Помощь в написании студенческих работ
Антистрессовый сервис

Экспериментальные методы расшифровки сложных структур

РефератПомощь в написанииУзнать стоимостьмоей работы

Оптическая спектроскопия позволяет анализировать спектр излучения вещества, находящегося в различных агрегатных состояниях: твердом, жидком, газообразном. Спектральный анализ — физический метод качественного и количественного определения состава вещества по его оптическому спектру излучения. В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров… Читать ещё >

Экспериментальные методы расшифровки сложных структур (реферат, курсовая, диплом, контрольная)

Для идентификации и анализа сложных структур, в частности для анализа сложных молекул, необходимо управлять химическими процессами и затем определять состав и структуру продуктов реакций. Предложенные физиками эффективные методы экспериментальных исследований макрообъектов на молекулярн дом уровне — ядерный магнитный резонанс, оптическая спектроскопия, масс-спектроскопия, рентгеноструктурный анализ, нейтронография и т. п. — позволяют исследовать состав и структуру необычайно сложных молекул, что способствует изучению, например, химической природы жизненно важных биологических процессов. Метод ядерного магнитного резонанса (ЯМР) основан на анализе взаимодействия магнитного момента атомных ядер с внешним магнитным полем. Это один из важнейших методов в разных отраслях естествознания, в особенности, в химии: химии синтеза, химии полимеров, биохимии, медицинской химии и т. п. С помощью метода ЯМР можно определить, например, химическое окружение атомов водорода даже в таких сложных молекулах, как сегменты ДНК. Прогресс в развитии спектроскопии ЯМР зависит от возможности создания сильного магнитного поля, которое можно получить с помощью компактных сверхпроводящих магнитов. Созданный в 1973 г. томограф, основанный на ЯМР, позволяет наблюдать картину распределения химических отклонений и концентрации ядер таких крупных объектов, как тело человека, что весьма важно при диагностике ряда заболеваний, в том числе и злокачественных опухолей.

Оптическая спектроскопия позволяет анализировать спектр излучения вещества, находящегося в различных агрегатных состояниях: твердом, жидком, газообразном. Спектральный анализ — физический метод качественного и количественного определения состава вещества по его оптическому спектру излучения. В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединений. Содержание исследуемого вещества при количественном спектральном анализе определяют по относительной или абсолютной интенсивности линий или полос спектра.

С применением лазерного источника излучения и персонального компьютера возможности оптического спектрометра значительно расширяются: такой спектрометр способен обнаружить отдельную молекулу или даже атом любого вещества.

С помощью метода индуцированной лазерной флуоресценции можно регистрировать загрязнение воздуха на расстоянии около двух километров.

В масс-спектроскопии исследуемое вещество вначале превращается в газовую фазу, затем газ конденсируется и ионы ускоряются до заданной кинетической энергии электрическим полем. Масса частиц может быть определена двумя способами:

измерением радиуса кривизны траектории иона и измepeниeм времени пролета им заданного расстояния.

Масс-спектрометры отличаются высокой чувствительностью и могут обнаружить, например, три атома изотопа 14С среди 1016 атомов 12С. Такое содержание изотопа 14С соответствует, coгласно радиоизотопному методу определения возраста пород возрасту в 70 000 лет. Масс-спектрометрия широко применяется для анализа элементов, определения изотопного состава 1 строения молекулы в таких областях, как производство интеа гральных схем, металлургия, ядерная, нефтяная, фармацевтическая и атомная промышленность.

Комбинированные приборы — хромато-масс-спектрометры позволяют обнаружить в питьевой воде галогеноуглеводороды и нитрозамины, а также определить небольшие концентрации од ного из самых ядовитых веществ — изомеров диоксина.

Сочетание газового хроматографа с масс-спектрометром — лучший аналитический прибор для работы со сложными смесями, позволяющий решать разнообразные задачи химии, биологии, геохимии, экологии, криминалистики и других наук. Однако вплоть до недавнего времени применение такого прибора ограничивалось лишь легко испаряемыми веществами. С разработкой способов десорбции ионов из твердых образцов путем бомбардировки их ионами, фотонами или нейтральными частицами границы применения масс-спектроскопии значительно расширились. Существенно увеличились предельные молекулярные массы соединений, исследуемых методом масс-спектроскопии. Например, плазменная десорбция с применением бомбардировки продуктами деления радиоактивного калифорния-252 позволила получить ионы с молекулярной массой 23 000 и про извести их масс-спектральный анализ. С помощью полевой и лазерной десорбции можно получить масс-спектральные характеристики фрагментов ДНК. Для идентификации неизвестного вещества методом масс-спектроскопии достаточно всего 10−10 соединения. В плазме крови масс-спектрометр регистрирует активное вещество марихуаны в концентрации 0,1 мг на кило грамм массы тела.

Современные электрохимические методы в сочетании с вы сокочувствительной аппаратурой открывают новые возможности исследования структуры и функций живой клетки: с помощью электродов, площадь которых составляет всего лишь несколько микрометров, можно регистрировать процессы, происходящие внутри клетки.

Для определения строения молекул необходимо знать пространственное расположение атомов. Зная молекулярную структуру, легче понять физические и химические свойства соединения, механизмы химических реакций и идентифицировать новые соединения. Один из наиболее распространенных методов исследования молекулярных структур — рентгеноструктурный анализ, основанный на явлении дифракции, позволяет изучать все те соединения, которые удается получить в кристаллическом состоянии. Современные компьютеры расшифровывают рентгенограмму довольно сложной молекулярной структуры. Рентгеноструктурный анализ способствовал получению феромонов насекомых, применяемых для борьбы с вредителями в сельском хозяйстве, и изучению гормонов роста, необходимых для увеличения производства пищи и биомассы.

Показать весь текст
Заполнить форму текущей работой