Помощь в написании студенческих работ
Антистрессовый сервис

Моделирование многостадийного разрушения и гибели на основе пересечений границ случайными процессами

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Научная и практическая ценность работы заключается также в возможности использования предложенных математических и имитационных моделей в медицине и биологии. При использовании имитационных моделей существует возможность при фиксированных закономерностях неограниченно изменять условия проведения экспериментов, не осуществляя при этом дополнительных затрат. Кроме того, имитационное моделирование… Читать ещё >

Моделирование многостадийного разрушения и гибели на основе пересечений границ случайными процессами (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. Методы стохастического имитационного моделирования процессов возникновения и развития опухолей
    • 1. 1. Биологическая модель многостадийного процесса канцерогенеза
    • 1. 2. Обзор и анализ некоторых существующих моделей канцерогенеза, основанных на распределении Вейбулла
  • Глава 2. Анализ распределений моментов пересечения границ в модели многостадийного процесса канцерогенеза
    • 2. 1. Математическая модель канцерогенеза на базе распределения времени пересечения границы
    • 2. 2. Сходимость функции распределения моментов пересечения границ в модели многостадийною процесса разрушения к функции распределения Вейбулла
    • 2. 3. Распределение Вейбулла в имитационной модели многостадийного процесса разрушения
  • Глава 3. Анализ распределений моментов пересечения границ в модели взаимодействия процессов изменения веса и уровня метаболизма насекомых
    • 3. 1. Описание эксперимента и предварительные вычисления. процессов изменения веса и уровня метаболизма кузнечиков
    • 3. 3. Распределение Веибулла в стохастической семнмартингальной модели
    • 3. 4. Распределение Веибулла в имитационных моделях

Значительную роль при исследовании медико-биологических процессов играет математическое и соответствующее имитационное моделирование (см., например, [60], [68], [73], [75], [76], [82], [93], [98], [100]). Особое внимание уделяется патологическим явлениям, математическое и имитационное моделирование которых позволяет улучшать методы диагностики и лечения, устанавливать прогнозы заболеваний, и тем самым влиять как на возникновение и развитие заболеваний, так и на увеличение продолжительности жизни.

Авторы большинства работ, посвященных построению математических моделей биохимических процессов, используют при описании объектов термины обыкновенных дифференциальных уравнений или методы многомерной статистики. Однако детерминистский подход не всегда удается адекватно применить при моделировании биологических процессов и при анализе их временных характеристик. Любой организм представляет собой совокупность множества подсистем, зависящих друг от друга и от случайных внешних факторов. Аналитическое исследование биологических процессов организма часто является невозможным. Наиболее эффективным в этом случае будет использование стохастических имитационных моделей. Исследования процессов, с характеристиками, изменяющимися в случайные моменты времени, представлены во многих работах (см., например, [8], [65], [104], [105] и др.). Использование стохастических дифференциальных уравнений при разработке имитационной модели позволяет исследовать поведение биологических процессов в организме при воздействии на них случайных факторов. В связи с этим предложенные в данной работе математические и соответствующие им имитационные модели и алгоритмы их построения являются актуальными и имеют прикладное значение.

Целью работы является разработка новых методов моделирования и анализа поведения временных характеристик биологических процессов. Сопоставление или сравнение полученных моделей с уже существующими производится с помощью имитационной модели и построения оценок.

Математические и имитационные модели разработаны в семимартиигальных терминах, которые используются при формулировке и доказательстве теоретических результатов диссертационной работы (см., например, [64], [80], [81]), и включают в себя описания в терминах диффузионных процессов. Выбор параметров моделей осуществляется исходя из известной информации о моделируемом объекте и на основе сопоставления финальных характеристик имитационной модели с экспериментальными.

Разработка имитационных моделей, создание комплекса программ (язык Borland Delphi) в качестве реализации алгоритмов использования методов моделирования, и, как следствие, построение математических и имитационных моделей для рассматриваемых биологических процессов, осуществлялись согласно этапам общей схемы имитационного моделирования [101].

В качестве биологических процессов в работе рассмотрены процессы возникновения и развития злокачественных опухолей у млекопитающих и процессы динамики веса и уровня метаболизма у насекомых. В обоих случаях рассматривались и анализировались функции распределения моментов гибели организмов, а именно моментов пересечения случайным процессом некоторой границы. Разработанные математические модели позволяют диагностировать поведение биологических процессов, определять их влияние на время гибели организма, прогнозировать поведение процессов.

Математическое и имитационное моделирование взаимодействия процессов изменения веса и уровня метаболизма насекомых основано на предоставленных экспериментальных данных (Marc Tatar).

Основываясь на имеющейся в медицинской литературе информации о процессах возникновения и развития злокачественных опухолей (см., например, [42], [56], [59], [69], [70], [94] и др.), были созданы математические и имитационные модели рассматриваемых процессов. Полученные модели сравниваются с уже известными моделями канцерогенеза.

Сегодня существует ряд работ, посвященных описанию и анализу процессов возникновения или роста опухолей. Так, многостадийные модели для процессов возникновения опухолей разрабатывали Kopp-Schnider [22] и Moolgavkar [30], [32], Hanes и Wedel [16], Ryzin [43], [44]. Математические модели роста опухоли развивали Sherman [45], [46] и другие авторы (см., например, [3], [6], [11], [12], [31]). Некоторые авторы предлагали комбинированные модели. Например, объединенную модель возникновения и роста опухоли предложили в свое время Iversen и Arley [17]. Yang предложил модель, комбинирующую модель многих событий и модель роста опухоли [57].

Однако большинство известных существующих моделей канцерогенеза основаны на использовании распределения Вейбулла. В качестве альтернативы в данной работе предложен новый подход к рассмотрению и математическому описанию многостадийного процесса разрушения и деформации на примере процесса возникновения и развития опухоли.

Для математического и имитационного моделирования всех рассматриваемых биологических процессов в настоящей работе (наряду с широко известными) предлагается единообразный подход, основанный на том, что распределение случайных моментов возникает при пересечении различными случайными процессами некоторых границ. Данный подход отличается простотой в использовании и применяется при математическом и имитационном моделировании как взаимодействия процессов динамики веса и метаболизма у насекомых, так и канцерогенеза у млекопитающих. Кроме этого, все предложенные в работе модели объединяет то, что возникшее при пересечении границ распределение оказывается близким к распределению Веибулла.

Научная новизна определяется следующими факторами. Предложенные имитационные и математические модели реальных биологических объектов, описанные в семимартингальных терминах, являются новыми. Все основные результаты настоящей диссертационной работы являются новыми. Разработаны новые математические и имитационные модели динамики веса и уровня метаболизма насекомых, их взаимодействия. Методы моделирования многостадийных процессов разрушения и гибели также являются новыми.

Работа имеет теоретический характер. Научная ценность определяется тем, что в ней предложены новые математические и имитационные модели.

Научная и практическая ценность работы заключается также в возможности использования предложенных математических и имитационных моделей в медицине и биологии. При использовании имитационных моделей существует возможность при фиксированных закономерностях неограниченно изменять условия проведения экспериментов, не осуществляя при этом дополнительных затрат. Кроме того, имитационное моделирование позволяет прогнозировать поведение изучаемых биологических процессов, в том числе процесс возникновения опухоли, процесс преобразования опухоли в злокачественную, процесс возникновения новых стадий развития опухоли, процесс роста опухоли. Анализ характера заболевания на тех стадиях, когда оно обратимо, может быть очень полезен при постановке диагноза и лечении. Математическая и имитационная модель взаимодействия процессов динамики веса и уровня метаболизма насекомых позволяет определять зависимости между процессами одного организма, влияние их на гибель организма.

Теоретической значимостью обладают представленные стохастические методы анализа развития злокачественных новообразований. Теоретической и практической значимостью обладает стохастическая имитационная модель взаимодействия процессов динамики веса и уровня метаболизма насекомых. Практической и теоретической значимостью обладает предложенный метод адекватного имитационного моделирования реальных биологических объектов. Комплекс программ, реализующий данные методы также имеет практическое применение.

На защиту выносятся следующие основные положения:

1. Разработанные и адаптированные математическая и имитационная модели многостадийного процесса возникновения и развития злокачественных новообразований.

2. Теорема о натуральной шкале и следствие из нее.

3. Предельная теорема об аппроксимации функций распределения и следствие из нее.

4. Корреляционная и стохастическая математические и имитационные модели, описывающие взаимодействие процессов динамики веса и уровня метаболизма насекомых.

По теме диссертации опубликовано 8 работ [83]-[90], [96], 4 из которых входят в список ВАК. Диссертационные исследования проводились при поддержке гранта РФФИ, проект № 06−01−338.

Диссертационная работа состоит из введения, трех глав, выводов и заключения, списка литературы из 106 наименований отечественных и зарубежных источников, а также приложений. Общий объем диссертации составляет 116 страниц.

Основные результаты, полученные в диссертационной работе и выносимые на защиту:

1. Разработана и адаптирована стохастическая математическая модель многостадийного процесса разрушения и гибели на примере процесса возникновения, развития и роста злокачественных новообразований.

2. Сформулированы и доказаны теорема о натуральной шкале и следствие из нее.

3. Сформулированы и доказаны теорема об аппроксимации функций распределения.

4. Разработана и адаптирована стохастическая имитационная модель для многостадийного процесса возникновения, развития и роста злокачественных новообразований.

5. Разработаны и адаптированы линейная корреляционная и стохастическая ссмимартингальная математические и имитационные модели взаимодействия процессов динамики веса и уровня метаболизма насекомых.

Заключение

.

В данной диссертационной работе были разработаны и исследованы различные математические модели и способы анализа характеристик моделей для биологических процессов живых организмов. Математические модели разрабатывались в семимартипгальных терминах. В соответствии с математическим описанием были разработаны имитационные модели, реализованные как комплекс компьютерных программ. В работе также проверялась адекватность предлагаемых математических и имитационных компьютерных моделей реальным статистическим данным.

При математическом и имитационном моделировании различных рассматриваемых в работе биологических процессов применялся единообразный подход, основанный на построении и анализе распределения случайных моментов, возникающего при пересечении случайными процессами границ. Возникшие в ходе моделирования функции распределения аппроксимировались функциями распределения Вейбулла.

Показать весь текст

Список литературы

  1. J.A., Bellomo N. (Eds.), A survey of models for tumor-immune system dynamics, Modeling and Simulation in Science, Engineering and Technology, Birkhauser, Boston, 1997.
  2. Afenya E.K., Calderon C.P. Diverse ideas on the growth kinetics of disseminated cancer cells, Bull. Math. Biol. 62 (2000) 527−542.
  3. Ahn H., Kodell R.L., Moon H. Attribution of tumor lethality in the absence of cause-of-death information, Appl. Statist. 49 (2000) 157−169.
  4. Ames B.N., Gold L.S., Environmental pollution, pesticides, and the prevention of cancer: misconceptions, FASEB J. 11 (1997) 1041−1052.
  5. Ames B.N., Gold L.S. Chemical carcinogenesis: too many rodent carcinogenes// Proc. Natl. Acad. Sci. USA.- 1990.- 87.- P. 7772−7776.
  6. Bailer A.J., Portier C.J., An index of tumorigenic potency, Biometrics 49 (1993)357−365.
  7. Bertalanffy L., Quantitative laws in metabolism and growth, Q. Rev. Biol. 32 (1957) 217−231.
  8. Butov A.A., Vol ко v M.A., Anisimov V.N., Sehl M.E., Yashin A.I. A model of accelerated aging induced by 5-bromodeoxyuridine // Biogerontology 3 (3), 2002, 175−182.
  9. Dewanji A., Moolgavkar S.H., Luebeck E.G. Two-mutation model for carcinogenesis: joint analysis of premalignant and malignant lesions, Math. Biosci. 104(1991)97−109.
  10. Dinse G.E., Constant risk differences in the analysis of animal tumorigenicity data, Biometrics 47 (1991) 681−700.
  11. Farmer J.H., Kodell R.L., Gaylor D.W. Estimation and extrapolation of tumor probabilities from a mouse bioassay with survival/sacrifice components, Risk Anal. 2 (1982) 27−34.
  12. Finkelstein D.M. Modeling the effect of dose on the lifetime tumor rate from an animal carcinogenicity experiment, Biometrics 47 (1991) 669−680.
  13. Fulgoni V.L., Ramirez A.G. Cancer: the role of diet, nutrition, and fitness, Cancer 15 (1998) 1775−1783.
  14. M.Gompertz В., On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos. Trans. R. Soc. 115 (1825) 513−585.
  15. Hanahan D., Weinberg R.A., The hallmarks of cancer, Cell 100 (2000) 5770.
  16. Kakunaga T. The role of cell division in the malignant transformation of mouse cell treated with 3-methylcholantrence //Cancer Res.- 1975.- 35-P. 1637−42.
  17. King, R.J.B. Cancer Biology, 2nd Edition, Pearson Education, Harlow, 2000.
  18. Kooijman S.A.L.M., Bedaux J.J.M., The Analysis of Aquatic Toxicity Data, VU University Press, Amsterdam, 1996.
  19. Kooijman S.A.L.M. Dynamic Energy and Mass Budgets in Biological Systems: Theory and Applications, Cambridge University Press, Cambridge, 2000.
  20. Kopp-Schneider A., Carcinogenesis models for risk assessment, Statist. Methods Med. Res. 6 (1997) 317−340.
  21. Krewski D., Cardis E., Zeise L., Feron V.J., Empirical approaches to risk estimation and prediction, in: S.H. Moolgavkar, D. Krewski, L. Zeise, E. Cardis, H. Moller (Eds.), Quantitative Estimation and Prediction of Human
  22. Cancer Risks, IARC Scientific Publications, Lyon, 1999, pp. 131−178.
  23. Krylov N.V. Introduction to the theory of diffusion processcs.-USA: American Mathematical Society, 1995.
  24. Laird A.K. Dynamics of tumor growth, Br. J. Cancer 18 (1964) 490−502.
  25. Leeuwen C.J., Hermens J.L.M., Risk Assessment of Chemicals: An Introduction, Kluvver Academic Publishers, Dordrecht, 1995.
  26. Liotta L.A., Steeg P. S., W.G. Stetler Stevenson Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation, Cell 64 (1991)327−336.
  27. Lowe S.W., Lin A.W. Apoptosis in cancer, Carcinogenesis 21 (2000) 485−495.
  28. Lubin J.H., Blot W.J., Berrino F., Flamant R., Cillis C.R., Kunze M., Schmahl D., Visco G. Modifying risk of developing cancer by changing habits in cigarette smoking, Br. Med. J. 288 (1984) 1953−1956.
  29. S.H., Krewski D., Zeise L., Cardis E., Moller II. (Eds.) Quantitative Estimation and Prediction of Human Cancer Risks, IARC Scientific Publications, Lyon, 1999.
  30. Peto R., Lopez A.D., Boreham J., Thun M., Health C., Doll R. Mortality from smoking worldwide, Br. Med. Bull. 52 (1996) 12−21.
  31. Pitot H.C., Beer D., Hendrich S. Multistage carcinogenesis: the phenomenon underlying the theories /Estabrook RW, Lindenlaub EL, eds. Theories of Carcinogenesis.- Washington: Hemisphere Publ., 1987.- P. 15 991.
  32. Pott P., Chirurgical Observations Relative to the Cataracts, the Polypus of the Nose, the Cancer of the Scrotum, the Different Kinds of Ruptures and the Mortifications of the Toes and Feet, Hawes, Clarke and Collins, London, 1775.
  33. Rand G.M., Fundamentals of Aquatic Toxicology, 2nd Edition, Taylor and Francis, Washington, 1995.
  34. Remedi M.M., Hliba E., Demarchi M., Depiante-Depaoli M Relationship between immune state and tumor growth rate in rats bearing progressive and non-progressive mammary tumors, Cancer Immunol. Immunother. 46 (1998)350−354.
  35. Ries L.A.G., Kosery C.L., Hankey B.F., Miller B.A., Clegg, L. B.K. Edwards (Eds.), SEER Cancer Statistics Review, 1973−1996, National Cancer Institute, Bethesda, 2000.
  36. Ritter G., Wilson R., Pompei F. The Multistage Model of Cancer Development: Some Implications Harvard University Department of Physics Exergen Corp. Menzie-Cura and Associates (Dated: September 19, 2004)
  37. Ryzin J. Quantitative risk assessment, J. Occup. Med. 22 (1980) 321−326.
  38. Ryzin J., Rai K. A dose-response model incorporating nonlinear kinetics, Biometrics 43 (1987)95−105.
  39. Sherman C.D., Portier C.J., Kopp-Sehneider A., Multistage models of carcinogenesis: an approximation for the size and number distribution of late-stage clones, Risk Anal. 14 (1994) 1039−1048.
  40. Sherman C.D., Portier C.J., Calculation of the cumulative distribution function of the time to a small observable tumor, Bull. Math. Biol. 62 (2000) 229−240.
  41. Tan W.Y., Chen C.W. Stochastic modeling of carcinogenesis: some new insights, Math. Comput. Modeling 28 (1998) 49−71.
  42. Tannock I.F. Biology of tumor growth, Hosp. Practice 18 (1983) 81−93.
  43. Thompson D., On Growth and Form, Cambridge University Press, Cambridge, 1961.
  44. Tomatis L., Huff J., Hertz-Picciotto I., Sander D.P., Bucher J., Boffeta P., Axelson O., Blair A., Taylor J., Stayner L., Barret J.C. Avoided and avoidable risks of cancer, Carcinogenesis 18 (1997) 97−105.
  45. Vaidya V.G., Alexandra F.J., Evaluation of some mathematical models for tumor growth, Int. J. Bio-Med. Comput. 13 (1982) 19−35.
  46. Verhulst P.F. Notice sur la loi que la population suit dans son accroissement, Curr. Math. Phys. 10 (1838) 113−121.
  47. Weibull W., A statistical distribution of wide applicability, J. Appl. Mech. 18 (1951)293−297.
  48. Wiener N. Differential Spaces // J. Math. Phus. Math. Inst. Tech. 1923 -vol. 2-pp. 131−174.
  49. Winsor C.P. The Gompertz curve as a growth curve, Proc. Natl. Acad. Sci. U.S.A. 18 (1932) 1−8.
  50. Wodarz D, Krakauer D. Genetic instability and the evolution of angiogenic tumor cell lines (Review), Institute for Advanced Study, Einstein Drive, Princeton, NJ 8 540, USA Received July 31, 2001- Accepted August 24, 2001.
  51. Yang G.L., A stochastic two-stage carcinogenesis model: a new approach to computing the probability of observing tumor in animal bioassays, Math. Biosci. 104 (1991)247−258.
  52. Yokota J., Tumor progression and metastasis, Carcinogenesis 21 (2000) 497−503.
  53. Г. И. Что такое опухоль //Соросовский Образовательный Журнал, 1997, № 10, с.85−90.
  54. Н. Математика в биологии и медицине. М.:"Мир", 1970, 327с.
  55. П. Сходимость вероятностных мер М.: Наука — 1977.
  56. Н.Н. Советская Онкология. М.: Медицина 1982.
  57. А.В., Ширяев АЛ1. Теория случайных процессов. М.: Физмалит-2005.
  58. А.А. Теорема для оценок вероятностей пересечения границы простым монотонным дифференцируемым процессом // Учёные записки УлГУ: Фундаментальные проблемы математики и механики: сб. статей. Ульяновск: УлГУ, 2001, № 10 (1), с. 21−25.
  59. А.А., Арбеев К. Г., Яшин А. И. К вопросу о применении оценок вероятностей пересечения границ случайными процессами в моделях страхования // Препринт института им. М. Планка Росток — 2001 -19с.
  60. Вероятность и математическая статистика: Энциклопедия / Главный редактор Прохоров Ю. В. М.: Большая Российская энциклопедия1999.
  61. II. Кибернетика или управление и связь в животном и машине. М.: Советское радио — 1958.
  62. Г. П. Как нормальная клетка превращается в раковую //Соросовский Образовательный Журнал, 1999, № 4, с.17−22
  63. Г. П. Молекулярно-генетические механизмы профессии опухолей //Соросовский Образовательный Журнал, 2000, № 11, с.2−7
  64. И.И., Скороход А. В. Введение в теорию случайных процессов. -М.: Наука 1977.
  65. К. Емкости и случайные процессы. М.: Мир — 1975.
  66. В.Н. Четыре модели медицины. JL: «Медицина» 1987.
  67. ., Ширяев A.II. Предельные теоремы для случайных процессов-т. 1 — 2. — М.: Физматлит- 1994.
  68. Г. Р., Кринский В. И., Сельков Е. Е. Математическая биофизика клетки. М.: «Наука», 1978, 308с.
  69. Г. И. Физиологические системы организма человека, основные показатели. М.: «Триада-Х», 2000,336 с.
  70. Т.А., Морозова А. Д. Онкология и терминальная помощь. Серия «Медицина для вас» Ростов н/Д: Феникс — 2005.
  71. Крылов I I.B. Введение в стохастическое исчисление. Итоги науки и техники — серия Современные проблемы математики -т. 45 -'ВИНИТИ — 1989-с. 9−42.
  72. Ю.А. Оценивание параметров случайных процессов. -Ереван, 1980.
  73. Липцср P.III., Ширяев А. Н. Статистика случайных процессов. М.: Наука, 1974.
  74. Р.Ш., Ширяев А. Н. Теория мартингалов. М.: Наука. 1974.
  75. Г. И., Белых Л. Н. Математические модели в иммунологии и медицине // Сб. статей 1982 1985 гг. — 1986. — 310 с.
  76. Ю.Ж. Математическая модель многостадийного процесса разрушения //Ученые записки УлГУ. Сер. Фундаментальные проблемы математики и механики. Вып. 1(14), 2004 г, стр. 135−142.
  77. Ю.Ж. Модель многостадийного процесса разрушения //Обозрение прикладной и промышленной математики, том 12, вып. 2, М.: ТВП, 2005 г., стр. 443−444.
  78. Ю.Ж. Корреляционные связи процессов изменения веса и метаболизма у высокогорных и низкогорных кузнечиков. Линейная и несемимартингальная модели //Обозрение прикладной и промышленной математики, т. 13, вып. 3, М: ТВП, 2006 г. стр. 526−527.
  79. Ю.Ж. Методы моделирования процессов образования и развития опухолей // VI Международная научно-практическая конференция «Моделирование. Теория, методы и средства», часть 4, Новочеркасск: ЮРГТУ, 2006 г, стр. 24−29.
  80. Ю.Ж. Применение математической модели многостадийного процесса разрушения на примере развития канцерогенеза // Ученые записки УлГУ. Сер. Фундаментальные проблемы математики и механики. Вып. 1(14), 2004 г (принято в печать)
  81. Ю.Ж. Различные модели процессов динамики и веса и метаболизма насекомых // VI Международная научно-практическая конференция «Моделирование. Теория, методы и средства», часть 4, Новочеркасск: ЮРГТУ, 2006 г, стр. 4−6.
  82. Ю.Ж., Волков М. А. Стохастическая модель взаимодействия процессов динамики веса и уровня метаболизма живых организмов. //Обозрение прикладной и промышленной математики, т. 13, вып. 3, М.: ТВГ1, 2006 г. стр. 527.
  83. M.JI. Оптимальные правила многократной остановки // Обозрение прикладной и промышленной математики том 5 — вып. 2 -М.:ТВП- 1998 -с. 309−348.
  84. .Е. Онкология. М.: Медицина 1980.
  85. Ю.И. Приложение теории случайных процессов в биологии и медицине М. 1981.
  86. Н.А. Модели экспериментальной онкологии //Соросовский Образовательный Журнал, 2000, № 8, с.33−38.
  87. Ю.В. Теория вероятностей и ее применение 1956 — т.1. — в.2 -с. 177−238.
  88. Ю.Ж. Некоторые детерминированные и стохастические модели развития опухоли у мышей. //Обозрение прикладной и промышленной математики, т. 14, вып. 2, М.: ТВП, 2007 г. стр. 337 339.
  89. И.В., Дорошенко В. А. Основы патологии. Ростов н/Д: Феникс 2006.
  90. Г. Ю., Рубин А. Б. Математические модели биологических продукционных процессов // Издательство Московского университета, 1993,302с.
  91. Г., Сигмунд Д., Чао И. Теория оптимальных правил остановки-М.: Наука 1977.
  92. Ю.М., Степанова Н. В., Чернавский Д. С. Математическое моделирование в биофизике М: Наука, 1975, 344 с.
  93. А.А., Михайлов А. П. Математическое моделирование: Идеи. Методы. Примеры. М.: Наука. Физматлит1997−320 с.
  94. Л.Ф. Некоторые предельные теоремы для стохастических интегралов. Сб. «Теория случайных процессов» -Киев: Наукова думка — 1973 — вып. 1 — стр. 119−133.
  95. А.Н. Вероятность М.: Наука — 1989.
  96. А.Н. Об оптимальных методах в задачах скорейшего обнаружения. // Теория вероятностей и ее применение.-М.:ТВП, т. 8, в. 1, 1963, с. 26−51.
  97. А.Н. Статистический последовательный анализ. М.: Наука, 1976. 272 с.
  98. А.И. Теоретические и прикладные задачи оценивания скачкообразных процессов // Препринт. М.: Институт проблем управления 1978.
Заполнить форму текущей работой