуемых фитотоксинами, сирингомицином Е и сирингостатином А. Биологические мембраны. 23(5): 412−419.
  4. О.С., Щагина Л. В., Малев В. В. 2008. Влияние дипольного потенциала липидных бислоев на свойства ионных каналов, образованных циклическим липодепсипептидом сирингомицином Е. Биол. мембр. 25: 388−400.
  5. О.С., Щагина Л. В. 2009. Влияние флоретина на сфинголипид содержащие мембраны, модифицированные сирингомицином Е. Биол. мембр. 26: 287−292.
  6. Р. и Стоке Р. 1963. Растворы электролитов. Изд. Иностр. Литер. М., 646.
  7. Alguel Y., Meng С., Teran W" Krell Т., Ramos J.L., Gallegos M.T., Zhang X. 2007. Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. J. Mol. Biol. 369: 829−840. (PDB ID: 2UXI, PDB ID: 2UXH).
  8. O.S., Finkelstein A., Katz I., Cass A. 1976. Effect of phloretin on the permeability of thin lipid membranes. J. Gen. Physiol., 67: 749−771.
  9. T. 1974. The structure and function of amphotericin В cholesterol pores in lipid bilyer membranes. Ann. N. Y. Acad. Sci., 235: 448−468.
  10. Apetrei A.- Mereuta L.- Luchian T. 2009. The RH 421 styryl dye induced, pore model-dependent modulation of antimicrobial peptides activity in reconstituted planar membranes. Biochim. Biophys. Acta., 90: 809−816.
  11. Bala, S.- Kombrabail, M. H.- Prabhananda, B. S. 2001. Effect of phloretin on ionophore mediated electroneutral transmembrane translocations of H (+), K (+) and Na (+) in phospholipid vesicles. Biochim. Biophys. Acta., 1510: 258−269.
  12. M., Borowski E., Mazerski J. 2009. Molecular modeling of amphotericin B-ergosterol primary complex in water II. Biophys. Chem., 141: 162−168.
  13. Baumann G. and Mueller P. 1974. A molecular model of membrane excitability. J. Supramol. Struct. 2: 538−557.
  14. Bender C.L., Alarcon-Chaidez F., Gross D.C. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev., 63: 266−292.
  15. Bengmark S., Mesa M.D., Gil A. 2009. Plant-derived health: the effects of turmeric and curcuminoids. Nutr. Hosp., 24: 273−281.
  16. Benthsath A., Rusznyak S., Szent-Gynrgy A. 1936. Vitamin nature of flavones. Nature. 1: 798.
  17. Bhakdi S. and Tranum-Jensen J. 1991. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev., 55: 733−751.
  18. S., Bayley H., Valeva A., Walev I., Walker B., Kehoe M., Palmer M. 1996. Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch. Microbiol., 165: 73−79.
  19. A.P., Takemoto J.Y. 1987. Bacterial phytotoxin, syringomycin, induces a protein kinase-mediated phosphorylation of red beet plasma membrane polypeptides. Proc. Natl. Acad. Sci. USA., 84: 6755−6759.
  20. Boman H.G. and Steiner H. 1981. Humoral immunity in Cecropia pupae. Curr. Top. Microbiol. Immunol., 95: 75−91.
  21. E., Golik J., Zielinski J., Falkowski L., Kolodziejczyk P., Pawlak J., Shenin Yu. 1978. The structure of mycoheptin, a polyene macrolide antifungal antibiotic. J. Antibiotics, 31: 117−123.
  22. E., Malyshkina M., Soloviev S., Ziminski T. 1966. Isolation and characterization of levorin A and B, the heptaenic macrolide antifungal antibiotics of aromatic subgroup. Chemotherapia, 10: 178−194.
  23. Brockman H.L., Momsen M.M., Brown R.E., He L., Chun J., Byun H.S., Bittman R. 2004. The 4,5-double bond of ceramide regulates its dipole potential, elastic properties, and packing behavior. Biophys. J., 87: 1722−1731.
  24. H. 1994. Dipole potential of lipid membranes. Chem. Phys. Lipids, 73:57−79.
  25. R., Dangles O., Harborne J.B. (Ed.) 1993. The Flavonoids: Advances in Research since 1986, Chapman and Hall, London, 565−588.
  26. E., Stindl A., Acan N.L., Kocagoz T., Zocher R. 2002. Antimycobacterial activity of lipodepsipeptides produced by Pseudomonas syringae pv. syringae B359. Nat. Prod. Lett., 16: 419−423.
  27. Buzon V. and Cladera J. 2006. Effect of cholesterol on the interaction of the HIV GP41 fusion peptide with model membranes. Importance of the membrane dipole potential. Biochemistry, 45: 15 768−15 775.
  28. Chen H.M. and Lee C.H. 2001. Structure stability of lytic peptides during their interactions with lipid bilayers. J. Biomol. Struct. Dyn., 19: 193−199.
  29. Christensen B., Fink J., Merrifield R.B. and Mauzerall D. 1988. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc. Natl. Acad. Sci. USA, 85: 5072−5076.
  30. Z., Ullmann G.M., Smith J.C. 2007. Differential effects of cholesterol, ergosterol and lanosterol on a dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study. J. Phys. Chem. B., Ill: 1786−1801.
  31. M.M. 1999. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev., 12: 564−582.
  32. Cseh R. and Benz R. 1998. The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by langmuir adsorption isotherms alone. Biophys. J., 74: 1399−1408.
  33. R., Hetzer M., Wolf K., Kraus J., Bringmann G., Benz R. 2000. Interaction of phloretin with membranes: on the mode of action of phloretin at the water-lipid interface. Eur. Biophys. J., 29: 172−183.
  34. G.R., Kerur D.R., Narasimhachari N. 1966. Chemical studies on hamicin. I. Purification, counter-current distribution and chemical degradation. Hindustan Antibiotic Bull., 8: 185−193.
  35. DeVay J.E., Lukezic F.L., Sinden S.L., English H., Coplin D.L. 1968. A biocide produced pathogenic isolates of Pseudomonas syringae and its possible role in the bacterial canker disease of peach trees. Phytopathology, 58: 95−101.
  36. D.N. 1994. The chemistry of chalcones and related compounds. John Wiley and Sons, New York.
  37. H., Wroblewski H. 2001. Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues. J. Membr. Biol., 184: 1−12.
  38. H., Alder G., Kociolek K., Leplawy M.T. 2003. Channel properties of template assembled alamethicin tetramers. J. Pept. Sci. 9: 776−783.
  39. R.L., Garrett M.P., Flake K.B., Durrant J.D., Busath D.D. 2003. Modulation of lipid bilayer interfacial dipole potential by phloretin, RH 421, and 6-ketocholestanol as probed by gramicidin channel conductance. Langmuir, 19: 14 391 442.
  40. Durell S.R., Raghunathan G., Guy H.R. 1992. Modeling the ion channel structure of cecropin. Biophys. J., 63: 1623−1631.
  41. Feigin A.M., Takemoto J.Y., Wangspa R" Teeter J.H., Brand J.G. 1996. Properties of voltage-gated ion channels formed by syringomycin E in planar lipid bilayers. J. Membr. Biol., 149: 41−47.
  42. J., Merrifield R.B., Boman A., Boman H.G. 1989. The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity. J. Biol. Chem., 264: 62 606 267.
  43. R.F., Hubbell W.L. 1986a. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys. J., 49: 541−552.
  44. R.F., Hubbell W.L. 1986b. Hydrophobic ion interactions with membranes. Thermodynamic analysis of tetraphenylphosphonium binding to vesicles. Biophys. J., 49: 531−540.
  45. J.V., Regelson W. 1995. Review of the biology of Quercetin and related bioflavonoids. Food Chem. Toxicol., 33: 1061−1080.
  46. Fox R.O., Richards F.M. 1982. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution. Nature (Lond), 300: 325−330.
  47. J.H., Arbuthnott J.P. 1983. Toxins of Staphylococcus aureus. Pharmacol. Ther., 19: 55−106.
  48. J.H., Arbuthnott J.P., Billcliffe B. 1973. Effects of staphylococcal-toxin on the structure of erythrocyte membranes: a biochemical and freeze-etching study. J. Gen. Microbiol., 75: 321−332.
  49. G., Chang J.E., Coley T., Steere B. 1997. The formation of amphotericin B ion channels in lipid bilayers. Biochemistry. 36: 4959−4968.
  50. J., Gagos M., Gubernator J., Gruszecki W.I. 2006. Binding of antibiotic amphotericin B to lipid membranes: a 1H NMR study. FEBS Lett., 580: 26 772 685.
  51. Gazit E" Miller I.R., Biggin P.C., Sansom M.S., Shai Y. 1996. Structure and orientation of the mammalian antibacterial peptide cecropin PI within phospholipid membranes. J. Mol. Biol. 258: 860−870.
  52. J.R., Montgomery M.G., Leslie A.G., Walker J.E. 2007. Mechanism of inhibition of bovine Fl-ATPase by resveratrol and related polyphenols, Proc. Natl. Acad. Sei. U.S.A., 104: 13 632−13 637. (PDB ID: 2JJ2).
  53. Gonzalez-Damian J., Ortega-Blake I. 2010. Effect of membrane structure on the action of polyenes II: nystatin activity along the phase diagram of ergosterol- and cholesterol-containing POPC membranes. Membr. Biol., 237: 41−49.
  54. Guinet R., Chanas J., Goullier A., Bonnefoy G., Ambroise-Thomas P. 1983. Fatal septicemia due to amphotericin B-resistant Candida lusitaniae. J. Clin. Microbiol., 18: 443−444.
  55. K.S., Barber K.R., Davis J.H., Neil K., Grant C.W. 1991. Phase behaviour of amphotericin B multilamellar vesicles. Biochim. Biophys. Acta, 1062: 220 226.
  56. Hamilton-Miller J.M.T. 1973. Chemistry and biology of the polyene macrolide antibiotics. Bacteriological Reviews, 37: 166−196.
  57. J.B. 1988. The Flavonoids: recent advances in Plant pigments (Goodwin T.W. ed). Academic Press. London. 299−343.
  58. B.H. 2002. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96: 67−202.
  59. J.L., Baddour L.M. 2003. Candida lusitaniae infections in the era of fluconazole availability. Clin. Infect. Dis., 36: 14−18.
  60. He F., Lin Y., Li R., Tang G., Wu D. 2011. Effects of lipid chain length on the surface properties of alkylaminomethyl rutin and of its mixture with model lecithin membrane. Colloids. Surf. B Biointerfaces, 87: 164−172.
  61. B. 2002. Ion channels of excitable membranes. Sinaeur, Sunderland, M.A.
  62. S.B. 1974. The energy barriers to ion transport by nonactin across thin lipid membranes. Biochim. Biophys. Acta, 352: 71−85.
  63. S.B., Haydon D.A. 1973. Membrane conductance and surface potential. Biochim. Biophys. Acta., 318: 464−468.
  64. Holder S., Zemskova M., Zhang C., Tabrizizad M., Bremer R., Neidigh J.W., Lilly M.B. Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase. 1Viol. Cancer Ther., 6: 163−172. (PDB ID: 2063).
  65. D., Steiner H., Rasmuson T., Boman H.G. 1980. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem., 106: 7−16.
  66. M.D., Hull L.A. 1993. Variation in concentrations of phloridzin and phloretin in apple foliage. Phytochemistry, 34: 1251−1254.
  67. T.C., Koeppe R.E., Andersen O.S. 2003. Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry, 42: 13 646−13 658.
  68. P.C. 1983. Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. Biophys. J., 41: 189−195.
  69. K., Kempf M., Schreier P., Scheppach W., Schrenk D., Kautenburger T., Hecker D., Huemmer W., Ackermann M., Richling E. 2011. Intestinal transit and systemic metabolism of apple polyphenols. Eur. J. Nutr., 50: 507−522.
  70. J.J., Bezrukov S.M. 1995. Protonation dynamics of the alpha-toxin ion channel from spectral analysis of pH-dependent current fluctuations. Biophys. J., 69: 94−105.
  71. Kh.M., Mekhtiev N.Kh., Karakozov S.D. 1981. Potential-dependent formation of single conducting ionic channels in lipid bilayers induced by the polyene antibiotic levorin A2. Biochim. Biophys. Acta, 644: 369−372.
  72. Y.A., Schagina L.V., Bezrukov S.M., Malev V.V., Feigin A.M., Takemoto J.Y., Teeter J.H., Brand J.G. 1998. Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes. Biophys. J. 74 (6): 2918−2925.
  73. T., Gouaux E. 2003. Arresting and releasing Staphylococcal alpha-hemolysin at intermediate stages of pore formation by engineered disulfide bonds. Protein Sci., 12: 997−1006.
  74. Y.E., Bashford C.L., Alder G.M., Kasianowicz J.J., Pasternak C.A. 1995b. Low conductance states of a single ion channel are not «closed». J. Membr. Biol., 147: 233−239.
  75. O.V., Bezrukov S.M. 2004. Polymer partitioning from nonideal solutions into protein voids. Macromolecules, 37: 2650−2657.
  76. O.G., Kasumov Kh.M. 2004. An aromatic heptaene antibiotic levorin and its derivatives in muscle activity. Antibiot. Khimioter., 49: 40−46.
  77. R., Donovan J.J. 1980. Modulation of alamethicin-induced conductance by membrane composition. Acta Physiol. Scand. Suppl., 481: 37−45.
  78. A., Kiderlen A.F., Kayser O. 2005. Amphotericin B. Appl. Microbiol. Biotechnol., 68: 151−162.
  79. Lesieur C., Vecsey-Semjen B., Abrami L., Fivaz M., Gisou van der Goot F. Membrane insertion: The strategies of toxins (review). Mol. Membr. Biol., 14: 45−64.
  80. E.A., Topaly V.P. 1969. Permeability of bimolecular phospholipid membranes for fat-soluble ions. Biofizika (Russian), 14: 452−461.
  81. Lopez-Lazaro M. 2009. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 9: 31−59.
  82. T., Mereuta L. 2006. Phlorizin- and 6-ketocholestanol-mediated antagonistic modulation of alamethicin activity in phospholipid planar membranes. Langmuir, 22: 8452−8457.
  83. B. 1999. Modulation of phospholipase A2 by electrostatic fields and dipole potential of glycosphingolipids in monolayers. J. Lipid Res., 40: 930−939.
  84. Mak J.C. 2012. Potential role of green tea catechins in various disease therapies: progress and promise. Clin. Exp. Pharmacol. Physiol., 39: 265−273.
  85. V.V., Schagina L.V., Gurnev P.A., Takemoto J.Y., Nestorovich E.M., Bezrukov S.M. 2002. Syringomycin E channel: a lipidic pore stabilized by lipopeptide? Biophys. J., 82: 1985−1994.
  86. D.Y., Sokolov V.S. 1996. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Biochim. Biophys. Acta., 1278: 197−204.
  87. Manas E.S., Xu Z.B., Unwalla R.J., Somers W.S. 2004. Understanding the selectivity of genistein for human estrogen receptor-beta using X-ray crystallography and computational methods. Structure, 12: 2197−2207. (PDB ID: 1X7R, 1X7J).
  88. Matsumori N., Tahara K., Yamamoto H., Morooka A., Doi M., Oishi T., Murata M. 2009. Direct interaction between amphotericin B and ergosterol in lipid bilayers as revealed by 2H NMR spectroscopy. J. Am. Chem. Soc., 131:11 855−11 860.
  89. W., Schaffner C.P., Ganis P., Avitabile C. 1970. Structure and absolute configuration of the polyene macrolide antibiotic amphotericin B. Tetrahedron Letters, 44: 3873−3876.
  90. Mehrabani L.V. and Hassanpouraghdam M.B. 2012. Developmental variation of phenolic compounds in fruit tissue of two apple cultivars. Acta. Sci. Pol. Technol. Aliment., 11: 259−64.
  91. E., Latorre R., Hall J.E., Tosteson D.C. 1977. Phloretin-induced changes in ion transport across lipid bilayer membranes. J. Gen. Physiol., 69: 243−257.
  92. G. 1986. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J. Membr. Biol., 90: 177−190.
  93. G., Bashford C.L., Pasternak C.A. 1990. Pore-forming toxins: experiments with S. aureus alpha-toxin, C. perfringens theta-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Toxicon, 28: 477−491.
  94. L., Luchian T., Park Y., Hahm K.S. 2008. Single-molecule investigation of the interactions between reconstituted planar lipid membranes and an analogue of the HP (2−20) antimicrobial peptide. Biochem. Biophys. Res. Commun., 373: 467−472.
  95. Merrifield R.B., Vizioli L.D. and Boman H.G. 1982. Synthesis of the antibacterial peptide cecropin A (1−33). Biochemistry, 21: 5020−5031.
  96. P.G., Yuldasheva L.N., Rodrigues C.G., Carneiro C.M., Krasilnikov O.V., Bezrukov S.M. 1999. Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel. Biophys. J., 77: 3023−3033.
  97. E., Kandaswami C., Theoharides T.C. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 52: 673−751.
  98. J., Ponsinet V., Takashi M., Michels B. 2002. Interactions of the drug amphotericin B with phospholipid membranes containing or not ergosterol: new insight into the role of ergosterol. Biochim. Biophys. Acta. 1558: 95−108.
  99. A., Hachem R., Raad I. 2001. Candida lusitaniae: a cause of breakthrough fungemia in cancer patients. Clin. Infect. Dis., 32: 186−190.
  100. Modolo L.V., Li L., Pan H., Blount J.W., Dixon R.A., Wang X. 2009. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids. J. Mol. Biol., 392: 1292−1302. (PDB ID: 3HBF).
  101. M.M., Movileanu L. 2010. Impact of distant charge reversals within a robust beta-barrel protein pore. J. Phys. Chem. B., 114: 8750−8759.
  102. E.H., Lyubartsev A.P. 2010. Molecular dynamics simulations of local anesthetic articaine in a lipid bilayer. Biophys. Chem., 153: 27−35.
  103. M., Muller P. 1972. Formation of bimolecular membranes from lipid monolayers and study of their electrical properties. Proc.Nat.Acad.Sci.USA., 65: 35 613 566.
  104. W.E. 1977. Calculation of liquid-junction potentials and membrane potentials on the basis of the Planck theory. Analyt. Chem., 49: 810−813.
  105. Morishima I., Suginaka S., Ueno T, Hirano H. 1990. Isolation and structure of cecropins, inducible antibacterial peptides, from the silkworm, Bombyx mori. Comp. Biochem. Physiol. B., 95: 551−554.
  106. T., Yamada M., Osawa T., Kawakishi S. 1993. Suppression of active oxygen-induced cytotoxicity by flavonoids. Biochem. Pharmacol. 45: 265−267.
  107. Nettles K.W., Bruning J.B., Gil G., Nowak J., Sharma S.K., Hahm J.B., Kulp K" Hochberg R.B., Zhou H., Katzenellenbogen J.A., Katzenellenbogen B.S., Kim Y.,
  108. A., Greene G.L. 2008. NFkappaB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nat. Chem. Biol., 4: 241−247. (PDB ID: 2QA8).
  109. A., Baginski M., Czub J. 2010. How do sterols determine the antifungal activity of amphotericin B? Free energy of binding between the drug and its membrane targets. J. Am. Chem. Soc. 132: 18 266−18 272.
  110. A., Czub J., Baginski M. 2009. On the possibility of the amphotericin B-sterol complex formation in cholesterol- and ergosterol-containing lipid bilayers: a molecular dynamics study. J. Phys. Chem. B. 113: 15 875−15 885.
  111. O.S., Gurnev P.A., Schagina L.V., Bezrukov S.M. 2007a. Asymmetry of syringomycin E channel studied by polymer partitioning. FEBS Letters. 581:804−808.
  112. O.S., Kaulin Y.A., Gurnev A.P., Schagina L.V. 2007b. Effect of agents modifying the membrane dipole potential on properties of syringomycin E channels. Langmuir, 23: 6889−6892.
  113. O.S., Malev V.V., Kaulin Yu.A., Gurnev Ph.A., Takemoto J.Y., Schagina L.V. 2005. Voltage-dependentsynchronization of gating of syringomycin Eion channels. FEBS Lett. 579: 5675−5679.
  114. Ostroumova, O. S.- Malev, V. V.- Ilin, M. G.- Schagina, L. V. 2010. Surfactin activity depends on the membrane dipole potential. Langmuir, 26: 15 092−15 097.
  115. M.J., Fournier I., Barwicz J., Tancrede P., Auger M. 2002. The effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers as viewed by 2H NMR. Chem. Phys. Lipids, 119: 1−11.
  116. Peterson U., Mannock D. A., Lewis R.N., Pohl P., McElhaney R.N., Pohl E.E. 2002. Origin of membrane dipole potential: contribution of the phospholipid fatty acid chains. Chem. Phys. Lipids., 117: 19−27.
  117. M., Bankova V., Spassov S., Tsvetkova I., Naydenski C., Silva M.V., Tsartsarova M. 2001. New bioactive chalcones in propolis from El Salvador. Naturforsch. C., 56: 593−596.
  118. Qu Z., Steiner H., Engstrom A., Bennich H., Boman H.G. 1982. Insect immunity: isolation and structure of cecropins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi. Eur. J. Biochem. 127: 219−224.
  119. Recamier K.S., Hernandez-Gomez A., Gonzalez-Damian J., Ortega-Blake I. 2010. Effect of membrane structure on the action of polyenes: I. Nystatin action in cholesterol-and ergosterol-containing membranes. J. Membr. Biol., 237: 31−40.
  120. J., Greco F., Motais R., Latorre R. 1983. Phloretin and phloretin analogs: mode of action in planar lipid bilayers and monolayers. J. Membr. Biol., 72: 93−103.
  121. Samedova A.A. and Kasumov Kh.M. 2009. Mechanism of action of macrolide antibiotic filipin on cell and lipid membranes. Antibiot. Khimioter., 54: 44−52.
  122. Sano T., Oda E., Yamashita T., Naemura A., Ijiri Y., Yamakoshi J., Yamamoto J. 2005. Anti-thrombotic effect of proanthocyanidin, a purified ingredient of grape seed. Thromb Res., 115: 115−121.
  123. A., Bachmann R.C., Takemoto J.Y., Barra D., Simmaco M., Ballio A. 1994. Stereochemical structure of syrigomycin, a phytotoxic metabolite of Pseudomonas syringae pv. syringae. Nat. Prod. Lett., 4: 159−164.
  124. L.V., Gurnev Ph.A., Takemoto J.Y., Malev V.V. 2003. Effective gating charge of ion channels induced by toxin syringomycin E in lipid bilayers. Bioelectrochem., 60: 21−27.
  125. J.D., Jumarie C., Cooper D.G., Laprade R. 1991. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim. Biophys. Acta, 1064: 13−23.
  126. F., Moarefi I., Kuriyan J. 1997. Crystal structure of the Src family tyrosine kinase Hck. Nature, 385: 602−609. (PDB ID: 2HCK).
  127. S.A., Mcintosh T.J., Magid A.D., Needham D. 1992. Modulation of the interbilayer hydration pressure by the addition of dipoles at the hydrocarbon/water interface. Biophys. J., 61: 786−799.
  128. Singh M., Arseneault M., Sanderson T" Murthy V., Ramassamy C. 2008. Challenges for research on polyphenols from foods in Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms. J. Agrie. Food Chem., 56: 4855−4873.
  129. A.A., Kotova E.A., Antonenko Y.N., Zakharov S.D., Cramer W.A. 2006. Lipid dependence of the channel properties of a colicin El-lipid toroidal pore. J. Biol. Chem., 281: 14 408−14 416.
  130. L., Hobaugh M.R., Shustak C., Cheley S., Bayley H., Gouaux J.E. 1996. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science, 274:1859−1866.
  131. Sonkina S., Tukhfatullina 1.1., Benseny-Cases N., Bryszewska M., Salakhutdinov B.A., Cladera J. 2010. Interaction of the prion protein fragment PrP 185−206 with biological membranes: effect on membrane permeability. J. Pept. Sci., 16: 342.
  132. Soobrattee M.A., Neergheen V.S., Luximon-Ramma A., Aruoma O.I., Bahorun T. 2005. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res., 579: 200−213.
  133. Sorensen K.N., Kim K.H., Takemoto J.Y. 1996. In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringaepv. syringae. Antimicrob. Agents Chemother., 40: 2710−2713.
  134. Starke-Peterkovic T., Clarke R.J. 2009. Effect of headgroup on the dipole potential of phospholipid vesicles. Eur. Biophys. J., 39: 103−110.
  135. H., Hultmark D., Engstrom A., Bennich H., Boman H.G. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 292: 246−248.
  136. H. 1982. Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. FEBSLett., 137: 283−287.
  137. D.E., Hurst R.D. 2007. Polyphenolic phytochemicals—just antioxidants or much more? Cell Mol. Life Sci., 64: 2900−2916.
  138. J.Y. 1992. Bacterial phytotoxin syringomycin and its interaction with host membranes. In D.P.S. Verma (ed.), Molecular signals in plant microbe communications, CRC Press, Inc.
  139. O.S., Banno Y., Nozawa Y. 1997. Inhibition of N-formylmethionyl-leucylphenylalinine-stimulated tyrosine phosphorylation and phospholipase D activa-tion by quercetin in rabbit neutrophils. Biochem. Pharmacol., 53: 1503−1510.
  140. Tarahovsky Y.S., Muzafarov E.N., Kim Y.A. 2008. Raft making and rafts braking: how plant flavonoids may control membrane heterogeneity. Mol. Cell Biochem., 314: 65−71.
  141. J.L., Bloom M. 1992. Phosphatidylcholine: cholesterol phase diagrams. Biophys. J., 63: 1176−1181.
  142. M.T., Tosteson D.G. 1981. The sting. Melittin forms channels in lipid bilayers. Biophys. J., 36: 109−116.
  143. Venegas B., Gonzalez-Domian J., Celis H., Ortega-Blake I. 2003. Amphotericin B channels in the bacterial membrane: role of sterol and temperature. Biophys. J., 85: 23 232 332.
  144. Wade D., Boman A., Wxhlin B., Drain C.M., Andreu D" Boman H.G., Merrifield R.B. 1990. All-D amino acid-containing channel-forming antibiotic peptides. Proc. Natl. Acad. Sci. USA., 87: 4761−4765.
  145. S.A., Lechevalier H.A., Schaffner C.P. 1965. Candicidin and other polyenic antifungal antibiotics. Bull. W.H.O., 33: 219−226.
  146. E.H., Pacold M.E., Perisic O., Stephens L., Hawkins P.T., Wymann M.P., Williams R.L. 2000. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 6: 909−919.
  147. Walsh U.F., Morrissey J.P., O’Gara F. 2001. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr. Opin. Biotechnol., 12: 289−295.
  148. Williams R.J., Spencer J.P., Rice-Evans C. 2004. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med., 36: 838−849.
  149. R.C., Turnbull J.J., Welford R.W., Clifton I.J., Prescott A.G., Schofield C.J. 2002. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure, 10: 93−103. (PDB ID: 1GP5, PDB ID: 3LM5, PDB ID: 3BPT).
  150. Wiseman R.L., Zhang Y., Lee K.P., Harding H.P., Haynes C.M., Price J., Sicheri F., Ron D. 2010. Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol. Cell., 38: 291−304. (PDB ID: 3LJO).
  151. Y., Matsuzaki K. 2002. Membrane insertion and dissociation processes of a model transmembrane helix. Biochemistry., 41: 12 407−12 413.
  152. Zhang X.Y., Li W.G., Zheng T.Z., Li W. 2005. Effects of proanthocyanidins on contractile activity of aortic smooth muscle and platelet aggregation in experimental animals. Zhongguo Ying Yong Sheng Li Xue Za Zhi., 21: 383−386.
  153. Zielinski J., Borowy-Borowski H., Golik J., Gumieniak J., Ziminski T., Kolodziejczyk P., Pawlak J., Borowski E., Shenin Yu., Filipova A.I. 1979. The structure of levorin A2 and candicidin D. Tetrahedron Letters, 20: 1791−1794.
  154. О.С., Ефимова С. С., Щагина Л. В. 2009. Проводимость фитотоксииовых каналов в присутствии больших органических ионов. Цитология. 51 (8): 670−675.
  155. С.С., Остроумова О. С., Малев В. В., Щагина Л. В. 2011. Транспорт больших органических анионов через сирингомициновые каналы в мембранах, содержащих дипольные модификаторы. Цитология. 53 (5): 450−456.
  156. O.S., Efimova S.S., Schagina L.V. 2011. 5- and 4'-hydroxylated flavonoids affect voltage gating of single alpha-hemolysin pore. Biochim. Biophys. Acta. Biomembr. 1808 (8): 2051−2058.
  157. O.S., Efimova S.S., Schagina L.V. 2012. Probing amphotericin В single channel activity by membrane dipole modifiers. PLoS One. 7 (1): e30261.
  158. S.S., Ostroumova O.S. 2012. Effect of dipole modifiers on the magnitude of the dipole potential of sterol-containing bilayers. Langmuir. 28: 9908−9914.
  159. O.S., Efimova S.S., Chulkov E.G., Schagina L.V. 2012. The interaction of dipole modifiers with polyene-sterol complexes. PLoS One. 7 (9): e45135.
  160. О.С., Ефимова С. С., Щагина Л. В. 2013. Изменения дипольного потенциала фосфолипидных мембран при адсорбции флавоноидов. Биофизика. 58 (3): 474−480.
  161. C.C., Остроумова О. С. 2010. Природа низкопроводящих состояний альфа-гемолизинового канала. II Конференция молодых ученых Института цитологии РАН. 15−16 февраля, Цитология. 52 (6): 495−496.
  162. S.S., Schagina L.V., Ostroumova O.S. 2011. Role of sterols in the channel-forming activity of amphotericin В in planar lipid bilayers. 17th International Biophysics Congress. Oct. 30th Nov. 3rd, 2011, Beijing, China. P. 353.
  163. С.С., Остроумова О. С. 2012. Активность антимикотика амфотерицина В в липидных бислоях, содержащих дипольные модификаторы. III Конференция молодых ученых Института цитологии РАН. 15−16 мая, Санкт-Петербург, Цитология. 54 (4): 340.
  164. S.S., Schagina L.V., Ostroumova O.S. 2012. Channel-forming activity of cecropin A depends from membrane dipole modifiers in planar lipid bilayers. 37th FEBS Congress. September 4−9, Seville, Spain. FEBS J. 279, Suppl. 1, 253.
  165. O.S., Efimova S.S., Malev V.V., Schagina L.V. 2013. Plant flavonoids affect membrane activity of antimicrobial agents. 38th FEBS Congress. July 6−11, Saint-Petersburg, Russia. FEBS J. 280, Suppl. 1, 191−192.
  166. S.S., Schagina L.V., Ostroumova O.S. 2013. Role of dipole potential in the channel-forming activity of cecropin A in planar lipid bilayers. 38th FEBS Congress. July 6−11, Saint-Petersburg, Russia. FEBS J. 280, Suppl. 1,188.1. БЛАГОДАРНОСТИ
Заполнить форму текущей работой