Геотермальная энергетика
Для высокотемпературной воды (tт = 180єС) рассмотрены сверхкритические циклы, когда начальное давление пара pн= 3,8; 4,0; 4,2; и 5,0МПа. Из них наиболее эффективны с точки зрения получения максимальной мощности является сверхкритический цикл, приближенный к так называемому «треугольному» циклу с начальным давлением pн= 5,0Мпа. При этом цикле вследствие минимальной разности температур между… Читать ещё >
Геотермальная энергетика (реферат, курсовая, диплом, контрольная)
Реферат на тему Геотермальная энергетика
- Анотация.
Введение
.
- История развития геотермальной энергетики.
- Преобразование геотермальной энергии в электрическую и тепловую.
- Стоимость электроэнергии, вырабатываемой геотермальными элетростанциями.
- Выводы.
Список литературы
.
Анотация.
В данной работе приведена история развития геотермальной энергетики, как во всём мире, так и в нашей странеРоссии. Выполнен анализ использования глубинного тепла Земли, для преобразования его в электрическую энергию, а также для обеспечения городов и посёлков теплом и горячим водоснабжением в таких регионах нашей страны, как на Камчатке, Сахалине, Северном Кавказе. Сделано экономическое обоснование разработки геотермальных месторождений, строительство электростанций и сроки их окупаемости. Сравнивая энергии геотермальных источников с другими видами источников электроэнергии получаем перспективность развития геотермальной энергетики, которая должна занять важное место в общем балансе использования энергии. В частности, для рест-руктуризации и перевооружения энергетики Камчатской области и Курильских островов, частично Приморья и Северного Кавка-за следует использовать собственные геотермальные ресурсы.
Основными направлениями развития генерирующих мощностей в энергетике страны на ближайшую перспективу является техническое перевооружение и реконструкция электростанций, а также ввод новых генерирующих мощностей. Прежде всегоэто строительство парогазовых установок с КПД 5560%, что позволит повысить эффективность существующих ТЭС на 2540%. Следующим этапом должно стать сооружение тепловых электростанций с использованием новых технологий сжигания твёрдого топлива и со сверхкритическими параметрами пара для достижения КПД ТЭС, равного 46−48%. Дальнейшее развитие получат и атомные электростанции с реакторами новых типов на тепловых и быстрых нейтронах.
Важное место в формировании энергетики России занимает сектор теплоснабжения страны, который является самым большим по объёму потребляемых энергоресурсов более 45% их общего потребления. В системах централизованного теплоснабжения (ЦТ) производится более 71%, а децентрализованными источниками около 29% всего тепла. Электростанциями отпускается более 34% всего тепла, котельными примерно 50%. В соответствии с энергетической стратегией России до 2020 г. планируется рост теплопотребления в стране не менее чем в 1,3 раза, причём доля децентрализованного теплоснабжения будет возрастать с 28,6% в 2000 г. до 33% в 2020 г.
Повышение цен, которое произошло в последние годы, на органическое топливо (газ, мазут, дизельное топливо) и на его транспортировку в отдалённые районы России и соответственно объективный рост отпускных цен на электрическую и тепловую энергию принципиально изменяют отношение к использованию НВИЭ: геотермальной, ветровой, солнечной.
Так, развитие геотермальной энергетики в отдельных регионах страны позволяет уже сегодня решать проблему электро и теплоснабжения, в частности на Камчатке, Курильских островах, а также на Северном Кавказе, в отдельных районах Сибири и европейской части России.
В числе основных направлений совершенствования и развития систем теплоснабжения должно стать расширения использования местных нетрадиционных возобновляемых источников энергии и в первую очередь геотермального тепла земли. Уже в ближайшие 7−10 лет с помощью современных технологий локального теплоснабжения благодаря термальному теплу можно сэкономить значительные ресурсы органического топлива.
В последнее десятилетие использование нетрадиционных возобновляемых источников энергии (НВИЭ) переживает в мире настоящий бум. Масштаб применения этих источников возрос в несколько раз. Данное направление развивается наиболее интенсивно по сравнению с другими направлениями энергетики. Причин этого явления несколько. Прежде всего, очевидно, что эпоха дешевых традиционных энергоносителей бесповоротно закончилась. В этой области имеется только одна тенденция — рост цен на все их виды. Не менее значимо стремление многих стран, лишенных своей топливной базы к энергетической независимости Существенную роль играют экологические соображения, в том числе по выбросу вредных газов. Активную моральную поддержку применению НВИЭ оказывает население развитых стран.
По этим причинам развитие НВИЭ во многих государствах приоритетная задача технической политики в области энергетики. В ряде стран эта политика реализуется через принятую законодательную и нормативную базу, в которой установлены правовые, экономические и организационные основы использования НВИЭ. В частности, экономические основы состоят в различных мерах поддержки НВИЭ на стадии освоения ими энергетического рынка (налоговые и кредитные льготы, прямые дотации и др.)
В России практическое применение НВИЭ существенно отстает от ведущих стран. Отсутствует какая-либо законодательная и нормативная база, равно как и государственная экономическая поддержка. Всё это крайне затрудняет практическую деятельность в этой сфере. Основная причина тормозящих факторов затянувшееся экономическое неблагополучие в стране и, как следствие трудности с инвестициями, низкий платежеспособный спрос, отсутствие средств на необходимые разработки. Тем не менее, некоторые работы и практические меры по использованию НВИЭ в нашей стране проводятся (геотермальная энергетика). Парогидротермальные месторождения в России имеются только на Камчатке и Курильских островах. Поэтому геотермальная энергетика не может и в перспективе занять значимое место в энергетике страны в целом. Однако она способна радикально и на наиболее экономической основе решить проблему энергоснабжения указанных районов, которые пользуются дорогим привозным топливом (мазут, уголь, дизельное топливо) и находятся на грани энергетического кризиса. Потенциал парогидротермальных месторождений на Камчатке способен обеспечить по разным источникам от 1000 до 2000 Мвт установленной электрической мощности, что значительно превышает потребности этого региона на обозримую перспективу. Таким образом, существуют реальные перспективы развития здесь геотермальной энергетики.
История развития геотермальной энергетики.
Наряду с огромными ресурсами органического топлива Россия располагает значительными запасами тепла земли, которые могут быть преумножены за счет геотермальных источников, находящихся на глубине от 300 до 2500 м в основном в зонах разломов земной коры.
Территория России хорошо исследована, и сегодня известны основные ресурсы тепла земли, которые имеют значительный промышленный потенциал, в том числе и энергетический. Более того, практически везде имеются запасы тепла с температурой от 30 до 200С.
Ещё в 1983 г. во ВСЕГИНГЕО был составлен атлас ресурсов термальных вод СССР. В нашей стране разведано 47 геотермальных месторождений с запасами термальных вод, которые позволяют получить более 240· 10імі/сут. Сегодня в России проблемами использования тепла земли занимаются специалисты почти 50 научных организаций.
Для использования геотермальных ресурсов пробурено более 3000 скважин. Стоимость исследований геотермии и буровых работ, уже выполненных в этой области, в современных ценах составляет более 4млрд. долларов. Так на Камчатке на геотермальных полях уже пробурено 365 скважин глубиной от225до2266м и израсходовано (ещё в советское время) около 300млн. долларов (в современных ценах).
Эксплуатация первой геотермальной электростанции была начата в Италии в 1904 г. Первая геотермальная электростанция на Камчатке, да и первая в СССР Паужетская ГеоТЭС была введена в работу в 1967 г. и имела мощность 5мВт, увеличенную впоследствии до 11 мВт. Новый импульс развитию геотермальной энергетике на Камчатке был придан в 90-е годы с появлением организаций и фирм (АО «Геотерм», АО «Интергеотерм», АО «Наука»), которые в кооперации с промышленностью (прежде всего с Калужским турбинным заводом) разработали новые прогрессивные схемы, технологии и виды оборудования по преобразованию геотермальной энергии в электрическую и добились кредитования от Европейского банка реконструкции и развития. В результате в 1999 г. на Камчатке была введена Верхне-Мутновская ГеоТЭС (три модуля по 4мВт.). Вводится первый блок 25мВт. первой очереди Мутновской ГеоТЭС суммарной мощностью 50мВт.
Вторая очередь мощностью 100МВт может быть введена в2004г Таким образом, ближайшие и вполне реальные перспективы геотермальной энергетики на Камчатке определились, что является положительным несомненным примером использования НВИЭ в России, несмотря на имеющиеся в стране серьезные экономические трудности. Потенциал парогидротермальных месторождений на Камчатке способен обеспечить 1000МВт установленной электрической мощности, что значительно перекрывает потребности этого региона на обозримую перспективу.
По данным Института вулканологии ДВО РАН, уже выявленные геотермальные ресурсы позволяют полностью обеспечить Камчатку электричеством и теплом более чем на 100 лет. Наряду с высокотемпературным Мутновским месторождением мощностью 300МВт (э) на юге Камчатки известны значительные запасы геотермальных ресурсов на Кошелевском, Больше Банном, а на севере на Киреунском месторождениях. Запасы тепла геотермальных вод на Камчатке оцениваются в 5000МВт (т).
На Чукотке также имеются значительные запасы геотермального тепла (на границе с Камчатской областью), часть из них уже от-крыта и может активно использоваться для близлежащих городов и посёлков.
Курильские острова также богаты запасами тепла земли, их вполне достаточно для тепло и электрообеспечения этой территории в течение 100 200 лет. На острове Итуруп обнаружены запасы двухфазного геотермального теплоносителя, мощности которого (30МВт (э)) достаточно для удовлетворения энергопотребностей всего острова в ближайшие 100 лет. Здесь на Океанском геотермальном месторождении уже пробурены скважины и строится ГеоЭС. На южном острове Кунашир имеются запасы геотермального тепла, которые уже используются для получения электроэнергии и теплоснабжения г. Южно Курильска. Недра северного острова Парамушир менее изучены, однако известно, что и на этом острове есть значительные запасы геотермальной воды температурой от 70 до 95 С, здесь также строится ГеоТС мощностью 20 МВт (т).
Гораздо большее распространение имеют месторождения термальных вод с температурой 100−200С. При такой температуре целесообразно использование низкокипящих рабочих тел в паротурбинном цикле. Применение двухконтурных ГеоТЭС на термальной воде возможно в ряде районов России, прежде всего на Северном Кавказе. Здесь хорошо изучены геотермальные месторождения с температурой в резервуаре от 70 до 180 С, которые находятся на глубине от 300 до 5000 м. Здесь уже в течение длительного времени используется геотермальная вода для теплоснабжения и горячего водоснабжения. В Дагестане в год добывается более 6 млн. м. геотермальной воды. На Северном Кавказе около 500 тыс. чел, используют геотермальное водоснабжение.
Приморье, Прибайкалье, Западно-Сибирский регион также располагают запасами геотермального тепла, пригодного для широкомасштабного применения в промышленности и сельском хозяйстве.
Преобразование геотермальной энергии в электрическую и тепловую.
Одно из перспективных направлений использования тепла высокоминерализованных подземных термальных вод преобразование его в электрическую энергию. С этой целью была разработана технологическая схема для строительства ГеоТЭС, состоящая из геотермальной циркуляционной системы (ГЦС) и паротурбинной установки (ПТУ), схема которой приведена на рис. 1. Отличительной особенностью такой технологической схемы от известных является то, что в ней роль испарителя и перегревателя выполняет внутрискважинный вертикальный противоточный теплообменник, расположенный в верхней части нагнетательной скважины, куда по наземному трубопроводу подводится добываемая высокотемпературная термальная вода, которая после передачи тепла вторичному теплоносителю закачивается обратно в пласт. Вторичный теплоноситель из конденсатора паротурбинной установки самотёком поступает в зону нагрева по трубе, спущенной внутри теплообменника до днища.
В основе работы ПТУ лежит цикл Ренкина; t, s диаграмма этого цикла и характер изменения температур теплоносителей в теплообменнике испарителе.
Наиболее важным моментом при строительстве ГеоТЭС является выбор рабочего тела во вторичном контуре. Рабочее тело, выбираемое для геотермальной установки, должно обладать благоприятными химическими, физическими и эксплуатационными свойствами при заданных условиях работы, т. е. быть стабильным, негорючим, взрывобезопасным, нетоксичным, инертным по отношению к конструкционным материалам и дешёвым. Желательно выбирать рабочее тело с более низким коэффициентом динамической вязкости (меньше гидравлические потери) и с более высоким коэффициентом теплопроводности (улучшается теплообмен).
Все эти требования одновременно выполнить практически невозможно, поэтому всегда приходится оптимизировать выбор того или иного рабочего тела.
Невысокие начальные параметры рабочих тел геотермальных энергетических установок приводят к поиску низкокипящих рабочих тел с отрицательной кривизной правой пограничной кривой в t, s диаграмме, поскольку использование воды и водяного пара приводит в этом случае к ухудшению термодинамических показателей и к резкому увеличению габаритов паротурбинных установок, что существенно повышает их стоимость.
В качестве сверхкритического агента вторичного контура бинарных энергетических циклов предложено применять смесь изобутан + изопентан в сверхкритическом состоянии. Использование сверхкритических смесей удобно тем, что критические свойства, т. е. критическая температура tк (x), критическое давление pк (x) и критическая плотность qк (x) зависят от состава смеси x. Это позволит путём подбора состава смеси выбрать сверхкритический агент с наиболее благоприятными критическими параметрами для соответствующей температуры термальной воды конкретного геотермального месторождения.
В качестве вторичного теплоносителя используется легкокипящий углеводородизобутан, термодинамические параметры которого соответствуют требуемым условиям. Критические параметры изобутана: tк = 134,69 C; pк = 3,629МПа; qк =225,5кг/мі. Кроме того, выбор изобутана в качестве вторичного теплоносителя обусловлен его относительно невысокой стоимостью и экологической безвредностью (в отличие от фреонов). Изобутан в качестве рабочего тела нашёл широкое распространение за рубежом, а также предлагается использовать его в сверхкритическом состоянии в бинарных геотермальных энергетических циклах.
Энергетические характеристики установки рассчитаны для большого диапазона температур добываемой воды и различных режимов её работы. При этом во всех случаях принималось, что температура конденсации изобутана tкон =30 C.
Возникает вопрос о выборе наименьшего температурного напораt рис. 2. C одной стороны, уменьшение t приводит к увеличению поверхности теплообменника испарителя, что может быть экономически не оправдано. С другой стороны, увеличение t при заданной температуре термальной воды tт приводит к необходимости понизить температуру испарения tз (а, следовательно, и давление), что отрицательно скажется на КПД цикла. В большинстве практических случаев рекомендуется принимать t = 10ч25єС.
Полученные результаты показывают, что существуют оптимальные параметры работы паросиловой установки, которые зависят от температуры воды, поступающей в первичный контур парогенератора теплообменника. С увеличением температуры испарения изобутана tз возрастает мощность N вырабатываемая турбиной на 1кг/с расхода вторичного теплоносителя. При этом по мере увеличения tз уменьшается количество испаряемого изобутана на 1кг/с расхода термальной воды.
С повышением температуры термальной воды увеличивается и оптимальная температура испарения.
На рис. 3 представлены графики зависимости мощности N, вырабатываемой турбиной, от температуры испарения tз вторичного теплоносителя при различных температурах термальной воды.
Для высокотемпературной воды (tт = 180єС) рассмотрены сверхкритические циклы, когда начальное давление пара pн= 3,8; 4,0; 4,2; и 5,0МПа. Из них наиболее эффективны с точки зрения получения максимальной мощности является сверхкритический цикл, приближенный к так называемому «треугольному» циклу с начальным давлением pн= 5,0Мпа. При этом цикле вследствие минимальной разности температур между теплоносителем и рабочим телом температурный потенциал термальной воды используется наиболее полно. Сравнение этого цикла с докритическим (pн=3,4Мпа) показывает, что мощность, вырабатываемая турбиной при сверхкритическом цикле, увеличивается на 11%, плотность потока вещества, поступающего на турбину, в 1,7 раза выше, чем в цикле с pн= 3,4Мпа, что приведёт к улучшению транспортных свойств теплоносителя и уменьшению размеров оборудования (подводящих трубопроводов и турбины) паротурбинной установки. Кроме того, в цикле с pн= 5,0Мпа температура отработанной термальной воды tн, нагнетаемой обратно в пласт, составляет 42єС, тогда как в докритическом цикле с pн= 3,4 МПа температура tн= 55єС.
В то же время повышение начального давления до 5,0 МПа в сверхкритическом цикле влияет на стоимость оборудования, в частности на стоимость турбины. Хотя с ростом давления размеры проточной части турбины уменьшаются, одновременно возрастает число ступеней турбины, требуется более развитое концевое уплотнение и, главное, увеличивается толщина стенок корпуса.
Для создания сверхкритического цикла в технологической схеме ГеоТЭС необходима установка насоса на трубопроводе, связывающем конденсатор с теплообменником.
Однако такие факторы, как увеличение мощности, уменьшение размеров подводящих трубопроводов и турбины и более полное срабатывание температурного потенциала термальной воды, говорят в пользу сверхкритического цикла.
В дальнейшем следует искать теплоносители с более низкой критической температурой, что позволит создавать сверхкритические циклы при использовании термальных вод с более низкой температурой, так как тепловой потенциал подавляющего большинства разведанных месторождений на территории России не превышает 100ч120єС. В этом отношении наиболее перспективным является R13B1(трифторбромметан) со следующими критическими параметрами: tк= 66,9єС; pк= 3,946МПа; qк= 770кг/мі.
Результаты оценочных расчетов показывают, что применение в первичном контуре ГеоТЭС термальной воды с температурой tк= 120єС и создание во вторичном контуре на хладоне R13B1 сверхкритического цикла с начальным давлением pн= 5,0МПа также позволяют увеличить мощность турбины до 14% по сравнению с докритическим циклом с начальным давлением pн= 3,5МПа.
Для успешной эксплуатации ГеоТЭС необходимо решать проблемы, связанные с возникновением коррозии и солеотложений, которые, как правило, усугубляются с увеличением минерализации термальной воды. Наиболее интенсивные солеотложения образуются из-за дегазации термальной воды и нарушения в результате этого углекислотного равновесия.
В предложенной технологической схеме первичный теплоноситель циркулирует по замкнутому контуру: пласт — добычная скважина — наземный трубопровод — насос — нагнетательная скважина — пласт, где условия для дегазации воды сведены к минимуму. В то же время следует придерживаться таких термобарических условий в наземной части первичного контура, которые препятствуют дегазации и выпадению карбонатовых отложений (в зависимости от температуры и минерализации давление необходимо поддерживать на уровне 1,5МПа и выше).
Снижение температуры термальной воды приводит к выпаданию и некарбонатных солей, что было подтверждено исследованиями, проведенными на Каясулинском геотермальном полигоне. Часть выпадающих в осадок солей будет отлагаться на внутренней поверхности нагнетательной скважины, а основная масса выносится в призабойную зону. Отложение солей на забое нагнетательной скважины будет способствовать снижению приёмистости и постепенному уменьшению циркулярного дебита, вплоть до полной остановки ГЦС.
Для предотвращения коррозии и солеотложений в контуре ГЦС можно использовать эффективный реагент ОЭДФК (оксиэтили-дендифосфоновая кислота), обладающий длительным антикорро-ионным и антинакипным действием пассивации поверхности. Восстановление пассивирующего слоя ОЭДФК осуществляется путём периодического импульсного ввода раствора реагента в термальную воду у устья добычной скважины.
Для растворения солевого шлама, который будет скапливаться в призабойной зоне, а следовательно и для восстановления приёмистости нагнетательной скважины весьма эффективным реагентом является НМК (концентрат низкомолекулярных кислот), который также можно вводить периодически в циркулируемую термальную воду на участке до нагнетательного насоса.
Следовательно, из выше сказанного можно предложить, что одним из перспективных направлений освоения тепловой энергии земных недр является её преобразование в электрическую путём строительства двухконтурных ГеоТЭС на низкокипящих рабочих агентах. Эффективность такого преобразования зависит от многих факторов, в частности от выбора рабочего тела и параметров термодинамического цикла вторичного контура ГеоТЭС.
Результаты проведенного расчетного анализа циклов с использованием различных теплоносителей во вторичном контуре показывают, что наиболее оптимальными являются сверхкритические циклы, которые позволяют повысить мощность турбины и КПД цикла, улучшить транспортные свойства теплоносителя и более полно срабатывать температуру исходной термальной воды, циркулирующей в первичном контуре ГеоТЭС.
Установлено также, что для высокотемпературной термальной воды (180єС и выше) наиболее перспективным является создание сверхкритических циклов во вторичном контуре ГеоТЭС с использованием изобутана, тогда как для вод с более низкой температурой (100ч120єС и выше) при создании таких же циклов наиболее подходящим теплоносителем является хладон R13В1.
В зависимости от температуры добываемой термальной воды существует оптимальная температура испарения вторичного теплоносителя, соответствующая максимальной мощности, вырабатываемая турбиной.
В дальнейшем необходимо изучать сверхкритические смеси, использование которых в качестве рабочего агента для геотермальных энергетических циклов является наиболее удобным, так как путём подбора состава смеси можно легко менять их критические свойства в зависимости от внешних условий.
Другое направление использование геотермальной энергии геотермальное теплоснабжение, которое уже давно нашло применение на Камчатке и Северном Кавказе для обогрева теплиц, отопления и горячего водоснабжения в жилищно-коммунальном секторе. Анализ мирового и отечественного опыта свидетельствует о перспективности геотермального теплоснабжения. В настоящее время в мире работают геотермальные системы теплоснабжения общей мощностью 17 175 МВт, только в США эксплуатируется более 200 тысяч геотермальных установок. По планам Европейского союза мощность геотермальных систем теплоснабжения, включая тепловые насосы, должна возрасти с 1300 МВт в 1995 г до 5000 МВт в 2010 г.
В СССР геотермальные воды использовались в Краснодарском и Ставропольском краях, Кабардино-Балкарии, Северной Осетии, Чечено—Ингушетии, Дагестане, Камчатской области, Крыму, Грузии, Азербайджане и Казахстане. В 1988 г добывалось 60,8 млн. мі геотермальной воды, сейчас в России её добывается до 30млн. мі в год, что эквивалентно 150ч170 тыс. т. условного топлива. Вместе с тем технический потенциал геотермальной энергии, по данным Минэнерго РФ, составляет 2950 млн. т. условного топлива.
За минувшие 10 лет в нашей стране распалась система разведки, разработки и эксплуатации геотермальных ресурсов. В СССР научно исследовательскими работами по данной проблеме занимались институты Академии наук, министерств геологии и газовой промышленности. Разведку, оценку и утверждение запасов месторождений выполняли институты и региональные подразделения министерства геологии. Бурение продуктивных скважин, обустройство месторождений, разработку технологий обратной закачки, очистки геотермальных вод, эксплуатацию геотермальных систем теплоснабжения осуществляли подразделения Министерства газовой промышленности. В его составе работало пять региональных эксплуатационных управлений, научно-производственное объединение «Союзгеотерм» (Махачкала), которым была разработана схема перспективного использования геотермальных вод СССР. Проектированием систем и оборудования геотермального теплоснабжения занимался Центральный научно-исследовательский и проектно-эксперементальный институт инженерного оборудования.
В настоящее время прекратились комплексные научно-исследовательские работы в области геотермии: от геолого-гидрогеологических исследований до проблем очистки геотермальных вод. Не ведётся разведочное бурение, обустройство ранее разведанных месторождений, не модернизируется оборудование существующих геотермальных систем теплоснабжения. Роль государственного управления в развитии геотермии ничтожна. Специалисты по геотермии разрознены, их опыт не востребован. Анализ существующего положения и перспектив развития в новых экономических условиях России выполним на примере Краснодарского края.
Для данного региона из всех НВИЭ наиболее перспективно использование геотермальных вод. На рис. 4 представлены приоритеты использования НВИЭ для теплоснабжения объектов Краснодарского края.
В Краснодарском крае ежегодно добывается до 10 млн. мі/год геотермальной воды с температурой 70ч100є С, что замещает 40ч 50 тыс. т. органического топлива (в пересчете на условное топли-во). Эксплуатируется 10 месторождений, на которых работает 37 скважин, в стадии освоения находятся 6 месторождений с 23 скважинами. Общее количество геотермальных скважин77. Геотермальными водами отапливается 32 га. теплиц, 11 тыс. квартир в восьми населённых пунктах, горячим водоснабжением обеспечивается 2 тыс. чел. Разведанные эксплуатационные запасы геотермальных вод края оцениваются в 77,7тыс. мі/сут, или при эксплуатации в течение отопительного сезона-11,7млн. мі в сезон, прогнозные запасы соответственно 165тыс. мі/сут и 24,7млн. мі в сезон.
Одно из наиболее разработанных Мостовское геотермальное месторождение в 240 км от Краснодара в предгорьях Кавказа, на котором пробурено 14 скважин глубиной 1650ч1850м с дебитами 1500ч3300 мі/сут, температурой в устье 67ч78є С, общей минерализацией 0,9ч1,9г/л. По химическому составу геотермальная вода почти соответствует нормам на питьевую воду. Основной потребитель геотермальной воды данного месторождения тепличный комбинат с площадью теплиц до 30 га, на котором ранее работало 8 скважин. В настоящее время здесь отапливается 40% площади теплиц.
Для теплоснабжения жилых и административных зданий пос. Мостовой в 80-е годы был построен геотермальный центральный тепловой пункт (ЦТП) расчётной тепловой мощностью 5МВт, схема которого приведена на рис. 5. Геотермальная вода в ЦТП поступает от двух скважин с дебитом каждая 45ч70 мі/ч и температурой 70ч74єС в два бака-аккумулятора вместимостью по 300мі. Для утилизации теплоты сбросной геотермальной воды установлено два парокомпрессорных тепловых насоса расчётной тепловой мощностью 500кВт. Отработанная в системах отопления геотермальная вода с температурой 30ч35єС перед теплонасосной установкой (ТНУ) разделяется на два потока, один из которых охлаждается до 10єС и сливается в водоём, а второй догревается до 50єС и возвращается в баки-аккумуляторы. Теплонасосные установки были изготовлены московским заводом «Компрессор» на базе холодильных машин А-220−2-0.
Регулирование тепловой мощности геотермального отопления при отсутствии пикового догрева осуществляется двумя способами: пропусками теплоносителя и циклически. При последнем способе системы периодически заполняются геотермальным теплоносителем с одновременным сливом охлажденного. При суточном периоде отопления Z время натопа Zн определяется по формуле
Zн = 48/(1 +), где коэффициент отпускной теплоты; расчётная температура воздуха в помещении, С; и фактическая и расчётная температура наружного воздуха, С.
Вместимость баков-аккумуляторов геотермальных систем определяется из условия обеспечения нормируемой амплитуды колебаний температуры воздуха в отапливаемых жилых помещениях (3С) по формуле.
где kF теплоотдача системы отопления, приходящаяся на 1С температурного напора, Вт/С; Z = Zн + Zппериод работы геотер-мального отопления; Zппродолжительность паузы, ч; Qp и Qpрасчётная и средняя за сезон тепловая мощность системы отопления здания, Вт; c· pобьёмная теплоёмкость геотермальной воды, Дж/(мі· єС); nчисло включений геотермального отопления за сутки; k1коэффициент тепловых потерь в системе геотермального теплоснабжения; А1амплитуда колебаний температуры в отапливаемом здании, єС; Рномсуммарный показатель теплопоглощения отапливаемых помещений; Vс и Vтс вместимость систем отопления и тепловых сетей, мі.
При работе тепловых насосов соотношение расходов геотермальной воды через испаритель Gи и конденсатор Gк определяется по формуле:
Где tk, to, tитемпература геотермальной воды после конденсатора, системы отопления здания и испарителей ТНУ, єС.
Следует отметить низкую надежность применявшихся конструкций тепловых насосов, так как условия их работы существенно отличались от условий работы холодильных машин. Отношение давлений нагнетания и всасывания компрессоров при работе в режиме тепловых насосов в 1,5ч2 раза превышает аналогичное отношение в холодильных машинах. Отказы шатуннопоршневой группы, маслохозяйства, автоматики привели к преждевременному выходу этих машин из строя.
В результате отсутствия контроля гидрологического режима эксплуатация Мостовского геотермального месторождения уже через 10 лет давление в устье скважин уменьшилось в 2 раза. С целью восстановления пластового давления месторождения в 1985 г. было пробурено три нагнетательных скважины, построена насосная станция, однако их работа не дала положительного результата из-за низкой приёмистости пластов.
Для наиболее перспективного использования геотермальных ресурсов г. Усть-Лабинска с населением 50 тыс. человек, расположенного в 60 км от Краснодара, разработана система геотермального теплоснабжения расчётной тепловой мощностью 65 МВт. Из трёх водонасосных горизонтов выбраны эоцен-палеоценовые отложения глубиной залегания 2200ч2600м с пластовой температурой 97ч100єС, минерализацией 17ч24г/л.
В результате анализа существующих и перспективных тепловых нагрузок в соответствии со схемой развития теплоснабжения города определена оптимальная, расчётная, тепловая мощность геотермальной системы теплоснабжения. Технико-экономическое сравнение четырёх вариантов (три из них без пиковых котельных с различным количеством скважин и один с догревом в котельной) показало, что минимальный срок окупаемости имеет схема с пиковой котельной рис. 6.
Система геотермального теплоснабжения предусматривает строительство западного и центрального термоводозаборов с семью нагнетательными скважинами. Режим эксплуатации термоводозаборов с обратной закачкой охлажденного теплоносителя. Система теплоснабжения двухконтурная с пиковым догревом в котельной и зависимым присоединением существующих систем отопления зданий. Капитальные вложения в сооружение данной геотермальной системы составили 5,14 млн руб. (в ценах 1984 г.), срок окупаемости4,5 года, расчётная экономия замещаемого топлива18,4 тыс. т. условного топлива в год.
Стоимость электроэнергии, вырабатываемой геотермальными электростанциями.
Расходы на исследования и разработку (бурение) геотермальных полей составляют до 50% всей стоимости ГеоТЭС, и поэтому стоимость электроэнергии, вырабатываемой на ГеоЭС, довольно значительна. Так, стоимость всей опытно-промышленной (ОП) Верхнее-Мутновской ГеоЭС [мощность 12(34) МВт] составила около 300 млн руб. Однако отсутствие транспортных расходов на топливо, возобновляемость геотермальной энергии и экологическая чистота производства электроэнергии и тепла позволяют геотермальной энергетике успешно конкурировать на энергетическом рынке и в некоторых случаях производить более дешёвую электроэнергию и тепло, чем на традиционных КЭС и ТЭЦ. Для удалённых районов (Камчатка, Курильские острова) ГеоЭС име-ют безусловное преимущество перед ТЭЦ и дизельными станциями, работающими на привозном топливе.
Если в качестве примера рассматривать Камчатку, где более 80% электроэнергии производится на ТЭЦ-1 и ТЭЦ-2, работающих на привозном мазуте, то использование геотермальной энергии более выгодны. Даже сегодня, когда ещё идёт процесс строительства и освоение новых ГеоЭС на Мутновском геотермальном поле, себестоимость электроэнергии на Верхне-Мутновской ГеоЭС более чем в два раза ниже, чем на ТЭЦ в Петропавловске Камчатском. Стоимость 1кВтч (э) на старой Паужетской ГеоЭС в 23 раза ниже, чем на ТЭЦ-1 и ТЭЦ-2.
Себестоимость 1кВтч электроэнергии на Камчатке в июле 1988 г была от 10 до 25 центов, а средний тариф на электроэнергию был установлен на уровне 14 центов. В июне 2001 г. в этом же регионе тариф на электроэнергию за 1кВтч составлял от 7 до 15 центов. В начале 2002 г. средний тариф в ОАО «Камчатскэнерго» был равен 3,6 руб. (12центов). Совершенно ясно, что экономика Камчатки не может успешно развиваться без снижения стоимости потребляемой электроэнергии, а этого можно достичь только путём использования геотермальных ресурсов.
Сейчас, перестраивая энергетику, очень важно исходить из реальных цен на топливо и оборудование, а также цен на энергию для разных потребителей. В противном случае можно прийти к ошибочным выводам и прогнозам. Так, в стратегии развития экономики Камчатской области, разработанной в 2001 г в «Дальсетьпроекте», без достаточных обоснований за 1000мі газа была заложена цена 50дол., хотя ясно, что реальная стоимость газа будет не ниже 100дол., а продолжительность освоения газовых месторождений будет составлять 5ч10 лет. При этом согласно предложенной стратегии запасы газа рассчитываются на срок эксплуатации не более 12 лет. Поэтому перспективы развития энергетики Камчатской области должны быть связаны в первую очередь со строительством серии геотермальных электростанций на Мутновском месторождении [до 300МВт (э)] перевооружением Паужетской ГеоЭС, мощность которой должна быть доведена до 20 МВт, и строительство новых ГеоЭС. Последние обеспечат энергетическую независимость Камчатки на многие годы (не менее 100 лет) и позволят снизить стоимость продаваемой электроэнергии.
Согласно оценке Мирового Энергетического Совета из всех возобновляющих источников энергии самая низкая цена за 1кВт· ч у ГеоЭС (смотри таблицу).
Виды НВИЭ | Установ; ленная мощность (МВт) | Коэффиц. использов. мощности (%) | Стои ; мость 1кВт· ч сегодня (цент) | Стои мость 1кВт· ч в будущ. (цент) | Стоимость 1кВт установл. мощност (дол.) | Доля вы; работан; ной эл. энергии (%) | Прирост в послед; ние 5 лет (%) | |
Геотер; мальная | 55ч95(84) | 2ч10 | 1ч8 | 800ч3000 | 70,2 | |||
Ветер | 20ч30(25) | 5ч13 | 3ч10 | 1100ч 1700 | 27,1 | |||
Солнеч; ная | 8ч20 | 25ч125 | 5ч25 | 5000ч10 000 | 2,1 | |||
Приливы | 20ч30 | 8ч15 | 8ч15 | 1700ч 2500 | 0,6 | |||
Из опыта эксплуатации крупных ГеоЭС на Филлипинах, Новой Зеландии, в Мексике и в США следует, что себестоимость 1кВт· ч электроэнергии часто не превышает 1 цента, при этом следует иметь в виду, что коэффициент использования мощности на ГеоЭС достигает значения 0,95.
Геотермальное теплоснабжение наиболее выгодно при прямом использовании геотермальной горячей воды, а также при внедрении тепловых насосов, в которых может эффективно применяться тепло земли с температурой 10ч30єС, т. е. низкопотенциальное геотермальное тепло. В современных экономических условиях России развитие геотермального теплоснабжения крайне затруднено. Основные средства необходимо вкладывать в бурение скважин. В Краснодарском крае при стоимости бурения 1 м скважины 8 тыс. руб., глубине её 1800 м затраты составляют 14,4 млн руб. При расчётном дебите скважины 70мі/ч, срабатываемом температурном напоре 30є С, круглосуточной работе в течение 150 сут. в году, коэффициенте использования расчётного дебита в течение отопительного сезона 0,5 количество отпускаемой теплоты равно 4385 МВт· ч, или в стоимостном выражении1,3 млн руб. при тарифе 300 руб./(МВт· ч). При таком тарифе бурении скважин будет окупаться 11 лет. Вместе с тем в перспективе необходимость развитие данного направления в энергетике не вызывает сомнения.
Выводы.
1. Практически на всей территории России имеются уникальные запасы геотермального тепла с температурами теплоносителя (вода, двухфазный поток и пар) от 30 до 200є С.
2. В последние годы в России на основе крупных фундаментальных исследований были созданы геотермальные технологии, способные быстро обеспечить эффективное применение тепла земли на ГеоЭС и ГеоТС для получения электроэнергии и тепла.
3. Геотермальная энергетика должна занять важное место в общем балансе использования энергии. В частности, для реструктуризации и перевооружения энергетики Камчатской области и Курильских островов и частично Приморья, Сибири и Северного Кавказа следует использовать собственные геотермальные ресурсы.
4. Широкомасштабное внедрение новых схем теплоснабжения с тепловыми насосами с использованием низкопотенциальных источников тепла позволит снизить расход органического топлива на 20ч25%.
5. Для привлечения инвестиций и кредитов в энергетику следует выполнять эффективные проекты и гарантировать своевременный возврат заемных средств, что возможно только при полной и своевременной оплате элект-ричества и тепла, отпущенных потребителям.
1. Преобразование геотермальной энергии в электрическую с использованием во вторичном контуре сверхкритического цик-ла. Абдулагатов И. М., Алхасов А. Б. «Теплоэнергетика.-1988№ 4-стр. 53−56».
2. Саламов А. А. «Геотермические электростанции в энергетике мира» Теплоэнергетика2000№ 1-стр. 79−80″
3. Тепло Земли: Из доклада «Перспективы развития геотермальных технологий» Экология и жизнь-2001;№ 6-стр49−52.
4. Тарнижевский Б. В. «Состояние и перспективы использования НВИЭ в России» Промышленная энергетика-2002;№ 1-стр. 52−56.
5. Кузнецов В. А. «Мутновская геотермальная электростанция» Электрические станции-2002;№ 1-стр. 31−35.
6. Бутузов В. А. «Геотермальные системы теплоснабжения в Краснодарском крае» Энергоменеджер-2002;№ 1-стр.14−16.
7. Бутузов В. А. «Анализ геотермальных систем теплоснабжения России» Промышленная энергетика-2002;№ 6-стр.53−57.
8. Доброхотов В. И. «Использование геотермальных ресурсов в энергетике России» Теплоэнергетика-2003;№ 1-стр.2−11.
9. Алхасов А. Б. «Повышение эффективности использования геотермального тепла» Теплоэнергетика-2003;№ 3-стр.52−54.