ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

БущСствованиС ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 16.1 ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° для установлСния условий, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… функция Ρƒ = /(Ρ…) ΠΈΠΌΠ΅Π΅Ρ‚ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ…0 ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Ρ… = /_,(Ρƒ), ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΡƒΡŽ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ Ρƒ0 = /(Ρ…0). ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Ρƒ = / (Ρ…) Π² Π²ΠΈΠ΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ уравнСния F (Ρ…, Ρƒ) =/(Ρ…) — Ρƒ = 0. Если Π² ΡΡ‚ΠΎΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ Ρ… ΡΠ²Π»ΡΠ΅Ρ‚ся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΎΡ‚ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρƒ, Ρ‚ΠΎ ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 16.1 ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

БущСствованиС ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 16.1 ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π° для установлСния условий, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… функция Ρƒ = /(Ρ…) ΠΈΠΌΠ΅Π΅Ρ‚ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ…0 ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Ρ… = /_,(Ρƒ), ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΡƒΡŽ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ Ρƒ0 = /(Ρ…0). ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Ρƒ = / (Ρ…) Π² Π²ΠΈΠ΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ уравнСния F (Ρ…, Ρƒ) =/(Ρ…) — Ρƒ = 0. Если Π² ΡΡ‚ΠΎΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ Ρ… ΡΠ²Π»ΡΠ΅Ρ‚ся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ ΠΎΡ‚ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° Ρƒ, Ρ‚ΠΎ ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 16.1 ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅: Ссли функция Ρƒ —/(Ρ…) ΠΈΠΌΠ΅Π΅Ρ‚ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ хэ ΠΎΡ‚Π»ΠΈΡ‡Π½ΡƒΡŽ ΠΎΡ‚ Π½ΡƒΠ»Ρ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ, Ρ‚ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΠ΅Ρ‚ функция Ρ…- /_1(Ρƒ), опрСдСлСнная ΠΈ Π΄ΠΈΡ„фСрСнцируСмая Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ Ρƒ0, Π³Π΄Π΅ Π£0 = f (Ρ…0). ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ этой ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ согласно Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

(16.7), Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ… ΠΈ Ρƒ Π½ΡƒΠΆΠ½ΠΎ ΠΏΠΎΠΌΠ΅Π½ΡΡ‚ΡŒ мСстами, Ρ€Π°Π²Π½Π° 1//'/(Ρ…0).

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈf (xΠ£ Рассмотрим случай, ΠΊΠΎΠ³Π΄Π° размСрности Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² //ΠΈΡ… Ρ€Π°Π²Π½Ρ‹ (см. ΠΏ. 15.3.4). ΠžΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ Π½Π΅ΡΠ²Π½ΡƒΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ.

БущСствованиС ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π’ΠΎΠ³Π΄Π° вопрос ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ… = / '(ΠΈ) связан с Π²ΠΎΠΏΡ€ΠΎΡΠΎΠΌ ΠΎ Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ уравнСния (16.16). НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ F ΠΏΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ΠΈ ΠΈΠ· ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡ (16.16) ΠΈΠΌΠ΅Π΅ΠΌ: БущСствованиС ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π³Π΄Π΅ Π• — соотвСтствСнно Сдиничная ΠΈ Π½ΡƒΠ»Π΅Π²Π°Ρ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, Π­//Π­Ρ… — ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π―ΠΊΠΎΠ±ΠΈ (15.53). УмноТая ΠΎΠ±Π΅ части этого равСнства Π½Π° ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ, ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ (15.53), ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Π―ΠΊΠΎΠ±ΠΈ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ… ΠΏΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€-Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ ΠΈ выраТаСтся ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ:

БущСствованиС ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Как слСдствиС Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 16.3 справСдливо ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠΎΠ± ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Если Π²Π΅ΠΊΡ‚ΠΎΡ€-функция // = /(*) ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π΅Π²Ρ‹Ρ€ΠΎΠΆΠ΄Π΅Π½Π½ΡƒΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ Π―ΠΊΠΎΠ±ΠΈ (15.53).

Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ…0, Ρ‚ΠΎ Π΄Π»Ρ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сущСствуСт обратная функция x-f '(//), которая ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ° Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ окрСстности Ρ‚ΠΎΡ‡ΠΊΠΈ //0, Π³Π΄Π΅ ΠΈΠΎ = /(Π΄ΠΎ). ΠœΠ°Ρ‚Ρ€ΠΈΡ†Π° Π―ΠΊΠΎΠ±ΠΈ для этой ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ для (15.53).

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ