Помощь в написании студенческих работ
Антистрессовый сервис

Функциональная значимость сумоилирования метил-ДНК-связывающего белка Каизо

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Изучение механизмов регуляции генной активности является ключевой задачей в понимании того, как работает геном. Обратимые изменения активности генов называют «эпигенетическими». По современным представлениям эпигенетика — наука о надгенетических процессах функциональной геномики, которая в первую очередь рассматривает три класса явлений: метилирование ДНК, гистоновый код и регуляцию генома… Читать ещё >

Функциональная значимость сумоилирования метил-ДНК-связывающего белка Каизо (реферат, курсовая, диплом, контрольная)

Содержание

  • ИСПОЛЬЗУЕМЫЕ СОКРАЩЕНИЯ
  • ЦЕЛЬ И ЗАДАЧИ РАБОТЫ
  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Метилирование генома эукариот
      • 1. 1. 1. Геномный импринтинг. Х-инактивация
      • 1. 1. 2. Динамика изменения метилирования во время эмбриогенеза
      • 1. 1. 3. ДНК-метнлтрансферазы
      • 1. 1. 4. Роль метилирования ДНК в регуляции экспрессии генов
    • 1. 2. Метнл-ДНК-связывающне белки
    • 1. 3. Характеристика белков BTB/BOZ-ceмeнcтвa
      • 1. 3. 1. Особенности BTB/POZ домена
      • 1. 3. 2. Особенности домена «цинковые пальцы»
    • 1. 4. Метнл-ДНК-связывающий BTB/POZ транскрипционный фактор Канзо
    • 1. 5. Посттрансляционные модификации
      • 1. 5. 1. Связь между метилированием ДНК и ПТМ гистонов
      • 1. 5. 2. Влияние ПТМ на функциональную активность транскрипционных факторов
      • 1. 5. 3. Сумоилирование, как уникальная ПТМ в регуляции активности транскрипционных факторов
    • 1. 6. СЫР-эец анализ, как новый метод для нолногеиомного картирования сайтов связывания транскрипционных факторов с ДНК
  • 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Штаммы бактерий
    • 2. 2. Клеточные культуры и транзнентнан трансфекция
    • 2. 3. Получение компетентных клеток
    • 2. 4. Выделение тотальной ДНК из тканей и клеток
    • 2. 5. Выделение тотальной РНК из клеток
    • 2. 6. Обратная транскрипция
    • 2. 7. Полимеразная ценная реакция
    • 2. 8. Клонирование ПЦР продукта
    • 2. 9. Плазмнды и конструкции
      • 2. 9. 1. Получение конструкций с GFP белком для экспрессии в клетках млекопитающих
      • 2. 9. 2. Получение конструкций для экспрессии рекомбннантных белков в клетках E. Coli BL
      • 2. 9. 3. Получение химерного белка Kan3oAZF-Ubc
      • 2. 9. 4. Получение конструкций, кодирующих функциональные домены Каизо с N-концевым FLAG н С-концевым НА пептидами
      • 2. 9. 5. Получение конструкций с ВТВ доменом Каизо, с внесенными точечными аминокислотными заменами
      • 2. 9. 6. Получение конструкций с полноразмерным Каизо с внесенной точечной аминокислотной заменой К42А в ВТВ домене
    • 2. 10. Иммунофлуорнсцентный анализ
    • 2. 11. Получение клеточных лизатов
    • 2. 12. Выделение ядерных экстрактов из эукариотическнх клеточных линий
    • 2. 13. Экспрессия рекомбинантных белков
    • 2. 14. Ко-нрецнпитационный анализ (GST pull-down анализ)
    • 2. 15. Иммунопрецнпнтацня и Иммуноблоттинг
    • 2. 16. Метил-зависимый ренрессионный эксперимент
    • 2. 17. Метилирование ДНК с помощью SssI- метилазы
    • 2. 18. Получение имморталнзованных мышиных фибробластов Каизо-/- стабильно экснрессирующнх сумоилированную форму белка Канзо н Каизо (К42А)
    • 2. 19. Иммунопрецнпнтацня хроматина
    • 2. 20. Приготовление геномных библиотек для секвенирования
    • 2. 21. Обработка данных, полученных в результате декодирования на Genome Analyzer GA («Illumina», США)
  • 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
    • 3. 1. Метнл-ДНК-свнзывающий белок Каизо подвергается убиквннтин-нодобной носттрансляционной модификации
    • 3. 2. Каизо сумоилируется SUMOl
    • 3. 3. Определение домена белка Канзо необходимого для сумоилирования
    • 3. 4. Сумонлирование ВТВ домена белка Каизо является эволюционно консервативным событием
    • 3. 5. Определение сайта необходимого для сумоилирования ВТВ домена белка Каизо
    • 3. 6. Влияние сумоилирования на транскрипционную активность белка Каизо
    • 3. 7. Влияние сумоилирования на локализацию белка Каизо в клетках млекопитающих
    • 3. 8. Влияние 811М01-модификации белка Каизо на его способность взаимодействовать с белками ко-репрсссорами
    • 3. 9. Анализ сайтов связывания сумоилированной и песумоилированной формы белка Каизо по мышиному геному
  • ВЫВОДЫ
  • СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Изучение механизмов регуляции генной активности является ключевой задачей в понимании того, как работает геном. Обратимые изменения активности генов называют «эпигенетическими». По современным представлениям эпигенетика — наука о надгенетических процессах функциональной геномики, которая в первую очередь рассматривает три класса явлений: метилирование ДНК, гистоновый код и регуляцию генома на уровне интерферирующих РНК. Все три механизма реализации генетической информации вовлечены, в частности у позвоночных организмов, в такие клеточные процессы, как ранний эмбриогенез и гаметогенез, дифференцировка, инактивация X-хромосомы, геномный импринтинг, онкологическая трансформация клеток. Например, нарушение метилирования ДНК может приводить к несвоевременной активации протоонкогенов, а аномально высокий уровень метилирования генов-супрессоров, подавляющих злокачественный рост, будет способствовать продвижению клеток по пути к трансформированному состоянию вплоть до метастазирования. Изучение метилирования ДНК является важным для понимания механизмов возникновения и развития различных заболеваний, а также может служить значимым маркером для ранней диагностики рака.

Метилирование ДНК может оказывать влияние на транскрипцию генов либо за счет изменения констант связывания белков транскрипционных активаторов с ранее неметилированной ДНК, либо за счет привлечения транскрипционных факторов, специфически взаимодействующих с метилированной ДНК. Последние могут входить в белковые комплексы с различными гистоновыми трансферазами и за счет них изменять состояние окружающего хроматина. Метил ДНК-связывающие белки классифицируются в семейства. Одно из них состоит из MBD-белков (MBD1, MBD2, MBD4, МеСР2) с характерным MBD (methyl binding domain) доменом, с помощью которого происходит связывание с одиночными метилированными CpG парами. Эти белки участвуют в контроле стабильности генома, раннем эмбриональном развитии, дифференцировке, созревании нейронов и др. Второе семейство состоит из Каизо и Каизо-подобных белков (Каизо, ZBTB4 и ZBTB38) (1). В отличие от MBD белков Каизо взаимодействует с метилированными CGCG через три С-концевых «цинковых пальца» С2Н2 типа. Некоторые исследователи приписывают Каизо способность связывать и неметилированные участки ДНК, содержащие консенсусную последовательность CTGCNA, однако, на сегодня нет веских данных экспериментов in vivo в поддержку этой гипотезы. (2−3). Несмотря на общую доменную структуру белков внутри обоих семейств функциональная значимость каждого белка в организме эукариот уникальна. При изучении свойств и MBD и Каизо подобных белков методами генетического нокаута было показано, что отсутствие одного белка или даже нескольких (Каизо, МеСР2, MBD2 и MBD1) белков не приводит к остановке эмбрионального развития у млекопитающих. На этом фоне контрастом выглядит эмбриональная летальность у мышей с отсутствующим геном поддерживающей метил-трансферазы Dnmtl (4). Таким образом, пока не установлена прямая связь между непреложной важностью самой модификации метилирования ДНК и ее белковыми спутниками, которые долгое время считались ключевыми в интерпретации метилирования и перевода этого сигнала от молекулы ДНК к непосредственно функционированию генома. В то время как генетический нокаут Каизо у мышей не приводит к ярко выраженному фенотипу (только в случае Каизо" А мышей в модели APC/Min была обнаружена их устойчивость к возникновению рака кишечника), у земноводных (на модели Xenopus laevis) Каизо необходим для нормального развития, и уменьшение его количества приводит к гибели эмбрионов (5−6). Тем не менее, обнаруженная роль Каизо в раке кишечника в модели APC/Min открывает новую принципиальную возможность его использования в качестве мишени в терапии онкологических заболеваний. Для достижения этой цели необходимо более глубокое понимание функциональной значимости Каизо в клетках млекопитающих.

Известно, что большое разнообразие функционально активных белков и транскрипционных факторов достигается в клетках эукариот и благодаря посттрансляционным модификациям (ПТМ). Каизо является репрессором транскрипции и, вероятно, как и все транскрипционные факторы, может подвергаться ПТМ, которые потенциально могут оказывать существенное влияние на его свойства и функции. В данной работе охарактеризовано сумоилирование Каизо. Сумоилирование представляет собой процесс ковалентного присоединения белка SUMO к лизину белков-субстратов за счет серии ферментативных реакций. Сумоилирование является малоизученной, но важной ПТМ у эукариот, поскольку может оказывать влияние на клеточную локализацию белков, ядерный транспорт, на спектр взаимодействующих белков и ко-факторов, на их связывание с ДНК, на контроль функций хроматина, и в частности на транскрипцию, репликацию, репарацию и организацию гетерохроматина (7).

Таким образом, определение функциональной значимости сумоилирования метил-ДНК-связывающего белка Каизо позволит полнее раскрыть его роль в регуляции экспрессии генов мишеней.

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ.

Целью настоящей работы является изучение роли сумоилирования метил-ДНК-связывающего белка Каизо в связывании с ДНК, подавлении транскрипции и взаимодействии с белками ко-репрессорами.

Задачи:

1. Определить, какие аминокислоты белка Каизо подвергаются сумоилированию.

2. Оценить влияние сумоилирования на клеточную локализацию Каизо и на его взаимодействие с белками ко-репресссорами.

3. Охарактеризовать влияние сумоилирования на репрессионные свойства белка Каизо.

4. Определить влияние сумоилирования на спектр участков связывания Каизо в полногеномном масштабе.

1. ОБЗОР ЛИТЕРАТУРЫ.

выводы.

1. Определено, что метил-ДНК-связывающий белок Каизо подвергается сумоилированию по 42 лизину в ВТВ домене.

2. Показано, что несумоилированная форма белка Каизо на фоне диффузного ядерного распределения имеет точечную локализацию, которая совпадает с локализацией белка Bmil Поликомб комплекса (PcG) в клетках линии НЕК 293.

3. Установлено, что в системе in vitro Каизо взаимодействует с Bmil и с NCoR.

4. Определено, что сумоилирование Каизо приводит к снижению репрессионной активности белка, а несумоилированная форма сохраняет репрессионные свойства.

5. Показано, что сумоилирование не влияет на спектр участков связывания Каизо в мышином геноме, и обе формы белка преимущественно связываются с промоторными областями, расположенными в «CpG островках».

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ.

1. Жигалова Н. А., Женило С. В., Айтхожина Д. С., Прохорчук Е. Б. Две функции домена «цинковые пальцы» метил-ДНК-связывающего белка Каизо.// Молекулярная биология. — 2010 — Т. 44 — С. 263−274.

2. Жигалова Н. А., Женило С. В., Прохорчук Е. Б. Изучение посттрансляционных модификаций метил-ДНК-связывающего белка Каизо.// 13-я Международная Пущинская школа-конференция молодых ученых. 28 сентября -2 октября. 2009 — С. 15−16.

3. Жигалова Н. А., Женило С. В., Прохорчук Е. Б. Изучение посттрансляционных модификаций метил-ДНК-связывающего белка Каизо.// Горизонты нанобиотехнологии. Материалы всероссийской научной школы для молодежи. 12 -16 октября. 2009 -С. 36−37.

4. Жигалова Н. А., Прохорчук Е. Б. Восстановление волосяного покрова de novo у мышей с дефектом гена Каизо после повреждения кожи. // V Московский международный конгресс «Биотехнология: состояние и перспективы развития». 1620 марта. 2009 — С.230−231.

5. Zhigalova N, Prokhortchouk Е. Hair follicle regeneration de novo in adult Kaiso-deficient mice skin after wounding. // Benzon symposium No.55. Transcription, chromatin and disease. Copenhagen, Denmark. August 18−21. 2008 — P.70.

6. Zhigalova N.A., Zhenilo S.V., Prokhortchouk E.B. Kaiso is a bifunctional methyl-DNA-binding protein. The fourth Moscow international congress. // Biotechnology: state of the art and prospects of development. March, 12−16.2007 — P. 160.

Показать весь текст

Список литературы

  1. Sasai N. and Defossez P.A. Many paths to one goal? The proteins that recognize methylated DNA in eukaryotes. lnt J Dev.Biol. 2009. V. 53, P. 323−334.
  2. Daniel JM, Reynolds AB. The catenin pl20(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell Biol. 1999, V. 19, P. 3614−3623.
  3. Bestor T.H., Verdine G.L. DNA methyltransferases. Curr.Opin.Cell Biol 1994, V. 6, P. 380−389.
  4. Ruzov A., Dunican D.S., Prokhortchouk A., Pennings S., Stancheva I., Prokhortchouk E. et al. Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development. 2004, V. 131, P. 6185−6194.
  5. Prokhortchouk A, Sansom O, Sclfridge J, Caballero IM, Salozhin S, Aithozhina D et al. Kaiso-deficient mice show resistance to intestinal cancer. Mol. Cell Biol. 2006, V. 26, P. 199−208.
  6. Meulmeester E, Melchior F. Cell biology: SUMO. Nature. 2008, V. 452, P. 709−711.
  7. Hung MS, Karthikeyan N, Huang B, Koo HC, Kiger J, Shen CJ. Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases. Proc.Natl.Acad.Sci.U.S.A. 1999, V. 96, P. 11 940−5.
  8. Tariq M., Paszkowski J. DNA and histone methylation in plants. Trends Genet. 2004, V. 20, P. 244−51.
  9. Lander E.S.et al,. Initial sequencing and analysis of the human genome. Nature. 2001, V. 409, P. 860−921.
  10. Antequera F, Bird A. Number of CpG islands and genes in human and mouse 4. Proc.Natl.Acad.Sci. U.S.A. 1993, V. 90, P. 11 995−11 999.95
  11. Peter A. Jones eal. The Role of DNA Methylation in Mammalian. Science. 2001, V. 293, P. 1068−1070.
  12. Davies W, Isles AR, Wilkinson LS. Imprinted gene expression in the brain 8. Neurosci.Biobehav.Rev. 2005, V. 29, P. 421−430.
  13. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting 3. Curr.Opin.Genet.Dev. 2004, V. 14, P. 188−195.
  14. Okada M, Ymagata K, Hong K., Wakayama T., Zhang H. A role for the elongator complcx in zygotic paternal genome demethylation. Nature. 2010, V. 463, P. 554−558.
  15. Rand E, Ben Porath I, Keshet I, Cedar H. CTCF elements direct allele-specific undermethylation at the imprinted HI9 locus. Curr.Biol. 2004, V. 14, P. 1007−1012.
  16. Schoenherr CJ, Levorse JM, Tilghman SM. CTCF maintains differential methylation at the Igf2/H19 locus. Nat.Genet. 2003, V. 33, P. 66−69.
  17. Rand E, Ben Porath I, Keshet I, Cedar H. CTCF elements direct allele-specific undermethylation at the imprinted HI9 locus. Curr.Biol. 2004, V. 14, P. 1007−1102.
  18. Nicholls RD, Knepper JL. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu.Rev.Genomics Hum. Genet. 2001, V. 2, P. 153−175.
  19. Clerc P, Avner P. Multiple elements within the Xic regulate random X inactivation in mice. Semin. Cell Dev.Biol. 2003, V. 14, P. 85−92.
  20. Morey C, Navarro P, Debrand E, Avner P, Rougeulle C, Clerc P. The region 3' to Xist mediates X chromosome counting and H3 Lys-4 dimethylation within the Xist gene. EMBOJ. 2004, V. 23, P. 594−604.
  21. Avner P, Heard E. X-chromosome inactivation: counting, choice and initiation. Nat.Rev.Genet. 2001, V. 2, P. 59−67.
  22. Santos F. and Dean W. Epigenetic reprogramming during early development in mammals. Reproduction. 2004, V. 127, P. 643−651.
  23. Macleod D, Clark VH, Bird A. Absence of genome-wide changes in DNA methylation during development of the zebrafish. Nat.Genet. 1999, V. 23, P. 139−140.
  24. Adams R.L. DNA methylation. The effect of minor bases on DNA-protein interactions. Biochem.J. 1990, V. 265, P. 309−320.
  25. Adams RL. Eukaryotic DNA methyltransferases—structure and function. Bioessays 1995, V. 17, P. 139−145.
  26. Bestor TH. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 1992, V. 11, P. 2611−2617.
  27. Li E., Bestor T.H., Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992, V. 69, P. 915−926.
  28. Lei H., Oh S.P., Okano M., Juttermann R., Goss K.A., Jaenisch R. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development. 1996, V. 122, P. 3195−3205.
  29. Fuks F., Hurd P.J., Deplus R., Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 2003, V. 31, P. 2305−2312.
  30. Tatematsu K.I., Yamazaki T., Ishikawa F. MBD2-MBD3 complex binds to hemi-methylated DNA and forms a complex containing DNMT1 at the replication foci in late S phase. Genes Cells. 2000, V. 5, P. 677−688.
  31. Sen G.L., Reuter J.A., Webster D.E., Zhu L., Khavari P.A. DNMT1 maintains progenitor function in self-renewing somatic tissue. Nature. 2010, V. 463, P. 563−567.
  32. Gowher H, Jeltsch A. Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG correction of non-CpA. sites. J.Mol.Biol. 2001, V. 309, P. 1201−1208.
  33. Xu GL, Bestor TH, Bourc’his D, Hsieh CL, Tommerup N, Bugge M et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature. 1999, V. 402, P. 187−191.
  34. Bourc’his D., Bestor T.H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature. 2004, V. 431, P. 96−99.
  35. Webster KE, O’Bryan MK, Fletcher S, Crewther PE, Aapola U, Craig J et al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc.Natl.Acad.Sci. U.S.A. 2005, V. 102, P. 4068−4073.
  36. Gidekel S., Bergman Y. A unique developmental pattern of Oct-¾ DNA methylation is controlled by a cis-demodification element. J.Biol.Chem. 2002, V. 277, P. 34 521−34 530.
  37. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals
  38. Nat.Genet. 2003, V. 33, P. 245−254.
  39. Esteller M. and Herman J.G. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol. 2002, V. 196, P. 1−7.
  40. Yang DH, Smith ER, Cohen C, Wu H, Patriotis C, Godwin AK et al. Molecular events associated with dysplastic morphologic transformation and initiation of ovarian tumorigenicity. Cancer. 2002, V. 94, P. 2380−2392.
  41. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat.Genet. 1999, V. 21, P. 103−107.
  42. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development
  43. Genes Dev. 2001, V. 15, P. 710−723.
  44. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004, V. 429, P. 457−463.
  45. Fatemi M., Wade P.A. MBD family proteins: reading the epigenetic code. J. Cell Sei. 2006, V. 119, P. 3033−3037.
  46. Guy J, Hendrich B, Holmes M, Martin JE, Bird A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat.Genet. 2001, V. 27, P. 322−326.
  47. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell. 1992, V. 69, P. 905−914.
  48. Salozhin SV, Prokhorchuk EB, Georgiev GP. Methylation of DNA—one of the major epigenetic markers. Biochemistry (Mosc.). 2005, V. 70, P. 525−532.
  49. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem.Sci. 2006, V. 31, P. 89−97.
  50. Johnston MV, Mullaney B, Blue ME. Neurobiology of Rett syndrome. ./.Child Neurol. 2003, V.18, P. 688−692.
  51. Hendrich B, Abbott C, McQueen PI, Chambers D, Cross S, Bird A. Genomic structure and chromosomal mapping of the murine and human Mbdl, Mbd2, Mbd3, and Mbd4 genes. Mamm.Genome. 1999, V. 10, P. 906−912.
  52. Ng PIH, Jeppesen P, Bird A. Active repression of methylated genes by the chromosomal protein MBDl. Mol. Cell Biol. 2000, V. 20, P. 1394−1406.
  53. Fujita Nea. MCAF mediates MBDl-dependent transcriptional repression. Mol.Biol. Cell. 2003, V. 23, P. 2834−2843.
  54. Fujita N. Methyl-CpG binding domain 1 (MBDl) interacts with the Suv39hl-HPl heterochromatic complex for DNA methylation-based transcriptional repression. J.Biol.Chem. 2003, V. 278, P. 24 132−24 138.
  55. Reese BE, Bachman KE, Baylin SB, Rountree MR. The methyl-CpG binding protein MBDl interacts with the pi50 subunit of chromatin assembly factor 1. Mol. Cell Biol. 2003, V. 23, P. 3226−3236.
  56. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 2001, V. 15, P. 710−723.
  57. Zhang Yeal. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999, V. 13, P. 1924−1935.
  58. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998, V. 393, P. 386−389.
  59. Nan X, Tate P, Li E, Bird A. DNA methylation specifies chromosomal localization of MeCP2. Mol. Cell Biol. 1996, V. 16, P. 414−421.
  60. Hendrich B, Tweedie S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 2003, V. 19, P. 269−277.
  61. Millar CBeal. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science. 2002, V. 297, P. 403−405.
  62. Kim Sun-Mi et.al. DNA demethylation in hormon-induced transcriptional derepression. Nature. 2009, V. 461, P. 1007−1012.
  63. Ahmad K.F., Engel C.K., Prive G.G. Crystal structure of the BTB domain from PLZF. Biochemistry. 1998, V. 95, P. 12 123−12 128.
  64. Melnick A., Ahmad K.F., Arai S.A. In-depth mutational analysis of the promyelocytic leukemia zinc finger BTB/POZ domain reveals motifs and residues required for biological and transcriptional functions. Mol. Cell Biol. 2000, V. 20, P. 6550−6567.
  65. Ramos S., Khademi F., Somesh B.P., Rivero F. Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene. 2002, V. 298, P. 147−157.
  66. Yong Go Cho et.al. Genetic analysis of the DBC2 gene in gastric cancer. Acta Oncologica. 2008, V. 47, P. 366−371.
  67. Read D., Raff J.W. Functional studies of the BTB domainin the Drosophila GAGA and Mod (mdg 4) proteins. Nucleic. Acid Res. Nucleic.AcidRes. 2000, V. 28, P. 3864−3870.
  68. Carter M.G., Johns M.A., Zeng X., Zhou L., Zink C., Mankowski J.L. et al. Mice deficient in the candidate tumor supressor gene Hicl ezhibit developmental defects of structures affected in Miller-Dieker syndrome. Hum.Mol. Genet. 2000, V. 9, P. 413−419.
  69. Klug A, Schwabe JW. Protein motifs 5. Zinc fingers. FASEB J. 1995, V. 9, P. 597−604.
  70. Choo, Y. and Isalan, M. Advances in zinc finger engineering. Curr.Opin.Struct.Biol. 2000, V. 10, P. 411−416.
  71. Laity J.H., Dyson H.J., and Wright P.E. DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys (2)-His (2) zinc fingers. J.Mol.Biol. 2000, V. 295, P. 719−727.
  72. Elrod-Erickson M., Benson T.E., and Pabo C.O. High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. Structure. 1998, V. 6, P. 451−454.
  73. Choo, Y. Recognition of DNA methylation by zinc fingers. Nat.Struct.Biol. 1998, V. 5, P. 264−265.
  74. Sekimata M., Takahashi A., Murakami-Sekimata A., and Homma Y. Involvement of a novel zinc finger protein, MIZF, in transcriptional repression by interacting with a methyl-CpG-binding protein, MBD2. J.Biol.Chem. 2001, V. 276, P. 42 632−42 638.
  75. Sun L., Liu A., and Georgopoulos K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J. 1996, V. 15, P. 5358−5369.
  76. Georgopoulos K., Winandy S., and Avitahl N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu.Rev. 1mmunol. 1997, V. 15, P. 155−176.
  77. Merika M. and Orkin S.H. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Spl and EKLF. Mol. Cell Biol. 1995, V. 15, P. 2437−2447.
  78. Albagli O, Dhordain P, Deweindt C, Lecocq G, Leprince D. The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ. 1995, V. 6, P. 1193−1198.
  79. Bardwell VJ, Treisman R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 1994, V. 8, P. 1664−1677.
  80. Lucifero D, Mann MR, Bartolomei MS, Trasler JM. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum.Mol.Genet. 2004, V. 13, P. 839−849.
  81. Isalan M, Klug A, Choo Y. Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry. 1998, V. 37, P. 12 026−12 033.
  82. Daniel JM, Reynolds AB. The catenin pl20(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell Biol. 1999, V.19, P. 3614−3623.
  83. Yoon HG, Chan DW, Reynolds AB, Qin J, Wong J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell 2003, V. 12, P. 723−734.
  84. Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D et al. Kaiso-deiicient mice show resistance to intestinal cancer. Mol. Cell Biol. 2006, V. 26, P.199−208.
  85. Ruzov A, Dunican DS, Prokhortchouk A, Pennings S, Stancheva I, Prokhortchouk E et al. Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development. 2004, V. 131, P. 6185−6194.
  86. Ruzov A, Savitskaya E, Plackett JA, Reddington JP, Prokhortchouk A, Madej MJ et al. The non-methylated DNA-binding function of Kaiso is not required in early Xenopus laevis development. Development. 2009, V. 136, P. 729−738.
  87. Daniel JM, Reynolds AB. The catenin pl20(cln) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell Biol. 1999, V. 19, P. 3614−3623.
  88. Prokhortchouk A, Hendrich B, Jorgensen H, Ruzov A, Wilm M, Georgiev G et al. The pi20 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001, V. 15, P. 1613−1618.
  89. Anastasiadis PZ, Moon SY, Thoreson MA, Mariner DJ, Crawford HC, Zheng Y et al. Inhibition of RhoA by pi20 catenin. Nat. Cell Biol. 2000, V. 2, P. 637−644.
  90. Anastasiadis PZ, Reynolds AB. The pi20 catenin family: complex roles in adhesion, signaling and cancer. J. Cell Sci. 2000, V. 113, P. 1319−1334.
  91. Daniel JM, Reynolds AB. The catenin pl20(ctn) interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell Biol. 1999, V. 19, P. 3614−3623.
  92. Ogden SR, Wroblewski LE, Weydig C, Romero-Gallo J, O’Brien DP, Israel DA et al. pi 20 and Kaiso regulate Helicobacter pylori-induced expression of matrix metalloproteinase-7. Mol.Biol.Cell. 2008, V.19, P. 4110−4121.
  93. Dai S.D., Wang Y., Jiang G.Y., Zhang P.X., Dong X.J. Kaiso is expressed in lung cancer: its expression and localization is affected by pl20ctn. Lung Cancer. 2010, V. 67, P. 205 215.
  94. Yoon HG, Chan DW, Reynolds AB, Qin J, Wong J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso 199. Mol.Cell. 2003, V. 12, P. 723−734.
  95. Yoon HG, Chan DW, Reynolds AB, Qin J, Wong J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell 2003, V. 12, P. 723−734.
  96. Filion GJ, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez PA. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell Biol. 2006, V. 26, P. 169−181.
  97. Д.Г., Кудряшова Н.В., and Годовикова Т. С. Химические и функциональные аспекты посттрансляционной модификации белков. Acta Naturae. 20 096, № 3, С. 32−56.
  98. Benayoun BA, Veitia RA. A post-translational modification code for transcription factors: sorting through a sea of signals. Trends Cell Biol. 2009.
  99. Benayoun BA, Auer J, Caburet S, Veitia RA. The post-translational modification profile of the forkhead transcription factor FOXL2 suggests the existence of parallel processive/concerted modification pathways. Proteomics. 2008, V. 8, P. 3118−3123.
  100. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat.Rev.Mol.Cell Biol. 2005, V. 6, P. 838−849.
  101. Zegerman P, Canas B, Pappin D, Kouzarides T. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J.Biol.Chem. 2002, V. 277, P. 11 621−11 624.
  102. Mutskov V, Felsenfeld G. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J. 2004, V. 23, P. 138−149.
  103. Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J et al. Regulation of HP 1-chromatin binding by histone H3 methylation and phosphorylation. Nature. 2005.
  104. Lindroth AM, Shultis D, Jaseneakova Z, Fuchs J, Johnson L, Schubert D et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J. 2004, V. 23, P. 4286−4296.
  105. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J.Biol.Chem. 2003, V. 278, P. 4035−4040.
  106. Maclaine N.J., Hupp T.R. The regulation of p53 by phosphorylation: a model for how distinct signals integrate into the p53 pathway. Aging. 2009, V. 5, P. 490−502.
  107. Sluss H.K., Gannon H., Coles A.H., Shen Q., Eischen C.M., Jones S.N. Phosphorylation of p53 Serine 18 Upregulates Apoptosis to Suppress Myc-Induced Tumorigenesis. Mol Cancer Res. 2010, V. 2, P. 216−222.
  108. Mariner DJeal. Identification of Src phosphorylation sites in the catenin pl20ctn. J.Biol.Chem. 2001, V. 276, P. 28 006−28 013.
  109. Xia X., Mariner D.J., Reynolds A.B. Adhesion-associated and PKC-modulated changes in serine/threonine phosphorylation of pl20-catenin. Biochemistry. 2003, V. 42, P. 91 959 204.
  110. Bracaglia G., Conca B., Bergo A., Rusconi L., Zhou Z., Greenberg M.E. et al. Methyl-CpG-binding protein 2 is phosphorilated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO. 2009, V. 12, P. 1327−1333.
  111. Sakai H., Urano T., Ookata K., Kim M., Hirai Y., Saito M. et al. MBD3 and HDAC1, two components of the NuRD complex, are localized at Aurora-A positive centrosomes in M phase. J.Biol.Chem. 2002, V. 277, P. 48 714−48 723.
  112. Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25 1 .Mol.Cell. 2008, V. 30, P. 610−619.
  113. Zhang S.D., Goeres J., Zhang H., Yen T.J., Porter A.C., and Matunis M.J. SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression throuth mitosis. Mol.Cell. 2008, V. 29, P. 729−741.
  114. Ulrich H.D. The Fast-Growing Business of SUMO Chains. Mol.Cell. 2008, V. 32, P. 301−305.
  115. Fan J, Ren H, Fei E, Jia N, Ying Z, Jiang P et al. Sumoylation is critical for DJ-1 to repress p53 transcriptional activity. FEBS Lett. 2008, V. 582, P. 1151−1156.
  116. Yang S.H., Sharrocks A.D. SUMO promotes HDAC-mediated transcriptional repression. Mol.Cell. 2004, V. 13, P. 611−617.
  117. Uchimura Y., Ichimura T., Uwada J., Tachibana T., Sugahara S., Nakao M. et al. Involvement of SUMO modification in MBD1 and MCAF1-mediated Heterochromatin Formation. J.Biol.Chem. 2006, V. 281, P. 23 180−23 190.
  118. Peter J.Park. ChlP-seq: advantages and challenges of a maturing technology. Nature Reviews. 2009, V. 10, P. 669−678.
  119. Johnson D.S.et.al. Genoome-wide mapping of in vivo protein-DNA interaction. Science. 2007, V. 316, P. 1497−1502.
  120. В.M., Зубов В. В., Канапин А. А., Куклина И. Р., Лагарькова М. А., Прохорчук Е. Б., Скрябин К. Г., Степанова II.Г., Тараненко С.Б., and Урнов Ф. Д. Биотехнология: взгляд в будущее. Первая половина XXI века. Москва, 2008, С. 68.
  121. Valuev A., Johnson S.D., Sundquist A., Medina С., Anton Е., Batzoglou S., Myers R.M., and Sindow A. Genome-wide analysis of transcription factor binding sites based on ChlP-Seq data. Nature Methods. 2008, V. 5, P. 829−832.
  122. Martinowich K., Hattori D., Wu H., Fouse S., Ile F., Hu Y., Fan G., and Sun Y.E. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science. 2003, V. 302, P. 793−795.
  123. Yoon H.G., Chan D.W., Reynolds A.B., Qin J., Wong J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell. 2003, V. 12, P. 723−734.
  124. Jakobs A., Koehnke J., Himstedt F., Funk M., Korn В., Gastel M., and Niedenthal R. Ubc9 fusion directed SUMOylation (UFDS): a mathod to analyze function of protein SUMOylation. Nature Methods. 2007, V. 4, P. 245−250.
  125. Rosas-Acosta G., Russell W.K., Deyrieux A., Russel D.H., and Wilson V.G. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Molecular and Cellular Proteomics. 2005, V. 4, P. 56−72.
  126. Hay R.T. SUMO: a history of modification. Mol.Cell. 2005, V. 18, P. 1−12.
  127. Lyst M.J., Nan X., and Stancheva I. Regulation of MBDl-mediated transcriptional repression by SUMO and PIAS proteins. EMBO J. 2006, P. 1−12.
  128. Hernandez-Munoz I., Taghavi P., KuijI C., Neefjes J., Lohuizen M. Association of Bmil with Polycomb Bodies is dynamic and requires PRC2/EZH2 and the maintence DNA methyltransferase DNMT1. Mol. Cell Biol. 2005−25:11 074−58.
Заполнить форму текущей работой