Помощь в написании студенческих работ
Антистрессовый сервис

Исследование аналоговых вычислительных устройств

РефератПомощь в написанииУзнать стоимостьмоей работы

В модифицированной схеме дифференциатора (рис. 4, а) дополнительно введен резистор Ri, который сглаживает АЧХ дифференциатора и тем самым предотвращает возникновение паразитных колебаний. Сопротивление резистора Ri определяетcя из выражения:, где 2F0K0 — произведение коэффициента усиления на ширину полосы пропускания ОУ (этот параметр часто называют добротностью ОУ). При указанном на рис. 4… Читать ещё >

Исследование аналоговых вычислительных устройств (реферат, курсовая, диплом, контрольная)

/

Техническое задание

Сумматор

Интегратор

Дифференциатор

Моделирование абсорбционных процессов в конденсаторах

Заключение

Техническое задание

Разработать в среде Multisim схемы сумматора, интегратора, дифференциатора, а также схему для моделирования абсорбционных процессов в конденсаторах и привести графики их испытаний.

Введение

аналоговое вычислительное устройство сумматор интегратор К базовым аналоговым вычислительным устройствам относятся сумматор, интегратор и дифференциатор. Они используются в различных измерительных преобразователях и корректирующих звеньях, а также при моделировании систем управления. Как правило, эти устройства выполняются на базе ОУ по схеме инвертирующего усилителя обеспечивающего максимальную точность.

Сумматор

Схема двухвходового сумматора представлена на рис. 1,а. Каждый вход сумматора соединяется с инвертирующим входом ОУ через взвешивающий резистор (R1, R2, …, Rn) — Инвертирующий вход называется суммирующим узлом, поскольку здесь суммируются все входные токи и ток обратной связи. Как и в обычном инвертирующем усилителе, напряжение на инвертирующем входе практически равно нулю (из-за действия ООС), следовательно, равен нулю и ток, втекающий в ОУ. Таким образом,

Is=I1 + I2 + … + In и I1 = U1/R1, I2 = U2/R2, …, In = Un/Rn.

Так как напряжение на инвертирующем входе примерно равно нулю, то Uо=Is • Rs. В таком случае после преобразований получаем выражение для выходного напряжении сумматора в следующем виде:

Uо =? Rs (U1/R1 + U2/R2 + … + Up/Rn).

а)

Интегратор

Интегратор это электронная схема, выходной сигал которой пропорционален интегралу от входного. Принципиальная схема простейшего инвертирующего интегратора показана на рис. 1, б. На этой схеме конденсатор к цепи обратной связи ОУ подсоединен между суммирующим входом и выходом интегратора.

б) в) г)

Рис. 1. Схемы двухвходового сумматора (а), инвертирующего (б) и неинвертирующего (в, г) интеграторов.

Для определения выходного напряжения интегратора при постоянном напряжении Ui на его входе воспользуемся формулой Ki (p) = Uo / UI = K (p) / (1 + B (p) * K (p)), в которой K (р) = А (коэффициент усиления ОУ без ОС), Z1(р) = R, Z2(р) = 1/pС, p — оператор Лапласа. В таком случае получаем Uo (p) = A * В * Ui/(p + B), где В = 1/А * R * С. Оригиналом полученного выражения является Uo (t) = A * Ui[1 — exp (-t * B)], Разлагая экспоненциальный член в ряд и ограничившись первыми тремя членами разложения (из-за ничтожно малых значений остальных), получим Uо (t) = (Ui * t/RС)(1 — t/2А * R * С). Нетрудно убедиться, что при достаточно большом значении, А и реальных значениях времени интегрирования (t << 2A * R * С) вторым слагаемым можно пренебречь. В таком случае выходное напряжение интегратора Uo (t) = Ui * t/RC. Заметим, что если принятое допущение по каким-либо причинам не выполняется, то слагаемое t/2A*R *С используется для оценки точности интегрирования.

Таким образом, при воздействии постоянного входного напряжения Ui напряжение на выходе интегратора является линейной функцией времени. Если напряжение Ui действует неопределенно долгое время, выходное напряжение Uo будет изменяться до тех пор, пока не достигнет величины напряжения насыщения ОУ (в этом можно убедиться после включения схемы). Заметим, что в интеграторах с большими постоянными времени RC должны использоваться ОУ с малыми входными токами и конденсаторы с малыми токами утечки.

Выходное напряжение неинвертирующего интегратора (рис. 1, в) определяется формулой: Uo = 2Ui * t/RC; например, при t = 3,5 с Uо = 7 В (см. осциллограмму на рис. 1, г). Отметим, что для такого интегратора требуется источник входного сигнала Ui с малым внутренним сопротивлением.

При использовании, а качестве решающего блока работа интегратора обычно состоит из трех этапов: ввод начальных условий, интегрирование и хранение результата интегрирования. Схема интегратора с имитацией этих режимов приведена на рис. 2, а. Для ввода начальных условий (заряд интегрирующего конденсатора С до напряжения Uio = Uy * R1/R2) используется ключ-таймер J1, который срабатывает через 1 с после включении схемы и удерживается в замкнутом состоянии 1 с.

а) б)

Рис. 2. Схема интегратора с имитацией режимов ввода начальных условий, интегрирования и хранения (а) и результаты его испытаний (б).

а) б)

Рис. 3. Схема идеального дифференциатора (а) и его АЧХ (б) Через 2 с после включения срабатывает ключ J2 и начинается процесс интегрирования, который длится 2 с, после чего интегратор переводится в режим хранения (см. рис. 2, б).

Дифференциатор

Дифференциатор — антипод интегратора по функциональному назначению; его выходной сигнал пропорционален скорости изменения во времени входного сигнала Ui,. т. е. Uo = -RС (dUi/dt), При практической реализации дифференциатора на рис. 3, а возникают проблемы с обеспечением его устойчивости, поскольку такое устройство является системой второго порядка и в нем возможно возникновение затухающих колебаний на определенных (обычно высоких) частотах, что подтверждается наличием резонансного «всплеска» на его АЧХ (рис 3, б).

В модифицированной схеме дифференциатора (рис. 4, а) дополнительно введен резистор Ri, который сглаживает АЧХ дифференциатора и тем самым предотвращает возникновение паразитных колебаний. Сопротивление резистора Ri определяетcя из выражения: , где 2F0K0 — произведение коэффициента усиления на ширину полосы пропускания ОУ (этот параметр часто называют добротностью ОУ). При указанном на рис. 4, а значении Ri АЧХ дифференциатора приобретает вид, показанный на рис. 4, б, откуда видно, что усиление на частоте 39 кГц уменьшилось почти ни 30 дБ (см. рис. 3, б), а это означает, что на этой частоте паразитные колебания будут уменьшены на 30 дБ. Дифференциатор на рис. 4, б называют устройством с повышенным входным сопротивлением. Действительно, в предельном случае (на высокой частоте) входной сопротивление этого дифференциатора равно сопротивлению резистора R на неинвертирующем входе ОУ.

При уменьшении сопротивления демпфирующего резистора Ri рассматриваемой схемы на экране осциллографа можно наблюдать увеличение длительности переходных процессов после начала моделирования («гармошка» на рис. 4, г). Для случая входного синусоидального сигнала коэффициент передачи дифференциатора определяется формулой: K = Uo/Ui = RC = 2fRC = 2 * 1 * 10-6 * 30 * 10-9 0.189. Измеряя с помощью осциллограмм на рис 4, г амплитуды сигналов Ui и Uo в режиме ZООМ, убеждаемся в справедливости приведенной формулы.

Основным критерием при выборе ОУ для дифференциаторов является его 6ыстродействие — нужно выбирать ОУ с высокой скоростью нарастания выходного напряжения и высоким значением произведения коэффициента усиления на верхнюю граничную частоту (т.е. большой площадью усиления). Однако это не исключает необходимости использования дополнительного резистора Ri.

а) б)

в)

г)

Рис 4. Практические схемы дифференциаторов.

При проектировании интеграторов и дифференциаторов существенное значение имеет также и выбор типа конденсатора. Поскольку выбор чаще всего ограничивается конденсаторами с диэлектриком, то в таком случае необходимо иметь в виду, что они обладают свойством неконтролируемого накопления зарядов. Это явление называется абсорбцией, сущность которого заключается в следующем.

При кратковременном замыкании заряженного конденсатора емкость С (основная часть емкости, обусловленная быстрой поляризацией) разрядится. В то же время емкость Ca (часть емкости, обусловленная медленной поляризацией т. е. абсорбцией заряда) не успеет разрядиться так как скорость её разряда будет определяться большой постоянной времени Ca (Ra + Ry), где Rу — сопротивление утечки. После размыкания обкладок конденсатора остаточный заряд емкости Са медленно перераспределяется между емкостями Са к С и создает некоторое напряжение на обкладках конденсатора. Это остаточное напряжение составит лишь некоторую часть начального напряжения и после достижения максимального значения будет постепенно спадать со временем за счёт саморазряда конденсатора.

Отношение остаточного напряжения к зарядному напряжению, выраженное в процентах, называется коэффициентом абсорбции Ка, величина Ка зависит от условий испытания и прежде всего от времени заряда Т1, времени закорачивания Т2 и времени ТЗ установления остаточного напряжения Uост. Обычно выбирают Т2 = 2…5 с; при дальнейшем его увеличении величина Ка заметно снижается; увеличение Т1 и Т2 приводит к возрастанию Ка. Обычно указывают значения Ка при Т1 = ТЗ = 5.15 мин. Для многих типов конденсаторов эти значения не дают правильного представления о максимально возможном значении коэффициента абсорбции, которое может быть получено при длительной зарядке, порядка десятков часов и таком времени ТЗ, которое соответствует максимальному Uост.

С увеличением ёмкости конденсатора скорость нарастания напряжения Uост уменьшается, а потому при небольших значениях времени ТЗ величина Ка снижается. При достаточно больших значениях Т3 величина Ка от ёмкости не зависит.

Величина коэффициента абсорбции представляет интерес не только при проектировании устройств автоматики и измерительной техники, в которых остаточный заряд на конденсаторах может существенно искажать результаты намерений, но и для техники безопасности при обслуживании установок с применением выссоковольтных конденсаторов. Поэтому такие установки обычно снабжаются специальными разрядными сопротивлениями или другими разрядными устройствами, обеспечивающими нужную степень безопасности с учетом явления абсорбции. В некоторых случаях разрядные, сопротивления встраиваются непосредственно в конденсатор. При выборе разрядных сопротивлений обычно исходят из требования, чтобы за время не более 30 с с момента отключения конденсатора напряжение на его выходах упало до безопасного значения.

Для серийно выпускаемых конденсаторов Ка при Т1 = 15 мин и ТЗ = 3 мин находится в пределах от 0,01% для фторпластовых до 15% для керамических, а при Т1 = 25 ч и ТЗ = 5.10 ч соответственно 0,05 и 47% .

Схема для исследования абсорбционных процессов (рис. 5, а) содержит источник Ui испытательного постоянного напряжения, зарядный R1 и разрядный R2 резисторы и программно-управляемые переключатели S1, S2. предназначенные для задания необходимых временных интервалов Т1 и Т2. Напомним что для этих переключателей задаются (относительно момента начала запуска моделирования, т. е. после включения выключателя в правом верхнем углу) следующие временные интервалы: Time on (Ton) — время включения и Time off (Toff) — время выключения т. е. время включенного состояния ключа равно Toff — Ton. Для рассматриваемой схемы эти параметры имеют следующие значения: время включения — 0.1 (5,1) с, время выключения — 5 (6,1) с (в скобках указаны значения параметров для ключа S2), т. е. Т1 = 5 с, Т2 = 1 с.

Из результатов моделирования на рис. 5, б видно: если время Т3 выбрать из условия Т1 = Т2 = 1 с, то остаточное напряжение Uост составит около 3 В, т. е. коэффициент абсорбции в данном случае равен Ка = 100 Uост /Ui = 100 * 3/10 = 30%

а) б)

Рис 5. Схема моделирования абсорбционных процессов в конденсаторах (а) и результаты осциллографических измерений (б).

Заключение

В данном курсовом проекте были разработаны в среде Multisim схемы сумматора, интегратора, дифференциатора, а также схема для моделирования абсорбционных процессов в конденсаторах, а также были углублены и закреплены навыки работы в программе Multisim.

1. Соренков Э. И., Телига А. И., Шаталов А. С. Точность вычислительных устройств и алгоритмов. 1976.

2. Морозов В. П. Микросхемные аналоговые вычислительные устройства

3. Маклюков М. И., Протопопов В. А. Применение аналоговых интегральных микросхем в вычислительных устройствах. 1980.

4. Каплан Д. Практические основы аналогичных и цифровых схем

Показать весь текст
Заполнить форму текущей работой