Помощь в написании студенческих работ
Антистрессовый сервис

Освещение. 
Безопасность жизнедеятельности

РефератПомощь в написанииУзнать стоимостьмоей работы

Конструкция светильника должна надежно защищать источник света от пыли, воды и других внешних факторов, обеспечивать электро-, пожарои взрывобезопасность, стабильность светотехнических характеристик в данных условиях среды, удобство монтажа и обслуживания, соответствовать эстетическим требованиям. В зависимости от конструктивного исполнения различают светильники открытые, защищенные, закрытые… Читать ещё >

Освещение. Безопасность жизнедеятельности (реферат, курсовая, диплом, контрольная)

Параметры и устройства освещения

Правильно спроектированное и рационально выполненное освещение помещений оказывает положительное психофизиологическое воздействие на работающих, способствует повышению эффективности и безопасности труда, снижает утомление и травматизм, сохраняет высокую работоспособность.

Освещение характеризуется количественными и качественными показателями. К количественным показателям относятся:

  • o световой поток Ф — часть лучистого потока, воспринимаемая человеком как свет; характеризует мощность светового излучения, измеряется в люменах (лм);
  • o сила света] - пространственная плотность светового потока; определяется как отношение светового потока (1Ф, исходящего из источника и равномерно распространяющегося внутри элементарного телесного угла ¿0, к величине этого угла;./ = йФ/ йС1 измеряется в канделах (кд);
  • o освещенность Е — поверхностная плотность светового потока; определяется как отношение светового потока (1Ф, равномерно падающего на освещенную поверхность (15 (м2), к ее площади; Е = йФ/ ¿/5; измеряется в люксах (лк);
  • o яркость В поверхности под углом, а к нормали — это отношение силы света й], излучаемой освещаемой или светящейся поверхностью в этом направлении, к площади ¿5 проекции поверхности на плоскость, перпендикулярную этому направлению; B = c¡J/(dS-cosa), измеряется в кд/м .

Для качественной оценки условий зрительной работы используются такие показатели, как фон, контраст объекта с фоном, коэффициент пульсации освещенности, видимость, показатель ослепленности, спектральный состав света.

Фон — это поверхность, на которой происходит различение объекта. Фон характеризуется способностью поверхности отражать падающий на нее световой поток. Эта способность (коэффициент отражения р) определяется как отношение отраженного от поверхности светового потока Фотр к падающему на нее световому потоку Ф|1ад, Р = Фтр/Фтл o В зависимости от цвета и фактуры поверхности значения коэффициента отражения находятся в пределах 0,2−0,95; при р > 0,4 фон считается светлым; при р = 0,2-^-0,4 — средним и при р < 0,2 — темным.

Контраст объекта с, фоном k — степень различения объекта и фона, он характеризуется соотношением яркостей рассматриваемого объекта (точки, линии, знака, пятна, трещины, риски или других элементов) и фона; k = (BtlCl — Вф)/ 5(1Й (при Воб > Вф) считается большим, если k > 0,5 (объект сильно выделяется на фоне), средним при k = 0,2-^0,5 (объект и фон заметно различаются по яркости) и малым при k < 0,2 (объект слабо заметен на фоне).

Коэффициент пульсации освещенности kE- критерий глубины колебаний освещенности в результате изменения во времени светового потока:

Освещение. Безопасность жизнедеятельности.

где Ептх, ЕтЫ, Еср — максимальное, минимальное и среднее значения освещенности за период колебаний; для газоразрядных ламп 1гк = 25−65%, для обычных ламп накаливания кЕ = 1%, для галогенных ламп накаливания кЕ = 1%.

Видимость охарактеризует способность глаза воспринимать объект. Она зависит от освещенности, размера объекта, его яркости, контраста объекта с фоном, т. е. V = к / к1юр, где каор — пороговый или наименьший различимый глазом контраст, при небольшом уменьшении которого объект становится неразличимым на этом фоне.

Показатель ослепленности Ра — критерий оценки слепящего действия, создаваемого осветительной установкой,.

Освещение. Безопасность жизнедеятельности.

где Ух и V-) — видимость объекта различения соответственно при экранировании и наличии ярких источников света в поле зрения.

Экранирование источников света осуществляется с помощью щитков, козырьков и т. п.

При освещении помещений используют естественное освещение, создаваемое прямыми солнечными лучами и рассеянным светом небосвода и меняющимся в зависимости от географической широты, времени года и суток, степени облачности и прозрачности атмосферы; искусственное освещение, создаваемое электрическими источниками света, и комбинированное освещение, при котором недостаточное по нормам естественное освещение дополняют искусственным.

Конструктивно естественное освещение подразделяют на боковое (однои двухстороннее), осуществляемое через световые проемы в наружных стенах; верхнее — через световые проемы в кровле и перекрытиях; комбинированное — сочетание верхнего и бокового освещения.

Искусственное освещение по конструктивному исполнению может быть двух видов — общее и комбинированное. Систему общего освещения применяют в помещениях, где по всей площади выполняются однотипные работы (литейные, сварочные, гальванические цеха), а также в административных, конторских и складских помещениях. Различают общее равномерное освещение (световой поток распределяется равномерно по всей площади без учета расположения рабочих мест) и общее локализованное освещение (с учетом расположения рабочих мест).

При выполнении точных зрительных работ (например, слесарных, токарных, контрольных) в местах, где оборудование создает глубокие, резкие тени или рабочие поверхности расположены вертикально (штампы, гильотинные ножницы), наряду с общим освещением применяют местное. Совокупность местного и общего освещения называют комбинированным освещением.

Применение одного местного освещения внутри производственных помещений не допускается, поскольку образуются резкие тени, глаза быстро утомляются и создается опасность производственного травматизма.

По функциональному назначению искусственное освещение подразделяют на рабочее, аварийное и специальное, которое может быть охранным, дежурным, эвакуационным, бактерицидным, эритемным и др.

Рабочее освещение предназначено для обеспечения нормального выполнения производственного процесса, прохода людей, движения транспорта и является обязательным для всех производственных помещений.

Аварийное освещение устраивают для продолжения работы в тех случаях, когда внезапное отключение рабочего освещения (при авариях) и связанное с этим нарушение нормального обслуживания оборудования могут вызвать взрыв, пожар, отравление людей, нарушение технологического процесса и т. д. Минимальная освещенность рабочих поверхностей при аварийном освещении должна составлять 5% нормируемой освещенности рабочего освещения, но не менее 2 лк.

Эвакуационное освещение предназначено для обеспечения эвакуации людей из производственного помещения при авариях и отключении рабочего освещения; организуется в местах, опасных для прохода людей: на лестничных клетках, вдоль основных проходов производственных помещений, в которых работают более 50 человек. Минимальная освещенность на полу основных проходов и на ступеньках при эвакуационном освещении должна быть не менее 0,5 лк, на открытых территориях — не менее 0,2 лк.

Охранное освещение устраивают вдоль границ территорий, охраняемых специальным персоналом. Наименьшая освещенность в ночное время — 0,5 лк.

Сигнальное освещение применяют для фиксации границ опасных зон; оно указывает на наличие опасности либо па безопасный путь эвакуации.

Условно к производственному освещению относят бактерицидное и эритемное облучение помещений. Бактерицидное облучение («освещение») создается для обеззараживания воздуха, питьевой воды, продуктов питания. Наибольшей бактерицидной способностью обладают ультрафиолетовые лучи с X = 0,254 -0,257 мкм. Эритемное облучение создается в производственных помещениях, где недостаточно солнечного света (северные районы, подземные сооружения). Максимальное эритемное воздействие оказывают электромагнитные лучи с X = 0,297 мкм. Они стимулируют обмен веществ, кровообращение, дыхание и другие функции организма человека.

Основной задачей производственного освещения является поддержание на рабочем месте освещенности, соответствующей характеру зрительной работы. Увеличение освещенности рабочей поверхности улучшает видимость объекта за счет повышения яркости, увеличивает скорость различения деталей, что сказывается на росте производительности труда.

При организации освещения необходимо обеспечить равномерное распределение яркости и освещенности на рабочей поверхности и окружающих предметах. Перевод взгляда с ярко освещенной на слабо освещенную поверхность вынуждает взгляд переадаптироваться, что ведет к утомлению глаз и соответственно к снижению производительности труда. Для повышения равномерности естественного освещения больших пространств осуществляется комбинированное освещение. Светлая окраска потолка, стен и оборудования способствует равномерному распределению яркостей в поле зрения работающего.

Освещение должно обеспечивать отсутствие в поле зрения человека резких теней, которые искажают размеры и формы объектов различения и тем самым повышает утомляемость. Особенно вредны движущиеся тени, которые могут привести к травмам. Тени необходимо смягчать, применяя, например, светильники со светорассеивающими молочными стеклами, при естественном освещении используя солнцезащитные устройства (жалюзи, козырьки и др.).

Для улучшения видимости объектов в поле зрения человека должна отсутствовать прямая и отраженная блескость. Блескость — это повышенная яркость светящихся поверхностей, вызывающая нарушение зрительных функций (ослепленность), т. е. ухудшение видимости объектов. Блескость ограничивают уменьшением яркости источника света, правильным выбором защитного угла светильника, увеличением высоты подвеса светильников, правильным направлением светового потока на рабочую поверхность, а также угла наклона рабочей поверхности. Там, где это возможно, блестящие поверхности следует заменять матовыми.

При организации освещения следует выбирать необходимый спектральный состав светового потока. Это требование особенно существенно для обеспечения правильной цветопередачи, а в отдельных случаях — для усиления цветовых контрастов. Оптимальный спектральный состав обеспечивает естественное освещение. Для создания правильной цветопередачи применяют монохроматический свет, усиливающий одни цвета и ослабляющий другие.

Осветительные установки должны быть удобны и просты в эксплуатации, долговечны, отвечать требованиям эстетики, электробезопасности, а также не должны быть причиной возникновения взрыва или пожара. Обеспечение указанных требований достигается применением защитного зануления или заземления, ограничением напряжения питания переносных и местных светильников, защитой элементов осветительных сетей от механических повреждений и т. п.

Источники света, применяемые для искусственного освещения, делят на две группы: лампы накаливания и газоразрядные лампы. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явления люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.

При выборе и сравнении источников света друг с другом пользуются следующими параметрами: номинальное напряжение питания 11 (В); электрическая мощность лампы Р (Вт); световой поток, излучаемый лампой Ф (лм), или максимальная сила света./ (кд); световая отдача |/ = Ф/Р (лм/Вт), т. е. отношение светового потока лампы к се электрической мощности; срок службы лампы и спектральный состав света.

Благодаря удобству в эксплуатации, простоте в изготовлении, низкой инерционности при включении, отсутствии дополнительных пусковых устройств, надежности работы при колебаниях напряжения и при различных метеорологических условиях окружающей среды лампы накаливания находят широкое применение в промышленности. Наряду с отмеченными преимуществами лампы накаливания имеют и существенные недостатки: низкая световая отдача (для ламп общего назначения у = 7−20 Лм/Вт), сравнительно малый срок службы (до 2,5 тыс. ч), в спектре преобладают желтые и красные лучи, что сильно отличает их спектральный состав от солнечного света.

В последние годы все большее распространение получают галоидные лампы — лампы накаливания с йодным циклом. Наличие в колбе паров йода позволяет повысить температуру накала нити, т. е. световую отдачу лампы (40 лм/Вт).

Пары вольфрама, испаряющиеся с нити накаливания, соединяются с йодом и вновь оседают на вольфрамовую спираль, препятствуя распылению вольфрамовой нити, что увеличивает срок службы лампы до 3 тыс. ч. Спектр излучения галоидной лампы более близок к естественному.

Основным преимуществом газоразрядных ламп по сравнению с лампами накаливания является большая световая отдача — 40−110 Лм/Вт. Они имеют значительно больший срок службы, который у некоторых типов ламп достигает 8−12 тыс. ч. От газоразрядных ламп можно получить световой поток любого желаемого спектра, подбирая соответствующим образом инертные газы, пары металлов и люминофоры. По спектральному составу видимого света различают лампы дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛЛД), холодного белого (ЛХЬ), теплого белого (ЛТБ) и белого цвета (ЛБ).

Основным недостатком газоразрядных ламп является пульсация светового потока, что может привести к появлению стробоскопического эффекта, заключающегося в искажении зрительного восприятия. При кратности или совпадении частоты пульсации источника света и обрабатываемых изделий вместо одного предмета видны изображения нескольких, искажаются направление и скорость движения, что делает невозможным выполнение производственных операций и ведет к увеличению опасности травматизма. К недостаткам газоразрядных ламп следует отнести также длительный период разгорания, необходимость применения специальных пусковых приспособлений, облегчающих зажигание ламп, зависимость работоспособности от температуры окружающей среды. Газоразрядные лампы могут создавать радиопомехи, исключение которых требует специальных устройств.

При выборе источников света для помещений необходимо руководствоваться общими рекомендациями, отдавать предпочтение газоразрядным лампам как энергетически более экономичным и обладающим большим сроком службы; для уменьшения первоначальных затрат на осветительные установки и расходов на их эксплуатацию необходимо по возможности использовать лампы наибольшей мощности, но без ухудшения при этом качества освещения.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников. Электрический светильник — это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз работника от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Для характеристики светильника с точки зрения распределения светового потока в пространстве строят график силы света в полярной системе координат (рис. 4.6).

Кривые распределения силы света в пространстве:

Рис. 4.6. Кривые распределения силы света в пространстве:

1 — широкая; 2 — равномерная; 3 — глубокая.

Защитный угол светильника:

Рис. 4.7. Защитный угол светильника:

а — с лампой накаливания; б — с люминесцентными лампами Степень предохранения глаз работников от слепящего действия источника света определяет защитным углом светильника. Защитный угол — это угол между горизонталью, соединяющей нить накала (поверхность лампы) с противоположным краем отражателя (рис. 4.7). Важной характеристикой светильника является его коэффициент полезного действия пев — отношение фактического светового потока светильника Фф к световому потоку помещенной в него лампы Фп, Т. е. ЛеВ=Фф/Фп.

I !о распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.

Конструкция светильника должна надежно защищать источник света от пыли, воды и других внешних факторов, обеспечивать электро-, пожарои взрывобезопасность, стабильность светотехнических характеристик в данных условиях среды, удобство монтажа и обслуживания, соответствовать эстетическим требованиям. В зависимости от конструктивного исполнения различают светильники открытые, защищенные, закрытые, пыленепроницаемые, влагозащитные, взрывозащищенные, взрывобезопасные. На рис. 4.8 приведены некоторые наиболее распространенные типы светильников (а — д — для ламп накаливания, е — ж — для газоразрядных ламп).

Основные типы светильников:

Рис. 4.8. Основные типы светильников:

а — «Универсаль»; б — «Глубокоизлучатель»; в — «Люцета»; г — «Молочный шарик»; д — взрывобезопасный типа ВЗГ; е — типа ОД; ж — типа ПВЛП.

Показать весь текст
Заполнить форму текущей работой