Проблеме симметрии посвящена поистине необозримая литература. От учебников и научных монографий до произведений, апеллирующих не столько к чертежу и формуле, сколько к художественному образу, и сочетающих в себе научную достоверность с литературной отточенностью.
Прошли тысячелетия, прежде чем человечество в ходе своей общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде всего в природе две тенденции: наличие строгой упорядоченности, соразмерности, равновесия и их нарушения.
Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на деревьях, лепестков, цветов, семян растений и отобразили эту упорядоченность в своей практической деятельности, мышлении и искусстве.
Понятие «симметрия» употреблялось в двух значениях. В одном смысле симметричное означало нечто пропорциональное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова равновесие.
Симметрия форм предметов природы как выражение пропорциональности, соразмерности, гармонии подавляла древнего человека своим совершенством, и это было использовано религией, различными представлениями мистицизма, пытавшимися истолковать наличие симметрии в объективной действительности для доказательства всемогущества богов, якобы вносящих порядок и гармонию в первоначальный хаос. Так, в учени пифагорейцев симметрия, симметричные фигуры и тела (круг и шар) имели мистическое значение, являлись воплощением совершенства.
В геометрии, механике всюду, где мы имеем дело с отрезками прямых, мы встречаемся и с понятиями меры, сравнения и соотношения. Эти понятия являются отражением реальных отношений между предметами в объективном мире.
Познавая качественное многообразие проявлений порядка и гармонии в природе, мыслители древности, особенно греческие философы, пришли к выводу о необходимости выразить симметрию и в количественных отношениях, при помощи геометрических построений и чисел.