Методика использования электронных тахеометров при производстве землеустроительных работ и межевании земель
Создание современных ЭТ является результатом развития геодезического приборостроения последних десятилетий, когда были созданы оптико-механические тахеометры, кодовые теодолиты и электронные дальномеры. ЭТ представляют собой смонтированные в единую или модульную конструкцию теодолит, светодальнометр и микропроцессор или микроЭВМ. Электронный тахеометр (ЭТ) — это соединение угломерной… Читать ещё >
Методика использования электронных тахеометров при производстве землеустроительных работ и межевании земель (реферат, курсовая, диплом, контрольная)
Анализ современных средств и методов электронной тахеометрии
В геодезической практике последних лет, в качестве геодезических измерительных средств, широкое применение нашли электронные тахеометры, предназначенные для автоматизированной тахеометрической съемки и производства инженерно — геодезических работ.
Электронный тахеометр (ЭТ) — это соединение угломерной и дальномерной частей, блока контроля и управления процессом измерений (как правило, на основе микроЭВМ), индикаторного устройства, блока питания. Основу угломерной части тахеометров с электронным считыванием составляют датчики накопительного или позиционного типа.
Интенсивное развитие электронных тахеометров, отличающихся высокой степенью автоматизации угловых и линейных измерений, привело к разработке систем и комплексов, включающих в качестве составных частей или блоков указанные приборы и повышающих уровень автоматизации не отдельных процессов, а топографической съемки в целом. При этом значительная автоматизация линейно-угловых измерений и топографических съемок обеспечивается в настоящее время использованием при проведении этих работ электронных тахеометров.
Областями применения электронных тахеометров являются: проведение топографо-геодезических работ, выполняемых в полевых условиях, на строительных площадках, при производстве гидромелиоративных работ, крупное машиностроение, судостроение, инженерные и инженерно-геодезические изыскания, геологические изыскания, военное дело и многое другое. При выполнении работ с применением электронных тахеометров решаются такие практические задачи, как вынос проектных точек в натуру, измерение мостовых пролетов, разбивка по полярным координатам, определение высот недоступных точек, определение продольных и поперечных отклонений точек от заданных осей, создание и обновление топографических карт и планов и т. д.
В совершенствовании электронных тахеометров можно отметить следующие основные этапы:
- 70-е годы XX века — создание тахеометров первого поколения, как приборов для угловых и линейных измерений в полярной системе координат, оснащенных микропроцессором.
- 80-е годы — создание тахеометров с коррекцией результатов измерений для уменьшения влияния случайных и систематических ошибок, а также влияния внешних условий;
- 90-е годы и последующие — создание электронных тахеометров с устройством автоматического наведения на точки визирования (могут задаваться лазерным лучом) на основе ПЗС — матрицы (видеотахеометр), с измерениями дальности без применения специальных оптических отражателей, с ошибками в диапазоне 2−20 мм. на расстояниях до 150 м, с возможностью свободного выбора точек стояния прибора и объединения двух тахеометров в измерительную систему, связанных комплексом на базе ЭВМ. Использование вычислительных устройств позволило упростить конструкцию тахеометров, снизить требования к оптикомеханическим узлам, существенно упростить порядок проведения измерений.
Современные электронные тахеометры отличаются полной автоматизацией измерений и вычислений, возможностью составлять и обновлять цифровые карты и планы, компактностью, малой потребляемой мощностью. Встроенная миниЭВМ позволяет повысить производительность измерительного процесса, его точность, обеспечить безошибочность выполнения работ, обрабатывать результаты измерений. Подключение регистрирующего устройства или наличие встроенных ЭВМ обеспечивают автоматизацию всех процессов: отсчитывание расстояний; предварительная обработка информации до получения координат точек или других величин; выдача результатов на дисплей и в накопитель, передача их по радиоканалу в назначенные места; учет остаточного наклона вертикальной оси прибора и ошибки эксцентриситета лимба при одностороннем отсчитывании; введение поправок за метеоусловия; обработка информации для получения координат точек; обработка информации для получения цифровой карты или плана участка местности. В конструкции одних электронных тахеометров учитываются измерения углов (направлений) при двух положениях круга, в других измеряются углы при одном положении круга — при этом система встроенных датчиков компенсируют возникшие при этом погрешности. Зрительная труба тахеометров моноблочного типа конструктивно совмещена с приемопередающей системой дальномерной части. Наличие встроенных в приборы электронных уровней позволяет автоматически учитывать наклон вертикальной оси вращения.
Создание современных ЭТ является результатом развития геодезического приборостроения последних десятилетий, когда были созданы оптико-механические тахеометры, кодовые теодолиты и электронные дальномеры. ЭТ представляют собой смонтированные в единую или модульную конструкцию теодолит, светодальнометр и микропроцессор или микроЭВМ.
Практически все ведущие зарубежные фирмы традиционно специализирующиеся на разработке и выпуске оптикомеханических и оптико-электронных геодезических приборов, представляют на мировой рынок ЭТ различной конструкции и назначения. Среди этих фирм следует отметить фирмы: Carl Zeis (Германия), Leica AG (Швейцария), Topcon (Япония) и др., имеющие свои торговые представительства в России. В нашей стране разработка и выпуск ЭТ осуществляется в ЦНИИГАиК, на экспериментальном оптико-механическом заводе (ЭОМЗ) и Уральском оптико-механическом заводе (УОМЗ). Современные ЭТ условно можно разделить на простейшие, универсальные и роботизированные.
Простейшие ЭТ — приборы с минимальной автоматизацией и огромным программным обеспечением. Такие тахеометры обеспечивают точность измерения углов 5−10?, линий (3+5*10−6 D) мм.
Универсальные ЭТ — приборы с расширенными возможностями. Они оснащены большим числом встроенных программ. Обеспечивается точность измерения углов 1−5?, линий (2+3*10−6 D) мм.
Роботизированные ЭТтахеометры с сервомоторами, обладающие всеми возможностями предыдущей группы. Наличие сервомоторов, встроенных радиокоммуникационных устройств, а также систем автоматического слежения за отражателями позволяет отнести эти приборы к категории тахеометров-роботов.
В приложении № 1 представлены основные технические характеристики современных электронных тахеометров.
Отметим некоторые конструктивные и технологические особенности ряда ЭТ, повышающие возможности их использования на производстве (в скобках даны номера приборов из таблицы приложения № 1, обладающие указанными признаками).
К этим особенностям относятся:
- — широкий температурный диапазон (1, 2, 27);
- — влагозащитное исполнение корпуса (16, 22, 23);
- — широкий выбор аксессуаров — отражатели, вехи, штативы, трегеры и др. (12−15);
- — безотражательный дальномер (5, 11−15);
- — интерфейс RЗ232 для связи с ПЭВМ (6−10,1−20,27);
- — режим слежения за движущейся визирной целью (5,6,8−15);
- — режим самонаведения на визирную цель (6,8−15);
- — мощное встроенное программное обеспечение (4,6−10,17−20,27,28);
- — встроенные стандартные технологии (6,10,17−20,27).
С учетом технологического развития электронные тахеометры можно классифицировать по предназначению для выполнения геодезических задач по категориям:
- 1. Приборы, предназначенные для классической триангуляции и трилатерации с длинами сторон более 250 метров, характеризующиеся относительно высокой угловой точность (не ниже 3?);
- 2. Приборы, предназначенные для быстрого исполнения съемок и разбивок без использования отражателей. Основное требование к этой группе приборов — время измерения не более 0,5 сек. в режиме слежения, угловая точность — не ниже (10?), точность измерения расстояний — не менее 1 см на 250 м;
- 3. Приборы 1-й или 2-й категории, но в варианте обслуживания одним исполнителем (обеспеченные функцией автоматического обнаружения цели и слежения за ней). Некоторые из этих приборов специально рассчитаны на функцию высокоточного мониторинга в автономном режиме.
Электронные тахеометры эффективно используются при выполнении следующих видов топографических работ:
- — создание геодезических сетей (съемочного обоснования) многоцелевого назначения;
- — выполнение топографических и кадастровых съемок;
- — производство межевания земель и других землеустроительных работ;
- — проведение различных инженерно-геодезических изысканий;
В общем случае технологическая схема определенного вида работ с использованием ЭТ включает следующие элементы:
- — составление технического и рабочего проектов;
- — рекогносцировка и обследование объекта работ;
- — закладка центров определяемых пунктов;
- — полевые измерения;
- — обработка результатов измерений.