Помощь в написании студенческих работ
Антистрессовый сервис

Поляризационные приборы

РефератПомощь в написанииУзнать стоимостьмоей работы

Поляризационные приборы широко применяют в кристаллографии и петрографии для исследования свойств кристаллов; в оптической промышленности для определения напряжений в стекле; в машиностроении и приборостроении для изучения методом фотоупругости напряжений в деталях машин и сооружений; в медицине; в химической, пищевой, фармацевтической промышленности для определения концентрации растворов… Читать ещё >

Поляризационные приборы (реферат, курсовая, диплом, контрольная)

Московский ордена Ленина, ордена Октябрьской.

Революции и ордена Трудового Красного Знамени.

ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ.

УНИВЕРСИТЕТ.

имени Н. Э. Баумана.

________________________________________________.

Факультет РЛ.

Кафедра РЛ3.

Реферат.

по дисциплине.

" Поляризационные.

приборы «.

студентки.

Сальниковой Любови Юрьевны группа РЛ 3−101.

Преподаватель.

Зубарев Вячеслав Евгеньевич.

Поляризационные приборы основаны на явлении поляризации света и предназначены для получения поляризованного света и изучения тех или иных процессов, происходящих в поляризованных лучах.

Поляризационные приборы широко применяют в кристаллографии и петрографии для исследования свойств кристаллов; в оптической промышленности для определения напряжений в стекле; в машиностроении и приборостроении для изучения методом фотоупругости напряжений в деталях машин и сооружений; в медицине; в химической, пищевой, фармацевтической промышленности для определения концентрации растворов. Поляризационные приборы получили распространение также для изучения ряда явлений в электрическом и магнитном поле.

Приборы для определения внутренних натяжений.

Т-образные установки МИСИ.

Т-образные установки МИСИ предназначаются для изучения деформации методом оптически чувствительных покрытий.

В полярископах Т-образного вида (рис. 1) свет от источника 1 проходит поляризатор 2, отражается от полупрозрачного зеркала 3, проходит оптически чувствительное покрытие 4 и, отразившись от поверхности образца 5, входит в анализаторную часть установки. Она содержит анализатор 8, сменные компенсатор 6 и пластинку, 7 в ¼ волны и экран полярископа 9. [pic] Рис. 1. Схема Т-образного полярископа.

Если измерение проводится в точке по методу компенсации, то перед анализатором устанавливают компенсатор. При фиксации изохроматической картины по полю перед анализатором устанавливают пластинку в ¼ волны.

В соответствии со схемой, представленной на рис. 1, разработана Тобразная установка (рис. 2), получившая наименование отражательного полярископа. [pic] Рис. 2. Отражательный полярископ МИСИ по Т-образной схеме.

Источник света 1 (лампа ДРШ-250) с помощью конденсора 2 проецируется на диафрагму 4 (диаметр отверстия 2 мм), помещенную в фокусе объектива 8.

Для снижения влияния инфракрасной радиации источника в схему введен теплофильтр 3. Расходящийся плоскополяризованный световой поток после диафрагмы 4 проходит поляризатор 5, пластинку 6 в ¼ волны, светофильтр 7 и попадает на объектив 8 (фокусное расстояние 300 мм). После объектива свет параллельным пучком проходит две полупрозрачные пластины 9 и 10, оптически чувствительное покрытие 11 и попадает на образец 12. После отражения в обратном ходе свет попадает в анализаторную часть установки, где объективом 13 фокусируется на диафрагму 16. Поляризационная картина после дополнительного светофильтра 14 и анализатора 15 рассматривается на экране полярископа l7. [pic] Рис. 3. Схема V-образного полярископа.

К установкам данного типа относятся также отражательный полярископ OП- 2, переносный малогабаритный полярископ ОП-3 и др.

V-образные полярископы.

V-образные полярископы используются для тех же целей, что и Тобразные. В полярископах V-образного вида (рис. 3) естественный монохроматический свет от источника 1 проходит поляризатор 2, становясь при этом плоскополяризованным. Проходя пластинку 3 в ¼ волны и оптически чувствительное покрытие 4, свет отражается от объекта исследования 5 (от пластически деформируемого образца), проходит вторую пластинку 6 в ¼ волны, анализатор 7 и образует изохроматическую картину на экране полярископа 8.

Для получения картины хорошего качества варьируется толщина покрытия 4 (в пределах 0,5 — 1,5 мм и угол (между оптическими осями поляризаторной и анализаторной части (в пределах 6((15() [pic] Рис. 4. Схема кругового поляриметра СМ.

Освещение объекта может осуществляться как параллельным, так и расходящимся пучком поляризованного света.

Приборы для определения угла поворота плоскости поляризации.

Круговой поляриметр СМ.

Круговой поляриметр СМ (рис. 4) предназначен для определения угла поворота плоскости поляризации в жидких оптически активных веществах.

Осветитель 1 (лампа накаливания или натриевая лампа ДНаО140) устанавливается в фокальной плоскости оптической системы 8. В конструкции узла осветителя предусмотрены подвижки для установки нити накала лампы на оптической оси. При работе с лампой накаливания перед оптической системой 3 вводится желтый светофильтр 2. Параллельный монохроматический пучок лучей, выходящий из системы 3, проходит через поляризатор 4 (поляроид, заклеенный между двумя стеклами), кварцевую пластинку 5, создающую совместно с поляроидом полутеневую картину с тройным полем зрения, и кварцевую кювету 6 с исследуемым раствором. Обычно длина кюветы выбирается такой, чтобы концентрации 10−3 кг/см3 соответствовал угол поворота плоскости поляризации (= 1(.

После кюветы расположен анализатор 7, аналогичный поляризатору 4, и телескопическая система, состоящая из объектива 10 и окуляра 11, через который ведется наблюдение при уравнивании освещенностей частей поля зрения.

Отсчет осуществляется по градусной шкале 8 неподвижного лимба (с оцифровкой от 0(до 360() с помощью двух диаметрально противоположных нониусов 9 (шкалы нониусов имеют по 20 делений; цена одного деления 0,05(). Из показаний двух нониусов берут среднее значение (для учета эксцентриситета лимба). Отсчет снимается при наблюдении лимба и нониуса через лупы 12.

Автоматический спектрополяриметр

[pic] Рис. 5. Схема автоматического спектрополяриметра.

Автоматический спектрополяриметр (рис. 5) предназначен для измерения угла поворота плоскости поляризации в диапазоне длин волн 0,24(0,60 мкм.

Источник света 1 сменный — лампа накаливания при работе в видимой части спектра и ртутная лампа сверхвысокого давления для измерения в ультрафиолетовой области. Излучение от лампы 1 проходит через двойной монохроматор 2 (с зеркальной оптикой и кварцевыми призмами), попадает на электромеханический поляризатор-модулятор 4, проходит исследуемый образец 5, анализатор 6 и попадает на фотоумножитель 7.

В зависимости от угла между направлениями колебаний, пропускаемых поляризатором и анализатором, меняется частота переменной составляющей потока, попадающего на фотоумножитель.

Сигнал, преобразованный в электрический и усиленный в усилителе 8, питает управляющую обмотку реверсного двигателя, который через редуктор вращает анализатор 6 до тех пор, пока из сигнала не исчезнет первая гармоника. Вращение анализатора регистрируется на самописец 3, связанном передающим устройством со шкалой длин волн монохроматора.

С помощью описанного прибора измеряется вращательная дисперсия образцов с поглощением до 80%. Предел измеряемых углов вращения (2(.

Лабораторные оптические приборы: Учебное пособие для приборостроительных и машиностроительных ВУЗов. Г. И. Федотов, Р. С. Ильин, Л. А. Новицкий, В. Е. Зубарев, А. С. Гоменюк.

Оглавление Введение 2 Приборы для определения внутренних натяжений 2 Т-образные установки МИСИ 2 V-образные полярископы 5 Приборы для определения угла поворота плоскости поляризации 6 Круговой поляриметр СМ 6 Автоматический спектрополяриметр 8 Список использованной литературы 9 Оглавление 9.

Показать весь текст
Заполнить форму текущей работой