Помощь в написании студенческих работ
Антистрессовый сервис

Лекция 4. Геоэкологические проблемы разведки и разработки месторождений полезных ископаемых

РефератПомощь в написанииУзнать стоимостьмоей работы

Специфика воздействия химических элементов на живые организмы и растения. В природе существует ряд элементов, которые необходимы для поддержания жизни — это, так называемые, питательные вещества. Однако в некоторых концентрациях каждый питательный элемент может стать токсичным и даже смертельным. Вещество считается ядовитым, если оно препятствует росту и обмену веществ любого организма, когда его… Читать ещё >

Лекция 4. Геоэкологические проблемы разведки и разработки месторождений полезных ископаемых (реферат, курсовая, диплом, контрольная)

(2 часа). Механизмы загрязнения и заражения окружающей среды. Специфика воздействия химических элементов на живые организмы и растения.

Механизмы загрязнения и заражения окружающей среды. Природа в течение длительного времени создавала равновесие в химическом составе атмосферы, литосферы и гидросферы земного шара. Однако иногда это равновесие локально нарушается либо естественным путем, либо в результате деятельности человека, создавая угрозу загрязнения или даже заражения окружающей среды. Загрязнение — это засорение окружающей среды в результате природных явлений или деятельности человека. Загрязнение не обязательно содержит составные части, представляющие опасность для здоровья человека. Они могут быть просто неприятны на вид, на вкус или на запах. Заражение — это такое загрязнение среды, составные части которого опасны для здоровья человека по своей природе или концентрации.

Загрязнение окружающей среды можно контролировать с помощью научных и технических методов, но полная его ликвидация экономически пока неосуществима. Степень уменьшения загрязнения, которой мы хотим добиться, зависит от того, что мы понимаем под загрязненностью и какое количество труда и денежных средств согласны на это затратить.

Любой земной материал, в котором концентрация элемента или соединения значительно превышает его среднее содержание, является потенциальным источником заражения почвы, воды, флоры или фауны. Действует ли он как источник заражения, зависит от того, в каких количествах и в какой форме (доступной для выщелачивания) находится этот элемент или минерал. Известно, что сельскохозяйственные культуры, выращиваемые на почвах с нормальным химическим составом, могут испытывать недостаток в питательных веществах, если основной элемент находится в такой форме, что он не может быть усвоен растениями.

Химическое равновесие в окружающей среде поддерживается благодаря балансу между процессами выделения и поглощения.

С другой стороны, связь между атмосферой, гидросферой, литосферой и биосферой поддерживается процессами переноса посредством атмосферных осадков, движения масс, текущей воды, ветра и льда. Материал или энергия для этих процессов возникают под действием механизмов высвобождения, включая выветривание, эрозию, химические и биохимические реакции. Материалы перестают принимать участие в перемещении под действием механизмов задержания или связывания. Они могут быть физическими (осадконакопление), химическими (выпадение в осадок) и биохимическими (образование органогенных отложений).

Следует еще раз подчеркнуть, что химическое воздействие на окружающую среду может происходить или естественным путем, или в результате деятельности человека. Например, источники рассеянных металлов могут быть как природного происхождения (химическое выветривание материнских пород, вулканическая и гидротермальная деятельность, естественное окисление и т. д.), так и промышленными — накопление в результате деятельности чело века (сжигание горючих ископаемых, разработка полезных ископаемых, промышленное использование рассеянных металлов, образование свалок и т. д.).

В процессе выветривания из пород могут высвобождаться потенциально загрязняющие вещества. Примером является окисление сульфидных минералов с образованием серной кислоты. Разлагающаяся растительность выделяет сероводород, газ с неприятным запахом, который также может быть превращен в серную кислоту. В результате вулканической деятельности обычно выделяются такие вредные и ядовитые газы, как хлор, фтор, соединения серы, угарный и углекислый газы. Процесс эрозии также высвобождает из пород потенциально опасные вещества, которые распространяются на большие расстояния. Однако скорость высвобождения потенциально загрязняющих веществ в результате естественных процессов, таких как выветривание и эрозия, как правило, очень мала с точки зрения человека. Вулканическая же деятельность протекает достаточно быстро и может вызывать немедленное загрязнение.

Человеческая деятельность, связанная с добычей и переработкой полезных ископаемых ускоряет процессы естественного выветривания в несколько десятков и сотен раз, ускоряя процесс попадания рассеянных элементов (металлов) в окружающую природную среду и способствуя многократной их концентрации.

Специфика воздействия химических элементов на живые организмы и растения. В природе существует ряд элементов, которые необходимы для поддержания жизни — это, так называемые, питательные вещества. Однако в некоторых концентрациях каждый питательный элемент может стать токсичным и даже смертельным. Вещество считается ядовитым, если оно препятствует росту и обмену веществ любого организма, когда его концентрация превышает норму. Все элементы токсичны, если они имеют высокую концентрацию, а некоторые ядовиты даже при низкой концентрации. Медь, например, очень токсична при сравнительно низких концентрациях, и ее широко используют в растворимых соединениях для уничтожения водорослей. Отравление может быть вызвано незначительной концентрацией высокотоксичного вещества или слишком высокой концентрацией слаботоксичных и даже обычно необходимых веществ.

Кумулятивные яды — вещества, которые легче удерживаются организмами, чем выделяются, — особенно опасны и требуют особого обращения. Примерами могут служить селен и кадмий.

Синергическое действие токсичных веществ (т. е. комбинированное действие, имеющее такие последствия, которые не могут быть достигнуты каждым веществом в отдельности) вызывает проблемы в случае с комплексными природными средами, в которые вносятся синтетические вещества.

Особенно важна, с точки зрения токсичности, форма в которой находится ядовитое вещество. Например, соединения ртути или свинца с углеводородами, такими как тэтраэтилсвинец, используемый в некоторых сортах бензина, гораздо более токсичны, чем неорганические соединения тех же элементов, например каломель — широко используемое в медицине.

Ниже приведена краткая характеристика отдельных химических элементов, проявляющих специфическое воздействие на живые организмы и растения.

Молибден. Металл ядовит в больших дозах. Однако, как и многие другие металлы, он необходим в микродозах для питания животных и человека. Он помогает почвенным микроорганизмам в связывании азота воздуха. Во многих странах молибден добавляется в удобрения, поскольку нехватка этого элемента отрицательно сказывается на сельскохозяйственных культурах.

Многие растения, особенно бобовые, например люцерна и клевер, накапливают большие количества этого металла, если они растут на почвах, богатых молибденом, или поливаются водой, насыщенной молибденом. Это избирательное накопление используется в геохимической разведке молибденовой руды.

С другой стороны, избыток молибдена, находящийся в пище животных, нарушает обмен меди в организме, и у животных появляются симптомы, указывающие на недостаток меди. Кроме того, содержание молибдена в пище в количествах более чем 10—20 млн-1, способствует развитию хронического молибденового токсикоза — болезнь, которая характеризуется отсутствием аппетита, поносом, потерей полового инстинкта, нарушениями в суставах и иногда чревата гибелью. Зачастую, эти нарушения могут быть скорректированы добавлением в корм меди.

Следует учитывать, что влажные почвы в большей степени концентрируют металлы. Поэтому нужно учитывать возможность появления хронического молибденового токсикоза в районах, расположенных ниже по течению от тех мест, где породы или почвы чрезвычайно богаты молибденом. Эту возможность следует также иметь в виду при использовании земель, богатых органическим веществом, а также илистых или заболоченных.

Фтор. Этот элемент необходим живым организмам в небольших количествах, но может причинять вред или даже быть ядовитым в избыточных дозах. Так, например, общеизвестно, что фосфат кальция — это основная составляющая материала зубов и костей большинства животных. Когда фтор присутствует в умеренных количествах (до 1 млн-1) в воде, кости и зубы укрепляются благодаря включению фторидов (фторсодержащих соединений) в фосфат кальция. Однако при концентрациях выше 1 млн-1 включение избыточного, количества фторидов в вещество зуба приводит к обесцвечиванию и ослаблению зубной эмали вызывая специфическое заболевание — флюороз.

В поверхностную и грунтовую воду фтор попадает обычно в результате растворения природных фторсодержащих минералов или в результате гидротермальной активности. Если водный источник, используемый для питья, содержит больше чем 1 млн-1 фтора, то его концентрацию следует уменьшить. Обычно это достигается воздействием на воду окиси алюминия или костной золы.

Ртуть. Понять сложные процессы, контролирующие поведение рассеянных металлов в природных водных системах, легче всего, исследуя поведение какого-то одного металла, например ртути.

Ртуть может существовать в твердом, жидком и газообразном состоянии. Растворимость ртути достаточно велика, чтобы превысить стандарты на качество воды. В сочетании с другими элементами ртуть образует разнообразные твердые, жидкие и газообразные соединения. Большая их часть также легко растворима в воде. Важно учитывать также состояние (твердое, жидкое, газообразное или растворенное) и химические формы, в которых ртуть присутствует в системе. Некоторые состояния и химические формы более доступны для организмов или легче усваиваются ими, чем другие, и после ассимиляции некоторые формы становятся более токсичными, чем другие.

Причиной аномально высокой концентрации ртути в водных системах обычно является сброс промышленных сточных вод, содержащих ртуть. Естественные процессы, в том числе биологические, переводят ртуть в различные химические формы. Некоторые из этих форм, особенно чистая ртуть и многие ее органические соединения, летучи и испаряются в воздух над водой. Все растворенные формы в определенной степени поглощаются (или связываются) взвешенными твердыми веществами. В состав твердой фазы входят микроскопические растения и микроорганизмы (планктон). Во многих системах концентрация ртути во взвешенных твердых веществах во много раз больше, чем в воде, где они находятся.

При поедании планктона рыбой, которая потом съедается более крупной рыбой и животными, ртуть переносится по этой пищевой цепи. Так как более крупные виды едят больше и живут дольше, чем мелкие, они накапливают большие концентрации ртути. Рыба промысловых размеров часто содержит ртути в тысячи раз больше, чем вода и взвешенные твердые вещества, находящиеся в ней. При отлове рыбы ртуть удаляется из водной системы и попадает в человеческий организм. Оседание взвешенных твердых частиц и мертвых организмов переносит ртуть из воды в донные отложения. Химические и физические условия в отложениях отличаются от водных, поэтому снова происходит химическое перераспределение и степень поглощения ртути твердыми веществами, вероятно, меняется. Твердые ртутные соединения или минералы также могут осаждаться. Обитающие на дне животные поглощают часть ртути, особенно те, которые питаются твердыми веществами, отфильтровывая их из воды. Донные организмы часто содержат в 1000 раз большую концентрацию этого элемента, чем отложения, которые они населяют. Чаще всего эти процессы ведут к полному перемещению ртути в донные отложения, где она погребается последующим осадконакоплением и оказывается вне досягаемости от химических связей с биологическими системами. Однако, в последствии ртуть в по гребенных отложениях снова может стать подвижной (например в результате проведения дноуглубительных работ или естественной эрозии). Так, с изменением условий хранилище может вновь превратиться в источник.

Кадмий. Кадмий — редкий элемент; за исключением глинистых сланцев, его содержание в атмосфере, породах, почвах и воде составляет не более 0,2 части на миллион. В природе известно только несколько небольших месторождений сульфида и карбоната кадмия с очень малым содержанием полезного компонента. Однако кадмий присутствует в сульфидных рудах других тяжелых металлов, таких как цинк и свинец из которых он и извлекается.

Кадмий более летуч, чем большинство других тяжелых металлов (точка кипения 790 °С). По этой причине значительные количества кадмия выбрасываются в атмосферу во время переработки цинковых и свинцовых руд преимущественно в виде газа. Газ быстро окисляется и осаждается в виде мелких частиц на окружающую территорию. Это и есть главный источник кадмия для земной среды. Другими важными источниками кадмия являются фосфатные удобрения и необработанные осадки, поступающие на свалку.

Кадмий не несет в себе каких-либо важных биологических функций. Считается, что он действует как яд, в основном вытесняя жизненно необходимый цинк в обмене протеина и ферментов. Отравление кадмием предположительно способствует возникновению гипертонии, развитию болезней почек, эмфиземе, анемии и болезни итаи-итаи. Острое отравление от одной дозы маловероятно, но кадмий имеет способность накапливаться на протяжении всей жизни и способ выведения его из организма не известен.

Основными источниками кадмия для человека являются табак и пищевые продукты. Обычный рацион включает 0,5 мг кадмия в день, из которого около 5% впитывается через стенки кишечника. В тоже время, одна сигарета содержит только 0,001 мг кадмия, но он намного легче поглощается тканями легких, чем стенками кишечника. Попав в кровь, кадмий переносится в почки и печень, где и задерживается около 2/3 всего его количества.

Селен. Это — необходимый элемент в пищевом рационе животных и человека. Его минимальное количество составляет 0,03 мг/сут. В дозах 0,075 мг/сут селен оказывает благотворное воздействие на организм. Однако в количестве свыше 3 мг/сут он становится токсичным. В тоже время, плохой урожай чаще бывает при нехватке селена, чем при его избытке, хотя в пище животных и человека предпочтительна нехватка селена, чем его избыток.

Селен встречается во многих сульфидных минералах. Его концентрация в черных сланцах, каменном угле и нефти в 10—20 раз превышает среднее содержание в земной коре. Ряд кормовых культур под общим названием астрагал способны накапливать и сохранять в своих тканях этот элемент, тем самым, являясь угрозой для жизни и здоровья различных животных.

Показать весь текст
Заполнить форму текущей работой