Генетическая система бактерий
Плазмиды бактерий представляют собой двунитевые молекулы ДНК размером от 10 6 до 10 8 Д, несущие от 40 до 50 генов. Количество плазмид в бактериальной клетке может быть от 1 до 200. Выделяют плазмиды, находящиеся в виде отдельной замкнутой молекулы ДНК (эписомы) и встроенные в хромосому бактерии (интегрированные плазмиды). Плазмиды выполняют регуляторные и кодирующие функции. Первые направлены… Читать ещё >
Генетическая система бактерий (реферат, курсовая, диплом, контрольная)
Генетическая система бактерий состоит из ядерных и внеядерных структур. Аналог ядра прокариотов значительно отличается от ядра эукариотических клеток. Он представлен нуклеоидом, лишенным оболочки и включающем в себя почти всю ДНК бактерии. Бактериальная хромосома состоит из одной двунитевой молекулы ДНК кольцевой формы. Молекула ДНК построена из двух полинуклеотидных цепочек. Каждый нуклеотид состоит из азотистого основания, сахара дезоксирибозы и фосфатной группы. Азотистые основания представлены пуринами (аденин, гуанин) и пиримидинами (тимин, цитозин). Каждый нуклеотид обладает полярностью. У него имеются дезоксирибозный 3' -конец и фосфатный 5' -конец. Нуклеотиды соединяются в полинуклеотидную цепочку фосфодиэфирными связями между 5' -концом одного нуклеотида и 3' -концом другого. Соединение между двумя цепочками обеспечивается водородными связями комплементарных азотистых оснований: аденина с тимином, гуанина с цитозином. Нуклеотидные цепи антипараллельны: на каждом конце линейной молекулы ДНК расположены 5' -конец одной цепи и 3' -конец другой цепи. Наследственная информация у бактерий хранится в форме последовательности нуклеотидов ДНК, которая определяет последовательность аминокислотных остатков в молекуле белка. Каждому белку соответствует свой ген, т. е., дискретный участок на ДНК, отличающийся числом и специфичностью последовательности нуклеотидов. Бактериальная хромосома содержит до 4000 отдельных генов. Совокупность всех генов называется геномом. Внешнее проявление генома называется фенотипом. Размеры бактериальной хромосомы у различных представителей царства Procaryotae варьируют от 3×10 8 до 2,5×10 9 Д. Бактериальная клетка гаплоидна, а удвоение хромосомы всегда сопровождается ее делением.
Генетическая информация в бактериях может содержаться во внеядерных (внехромосомных) молекулах ДНК, представленных плазмидами, транспозонами и инсерционными (вставочными) последовательностями. Они не являются жизненно необходимыми, так как не кодируют информацию о синтезе ферментов, участвующих в метаболизме бактериальной клетки.
Плазмиды бактерий представляют собой двунитевые молекулы ДНК размером от 10 6 до 10 8 Д, несущие от 40 до 50 генов. Количество плазмид в бактериальной клетке может быть от 1 до 200. Выделяют плазмиды, находящиеся в виде отдельной замкнутой молекулы ДНК (эписомы) и встроенные в хромосому бактерии (интегрированные плазмиды). Плазмиды выполняют регуляторные и кодирующие функции. Первые направлены на компенсацию метаболических дефектов, вторые вносят в бактерию информацию о новых признаках. Как составляющая часть генетического материала бактерии плазмиды играют важную роль в ее жизнедеятельности, детерминируя такие характеристики, как способность продуцировать экзотоксины, ферменты или бактериоцины, устойчивость к лекарственным препаратам и т. д.
Удвоение ДНК некоторых плазмид индуцирует деление бактерий, т. е. увеличивает их «плодовитость». Такие плазмиды обозначают как Fплазмиды или Fфакторы (от англ. fertility — плодовитость). Интегрированные Fплазмиды называют Hfrплазмиды или Hfrфакторы (от англ. high frequency of recombinations — высокая частота рекомбинаций). Hfrфакторы осуществляют перенос части генетической информации данной хромосомы в другую клетку.
Плазмиды, детерминирующие устойчивость к лекарственным препаратам, называются Rплазмидами или Rфакторами (от англ. resistance — устойчивость). Rплазмиды содержат гены, детерминирующие синтез ферментов, которые разрушают антибактериальные препараты. В результате бактериальная клетка становится устойчивой к действию целой группы лекарственных веществ. Многие Rплазмиды являются трансмиссивными и, распространяясь в популяции бактерий, переносят резистентность к воздействию антибактериальных препаратов.
Плазмиды патогенности контролируют вирулентные свойства микроорганизмов, детерминируя синтез факторов патогенности. Так, например, Entплазмида определяет синтез энтеротоксина. Развитие инфекционного процесса, вызванного возбудителями чумы, сибирской язвы, кишечного иерсиниоза, клещевого иксодового боррелиоза связано с функционированием плазмид патогенности.
Конъюгативные плазмиды переносятся от бактерии к бактерии внутри вида или между представителями близкородственных видов в процессе конъюгации. Чаще всего конъюгативными плазмидами являются F — или Rплазмиды. Подобные плазмиды относительно крупные (25−150 млн Д) и часто выявляются у грамотрицательных палочек. Большие плазмиды обычно присутствуют в количестве 1−2 копий на клетку и их репликация тесно связана с репликацией бактериальной хромосомы.
Неконъюгативные плазмиды обычно имеют небольшие размеры и характерны для грамположительных кокков, но встречаются также у некоторых грамотрицательных микроорганизмов (например, у Haemophilus influenzae, Neisseria gonorrhoeae). Мелкие плазмиды могут присутствовать в больших количествах (более 30 на клетку), так как только наличие такого количества обеспечивает их распределение в потомстве во время клеточного деления. При наличии в бактерии одновременно конъюгативных и неконъюгативных плазмид донор может передавать и неконъюгативные плазмиды за счет связывания генетического материала последних с факторами, обеспечивающими их перенос в процессе конъюгации.
Подвижные генетические элементы входят в состав бактериального генома, бактериальной хромосомы и плазмид. К ним относятся вставочные последовательности в ДНК и транспозоны. Вставочные или инсерционные последовательности (Isэлементы) представляют собой участки ДНК, способные перемещаться из одного места локализации в другое, и содержат только гены, необходимые для перемещения. Isпоследовательности осуществляют координацию взаимодействий плазмид, умеренных фагов, транспозонов и нуклеоида для обеспечения репродукции; регулируют активность генов бактериальной клетки. Они могут инактивировать гены, в которые включились («выключение» гена) или, встраиваясь в хромосому, проявлять эффект промотора, включающего или выключающего транскрипцию соответствующих генов.
Транспозоны (Tn) — это сегменты ДНК, состоящие из вставочных последовательностей и структурных генов, обеспечивающих синтез молекул со специфическими биологическими свойствами (токсичность, устойчивость к антибиотикам и др.). Транспозоны не способны к самостоятельной репликации и размножаются только в составе бактериальной хромосомы.