Помощь в написании студенческих работ
Антистрессовый сервис

Углеродный материал — один из самых востребованных

РефератПомощь в написанииУзнать стоимостьмоей работы

Изучены два вида углеродных материалов: высокопористый ячеистый углерод и углерод-углеродный композиционный материал. По химическому составу оба материала представляют собой чистый углерод. В основе производства ВПЯУ лежит дублирование высокопористой структуры сетчато-ячеистого полимера. Карбонизация последнего (нагревание при температуре до 1100° по Цельсию без доступа кислорода) приводит… Читать ещё >

Углеродный материал — один из самых востребованных (реферат, курсовая, диплом, контрольная)

Один из самых распространённых и надежных материалов в реконструктивной хирургии костей и суставов — углеродный материал С этой точки зрения еще в 60-е годы в качестве имплантируемого материала специалисты начали применять углерод. Главное его достоинство — инертность по отношению к живым тканям. Тем не менее, механические свойства обычного углерода не позволили применять его в условиях значительных и даже умеренных механических нагрузок .

Возвращение интереса к углероду обусловлено созданием нового поколения углеродных материалов, механические свойства которых могут быть заданными и регулироваться в значительных пределах. Возможность моделирования свойств углеродных материалов соответственно параметрам нативной костной ткани позволило рассматривать биомеханическую систему кость-имплантат как единое целое .

На данный момент изучены и применены в клинической практике два варианта углеродных материалов нового поколения: углерод-углеродный композиционный материал и высокопористый ячеистый углерод.

Всесторонние исследования углеродных материалов в эксперименте (биохимическое, токсикологическое) позволили применить их в клинических условиях. Доказано, что высокопористый ячеистый углерод прорастает костной тканью, образуя прямое прочное соединение без соединительнотканной прослойки. Данное положение подтверждено микроскопическими исследованиями костно-углеродных шлифов в отражённом свете светового и электронного микроскопа. Установлено, что при высокой пористости костные балки, прорастающие имплантат, повторяют или воспроизводят структуру губчатой кости, и дифференцировать имплантат и нативную кость в отдалённом периоде не представляется возможным. Выявлено, что после удаления костных опухолей не возникает опасности гиперплазиогенного эффекта вследствие абсолютной инертности углеродных материалов. Так же, углеродные материалы не препятствуют пространственному расположению фиксаторов вплоть до возможности проведения их через имплантат. Изучено, что имплантаты из углерод-углеродного композиционного материала не уступают по своим механическим и биологическим характеристикам другим искусственным материалам, но значительно ниже по себестоимости [2].

Один из самых важных факторов — использование в реконструктивной хирургии опорно-двигательного аппарата углеродных материалов не требует повторных операций для их удаления. Высокопористый ячеистый углерод по его биологическим и биомеханическим характеристикам можно рекомендовать как материал выбора при пластике дефектов губчатой кости различной этиологии. Его применение уменьшает, а в ряде случаев полностью ликвидирует потребность в аутотрансплантации костной ткани.

Углерод-углеродный композиционный материал положительно зарекомендовал себя при пластике дефектов плоских костей. Через 3 месяца после операции наступает биологическая фиксация имплантата за счёт врастания костной ткани в поверхностные поры материала. Это обеспечивает длительную стабильность системы кость — имплантат. Образование зон критического напряжения, ведущее к резорбции костной ткани, определяется не только величиной модуля упругости имплантируемой конструкции, но и его изменением на протяжении. Применение на практике метода конечных элементов при компьютерном моделировании поведения костной ткани позволяет прогнозировать нестабильность имплантируемых конструкций и длительность их существования.

Выделяется несколько положений в пользу использования углеродных материалов:

  • 1. Углерод-углеродный композиционный материал и высокопористый ячеистый углерод инертны по отношению к живым тканям и могут быть использованы для замещения дефектов костной ткани.
  • 2. Математическое моделирование взаимодействия костных структур с ножкой эндопротеза тазобедренного сустава показало, что для равномерного распределения нагрузок вокруг имплантата последний должен иметь переменный модуль упругости.
  • 3. Высокопористый ячеистый углерод — пластический материал, применение которого целесообразно при заполнении дефектов губчатых костей. Имплантаты из ВПЯУ легко обрабатываются интраоперационно, прорастают костью на всю глубину, обеспечивая надёжную стабильность, восстанавливая архитектуру эпиметафизарной зоны.
  • 4. Использование углерод-углеродного композиционного материала возможно при замещении дефектов плоских и длинных трубчатых костей.

Изучены два вида углеродных материалов: высокопористый ячеистый углерод и углерод-углеродный композиционный материал. По химическому составу оба материала представляют собой чистый углерод. В основе производства ВПЯУ лежит дублирование высокопористой структуры сетчато-ячеистого полимера. Карбонизация последнего (нагревание при температуре до 1100° по Цельсию без доступа кислорода) приводит к образованию материала, перемычки которого, составляющие основу ячеистой структуры, представляют собой композиции разных углеродных материалов, связанных между собой пиролитическим углеродом. Объём вещества в высокопористом ячеистом углероде составляет от 2 до 12%.

Важным шагом стало изучение возможности применения углеродных материалов in vivo.

Сроки наблюдения за животными при исследовании поведения костной ткани в контакте с углерод-углеродным композиционным материалом составили 1,3, 5,12 месяцев.

Через месяц после имплантации материал вызывал слабую клеточную реакцию мягких тканей как реакцию на операционную травму. В мягких тканях и костном мозге происходило образование соединительнотканной капсулы, отграничивающей имплантат. Признаков воспаления не было отмечено. Костная ткань реагировала пролиферацией остеобластов и формированием костных балок. Через 3 месяца клеточная реакция на имплантат отсутствовала. С костной тканью поверхность имплантата образовала прочный костно-углеродный блок за счет врастания костной ткани в поры и неровности материала.

В послеоперационном периоде возникло 6 осложнений. У 3-х животных диагностированы переломы бедра на месте вмешательства. Нагноение в области имплантата наблюдали у 3 животных в сроки от 1 до 2-х месяцев. В 1-ом случае гнойный процесс был купирован вскрытием и дренированием абсцесса. Это не повлияло на формирование костно-углеродного блока. В 2-х случаях в условиях гнойной раны фиксации имплантата не произошло.

При изучении костной ткани после замещения её дефекта высокопористым ячеистым углеродом сроки наблюдения за животными составили 1, 3, 5 месяцев. Анализ макропрепаратов показал, что уже через месяц от мягких тканей имплантат отделен тонкой соединительнотканной прослойкой. Через 3 месяца при контакте с губчатой костью сформировался прочный костно-углеродный блок. К концу пятого месяца во всех наблюдениях поры материала были заполнены костной тканью. В данной серии эксперимента не было зарегистрировано ни отторжения имплантатов, ни нагноения послеоперационных ран.

Полученные результаты свидетельствуют об инертности углеродных материалов и отсутствии их неблагоприятного действия на организм.

Показать весь текст
Заполнить форму текущей работой