Назначение и области применения
Поскольку псевдослучайные числа не являются действительно случайными, качество ГСЧ очень часто оценивается по «случайности» получаемых чисел. В эту оценку могут входить различные показатели, например, длина цикла (количество итераций, после которого ГСЧ зацикливается), взаимозависимости между соседними числами (могут выявляться с помощью различных методов теории вероятностей и математической… Читать ещё >
Назначение и области применения (реферат, курсовая, диплом, контрольная)
Данная программа предназначена для заполнения массива случайными числами в определенном диапазоне, сортировки чисел по возрастанию и переворачивание массива. Случайные числа очень важны во многих видах моделирования и в играх.
Технические характеристики
В данной программе используется метод сортировки «пузырька».
Сортировка — это специальный алгоритм обработки в результате, которого происходит упорядочивание элементов.
Постановка задачи — точное описание исходных данных, условий задачи и целей ее решения. Часто задача программирования задается в математической формулировке, поэтому необходимость в выполнении этапов 1 и 2 отпадает. Для решения достаточно сложных задач этап формализации может потребовать значительных усилий и времени.
Генератор случайных чисел
В программировании достаточно часто находят применение последовательности чисел, выбранных случайным образом из некоторого множества. В качестве примеров задач, в которых используются случайные числа, можно привести следующие:
- — тестирование алгоритмов;
- — имитационное моделирование;
- — некоторые задачи численного анализа;
- — имитация пользовательского ввода.
Для получения случайных чисел можно использовать различные способы. В общем случае все методы генерирования случайных чисел можно разделить на аппаратные и программные. Устройства или алгоритмы получения случайных чисел называют генераторами случайных чисел (ГСЧ) или датчиками случайных чисел.
Аппаратные ГСЧ представляют собой устройства, преобразующие в цифровую форму какой-либо параметр окружающей среды или физического процесса. Параметр и процесс выбираются таким образом, чтобы обеспечить хорошую «случайность» значений при считывании. Очень часто используются паразитные процессы в электронике (токи утечки, туннельный пробой диодов, цифровой шум видеокамеры, шумы на микрофонном входе звуковой карты и т. п.). Формируемая таким образом последовательность чисел, как правило, носит абсолютно случайный характер и не может быть воспроизведена заново по желанию пользователя.
К программным ГСЧ относятся различные алгоритмы генерирования последовательности чисел, которая по своим характеристикам напоминает случайную. Для формирования очередного числа последовательности используются различные алгебраические преобразования. Одним из первых программных ГСЧ является метод средин квадратов, предложенный в 1946 г. Дж. фон Нейманом. Этот ГСЧ формирует следующий элемент последовательности на основе предыдущего путем возведения его в квадрат и выделения средних цифр полученного числа. Например, мы хотим получить 10-значное число и предыдущее число равнялось 5 772 156 649. Возводим его в квадрат и получаем 33 317 792 380 594 909 184; значит, следующим числом будет 7 923 805 949. Очевидным недостатком этого метода является зацикливание в случае, если очередное число будет равно нулю. Кроме того, существуют и другие сравнительно короткие циклы.
Любые программные ГСЧ, не использующие внешних «источников энтропии» и формирующие очередное число только алгебраическими преобразованиями, не дают чисто случайных чисел. Последовательность на выходе такого ГСЧ выглядит как случайная, но на самом деле подчиняется некоторому закону и, как правило, рано или поздно зацикливается. Такие числа называются псевдослучайными.
Последовательности случайных чисел, формируемых тем или иным ГСЧ, должны удовлетворять ряду требований. Во-первых, числа должны выбираться из определенного множества (чаще всего это действительные числа в интервале от 0 до N). Во-вторых, последовательность должна подчиняться определенному распределению на заданном множестве (чаще всего распределение равномерное). Необязательным является требование воспроизводимости последовательности. Если ГСЧ позволяет воспроизвести заново однажды сформированную последовательность, отладка программ с использованием такого ГСЧ значительно упрощается. Кроме того, требование воспроизводимости часто выдвигается при использовании ГСЧ в криптографии.
Поскольку псевдослучайные числа не являются действительно случайными, качество ГСЧ очень часто оценивается по «случайности» получаемых чисел. В эту оценку могут входить различные показатели, например, длина цикла (количество итераций, после которого ГСЧ зацикливается), взаимозависимости между соседними числами (могут выявляться с помощью различных методов теории вероятностей и математической статистики).
Одна из задач, в которых применяются ГСЧ, — это грубая оценка объемов сложных областей в евклидовом пространстве более чем четырех или пяти измерений. Разумеется, сюда входит и приближенное вычисление интегралов. Обозначим область через R; обычно она определяется рядом неравенств. Предположим, что R — подмножество n_мерного единичного куба K. Вычисление объема множества R методом Монте-Карло сводится к тому, чтобы случайным образом выбрать в K большое число N точек, которые с одинаковой вероятностью могут оказаться в любой части K. Затем подсчитывают число M точек, попавших в R, т. е. удовлетворяющих неравенствам, определяющим R. Тогда M/N есть оценка объема R. Можно показать, что точность такой оценки будет довольно низкой. Тем не менее, выборка из 10 000 точек обеспечит точность около 1%, если только объем не слишком близок к 0 или 1. Такой точности часто бывает достаточно, и добиться лучшего другими методами может оказаться очень трудно.