Помощь в написании студенческих работ
Антистрессовый сервис

Нарушение развитие эндосперма и зародыша

РефератПомощь в написанииУзнать стоимостьмоей работы

Еще одним важным методом селекции является получение межвидовых гибридов, сочетающих в себе ценные свойства родительских видов. Межвидовая гибридизация затрудняется тем, что такие гибриды не могут размножаться половым путем. Ведь во время мейоза хромосомы должны сойтись гомологичными парами и конъюгировать между собой. А у особей, даже близких, но все-таки разных видое и число хромосом… Читать ещё >

Нарушение развитие эндосперма и зародыша (реферат, курсовая, диплом, контрольная)

Причины бесплодие семена

Эндосперм — питательная ткань в семени растения. Обеспечивает питательными веществами развивающийся зародыш. Присутствует в зрелых семенах большинства цветковых растений, прежде всего однодольных, отсутствует в семенах многих водных и болотных растений, видов сем. орхидных и многих двудольных.

Образование эндосперма столь тесно связано с процессами, разыгрывающимися в женском гаметофите, что будет вполне уместно остановиться здесь и на этом вопросе. Уже вполне сформировавшийся эндосперм состоит из относительно крупных паренхимных клеток, почти всегда плотно сомкнутых и более или менее густо заполненных различными питательными веществами — крахмалом, белком, маслом. У разных групп цветковых растений эндосперм развивается неодинаково. Различают три основных типа развития эндосперма: нуклеарный (ядерный), целлюлярный (клеточный) и гелобиальный (иногда называемый базальным).

Нуклеарный тип развития эндосперма характеризуется сильным запаздыванием образования клеточных перегородок между делящимися ядрами. Вслед за делением ядер здесь не наступает тотчас же образование клеточных перегородок и поэтому появляется большее или меньшее количество свободных ядер, лежащих в тонком периферическом слое плазмы. Возникновение клеточных перегородок при этом типе развития наступает позднее. Нуклеарный тип развития эндосперма характерен для многих семейств (главным образом двудольных), например, для мускатниковых, почти всех лавровых, лотоса, лютиковых, маковых, гвоздичных, кактусовых, гречишных, первоцветных, розовых, почти всех маревых, порядков бобовых, крапивных, буковых и многих других.

Целлюлярный тип развития эндосперма характеризуется тем, что здесь тотчас после каждого деления ядра образуются клеточные перегородки. Он также характерен для большого числа семейств двудольных, хотя и меньшего, чем нуклеарный тип. Целлюлярный тип характерен для большинства представителей порядка магнолиевых, порядков нимфейных, троходендровых, багряниковых, семейств норичниковых, губоцветных, колокольчиковых и большинства сложноцветных. Среди однодольных целлюлярный тип развития эндосперма известен у аронниковых и рясковых.

Гелобиальный тип развития эндосперма характеризуется тем, что здесь после первого деления ядра образуется клеточная перегородка, которая делит гаметофит на две неравные части: большую микропилярную и меньшую халазальную (или латеральную). В микропилярной части эндосперма сначала образуется ряд свободных ядер, и только позднее между ними возникают клеточные перегородки; в халазальной части образуются либо две клетки, либо большое число свободных ядер. Халазальная часть эндосперма не принимает участия в его организации и обычно функционирует как гаусторий. Гелобиальный тип развития обычно рассматривается как промежуточный между целлюлярным и ядерным, но не все эмбриологи с этим согласны. Гелобиальный эндосперм особенно характерен для однодольных, но встречается также у некоторых двудольных, в том число у кабомбовых. Следует, однако, заметить, что некоторые современные авторы отрицают существование у двудольных гелобиального типа развития эндосперма.

Вопрос, какой из трех типов развития эндосперма является наиболее примитивным, служит уже более полустолетия предметом споров. В 1957 г. индийские эмбриологи растений Б. Г. Л. Снами и Н. М. Гопапати привели убедительные доводы в пользу примитивности целлюлярного типа, что вскоре было еще более глубоко обосновано австрийским эмбриологом Розали Вундерлих (1959). Примитивность целлюлярного типа развития эндосперма доказывается, в частности, тем, что он присущ подавляющему большинству представителей порядка магнолиевых, в том числе дегенерии и видам семейств магнолиевых и винтеровых.

Различны не только типы образования эндосперма, но и степень развития этой ткани. Как правило, чем примитивнее в эволюционном отношении группа, тем лучше развит у нее эндосперм. В таких случаях обычно говорят, что эндосперм обильный. Напротив, у наиболее подвинутых групп эндосперм становится скудным или даже отсутствует. Отсюда уже давно был сделан вывод, что в процессе эволюции цветковых растений происходила редукция эндосперма. Редукция эндосперма была связана с постепенным увеличением размеров зародыша. С увеличением размеров зародыша в нем может накапливаться все больше и больше запасных веществ, роль эндосперма постепенно уменьшается и в конце концов сводится на нет.

При развитии гибридного зародыша и эндосперма также встречаются 2 вида нарушений: обратимые и необратимые. К саморегулируемым (обратимым) процессам в развитии зародыша и эндосперма можно отнести те, которые связаны с замедлением или ускорением их общего темпа развития. Такие нарушения встречаются нередко при гибридизации. К необратимым процессам относятся нарушения корреляций при развитии зародыша и эндосперма. Такие аномалии при гибридизации встречаются довольно часто. Так, например, через 6 сут после опыления можно видеть многоклеточный зародыш, а эндосперм при этом все еще остается ядерным. Следует остановиться на тех аномалиях, которые встречаются при развитии гибридного зародыша и эндосперма. В эмбриогенезе, как уже было отмечено ранее, имеются 2 этапа: бластомеризация и органогенез (см. раздел «Развитие зародыша»). При отдаленной гибридизации нарушения могут проявляться на обоих этапах развития. При этом критическими периодами развития гибридного зародыша могут быть различные фазы его развития. Они видоспецифичны. Например, при реципрокном скрещивании Т. топососсит с Т. aestivum и Т. aestivum с Т. zuckovskyi нарушения отмечаются в течение всего эмбриогенеза. В раннем проэмбрио они выражаются в нарушении митозов, т. е. в выбросе хроматина, образовании мостов, заложении перегородок и темпов деления в различных клетках зародыша. Эти отклонения единичны. Более существенные аномалии (массовое нарушение митозов, сильное изменение темпа деления клеток в различных частях зародыша и т. д.) наблюдаются в развитии гибридного зародыша на ранних этапах органогенеза. Все это приводит к нарушению дифференциации, к искажению формы зародыша и его отдельных органов. Эти аномалии сначала локализуются в районе щитка, а затем распространяются и на другие структуры зародыша, что приводит к его гибели. Почти всегда при отдаленной гибридизации реципрокные скрещивания эффективны в одном направлении, например при скрещивании Т. топососсит с Т. aestivum гибридный зародыш в большинстве случаев останавливается в своем развитии на стадии перехода от бластомеризации к органогенезу. При обратном скрещивании у большинства зародышей обычно наблюдается формирование всех органов, однако как их заложение, так и развитие протекают аномально. Чаще всего встречаются зародыши с сильно измененным щитком, который может быть разной формы и величины. Проводящая система в гибридном зародыше иногда совершенно отсутствует, а если развивается, то очень слабо; при этом можно видеть лишь небольшие участки прокамбиального тяжа. Кроме того, отмечается аномальное развитие точки роста. У аномальных зародышей почти всегда формируется корень. В этих случаях в зерновках относительно хорошо развит эндосперм, хотя в нем также наблюдается много отклонений. Особенность гибридных зародышей — наличие в их клетках большого количества крахмала как на ранних, так и на средних этапах эмбриогенеза, что свидетельствует о нарушении метаболизма, поскольку в норме это не наблюдается. При отдаленной гибридизации сильные нарушения отмечаются при образовании эндосперма на всех этапах его развития и связаны с аномальным течением митозов (выбросы фрагментов хромосом, образование мостов, отставание целых хромосом, неэквивалентное их расхождение и т. д.), приводящих к нарушению синхронности делений, заложению клеточных стенок и темпов развития эндосперма. Кроме того, аномалии митозов в эндосперме приводят к образованию реституционных ядер неправильной формы с большим количеством ядрышек. Полиплоидизация ядер в гибридном эндосперме происходит, вероятно, в результате эндомитоза и образования реституционных ядер. Могут формироваться многоядерные клетки, различающиеся величиной, строением (характером вакуолизации и т. д.) и полиморфизмом ядер. Все указанные выше аномалии могут наблюдаться в разных частях эндосперма, иногда он представляет собой ткань, состоящую из отдельных фрагментов, не связанных между собой. Особого внимания при гибридизации заслуживает процесс дифференциации алейронового слоя. Как известно, этот слой у злаков формируется из поверхностных клеток эндосперма и является физиологически активным слоем, играющим большую роль в общем метаболизме зерновки. При отдаленной гибридизации нарушения в формировании алейронового слоя проявляются в изменении его числа, а иногда и в полном отсутствии. Представляет интерес образование нескольких рядов клеток алейронового слоя в эндосперме в районе щитка зародыша; в этом случае алейроновый слой создает как бы барьер между зародышем и эндоспермом, что нарушает нормальную между ними взаимосвязь. Большие аномалии отмечены в образовании запасных веществ в эндосперме, что выражается как в механизме синтеза крахмала и белка, так и в их биохимическом составе. Данные электрофореза выявили в гибридном эндосперме изменение соотношения кислых и основных белков, а также появление новых белков, отсутствующих у родительских форм. Изменение соотношения 2 типов крахмала (А и Б) и белковых тел при отдаленной гибридизации приводит к мозаичности строения эндосперма и его функциональному нарушению. Главная причина аномального развития зародыша и эндосперма при отдаленной гибридизации — нарушение синхронности их развития. Это нарушение может проявляться на разных этапах формирования, причем характер и степень выраженности аномалий при различных скрещиваниях видоспецифичны. При разработке методов получения жизнеспособных семян пси несовместимых скрещиваниях важно учитывать не только характер нарушений, но и время их проявления. Для создания новых форм зерновых культур наиболее перспективным является получение гибридных растений между рожью и ячменем, между пшеницей и ячменем. В настоящее время особенно ценным в селекции является применение дигаплоидных линий с использованием гаплоидопродюсера Hordeum bulbosum. При скрещивании Н. vulgare с Н. bulbosum в зародышевом мешке происходит элиминация хромосом Н. bulbosum, в результате чего формируются гаплоидные зародыши Н. vulgare. Как указывают исследователи, наиболее сложная проблема в этой работе — получение растений из гаплоидных зародышей, которые прекращают развитие на очень ранних стадиях. Эмбриологические исследования выявили сильные нарушения в эндосперме, приводящие к полной гибели зародыша. Этот пример — прекрасная иллюстрация того, что развитие гибридного зародыша обусловлено развитием эндосперма. Для выживания таких зародышей необходимо извлечение их из семян, поэтому метод культуры изолированных зародышей — один из наиболее перспективных для преодоления нескрещиваемости, и только эмбриология может дать селекционеру точные сведения, на каком этапе развития необходимо извлекать зародыш. Существуют различные гипотезы, объясняющие причины нескрещиваемости различных видов. Одна из наиболее вероятных причин — особенность иммунологических отношений между тканями материнского растения, пыльцой и пыльцевыми трубками, гибридным зародышем и эндоспермом, что приводит к нарушению регуляции развития как отдельного органа, так и всей системы в целом, поэтому нет оснований утверждать, что аномальное развитие только эндосперма или зародыша является причиной гибели гибридных семян. Морфологические картины позволяют установить не только то, на каком этапе проявляется несовместимость, но и вскрыть ее механизмы. В последнее время на основании имеющихся данных по электронной микроскопии и цитохимии предложена гипотеза, объясняющая взаимодействие в системе пестик — пыльца. Согласно этой гипотезе, белки и другие вещества, содержащиеся в стенке пыльцы, являются носителями информации. Макромолекулы, сосредоточенные на пелликуле и клеточных стенках пестика, представляются как система, считывающая информацию пыльцы. Обе системы работают под контролем генетического комплекса полового узнавания (S-локус). От степени соответствия действия этих 2 систем и зависит успех протекания первых этапов оплодотворения. Успехи в этой области эмбриологии еще раз иллюстрируют, что изучение отдельных этапов оплодотворения является теоретической базой для работ в области генетики и селекции. Следует отметить, что как характер, так и степень выраженности рассмотренных выше нарушений (например, в случае прямых и обратных скрещиваний) различны, и в каждом отдельном растении, используемом в качестве материнской формы, складывается специфическое взаимодействие гибридных и материнских тканей и разных органов.

Бесплодие — в биологии — потеря растениями и животными способности размножаться половым путем.

Гибридизация — это получение гибридов от скрещивания генетически разнородных организмов. В селекции применяют близкородственное скрещивание (инбридинг) и скрещивание неродственных организмов (аутбридинг). Близкородственная гибридизация у растений основана на искусственном опылении своей пыльцой обычно перекрестноопыляемых растений. Самоопыление ведет к повышению гомозиготности и закреплению наследственных свойств. Потомство, полученное от одного гомозиготного растения путем самоопыления, называется чистой линией. У особей чистых линий часто снижается жизнеспособность и падает урожайность. Но если скрестить разные чистые линии между собой (межлинейная гибридизация), то наблюдается явление гетерозиса — повышенная жизнеспособность и плодовитость в первом поколении гибридов, которая постепенно снижается. Гетерозис объясняется переходом большинства генов в гетерозиготное состояние. Межлинейная гибридизация позволяет повысить урожайность семян кукурузы на 20 — 30%. Явление гетерозиса у растений можно закрепить при вегетативном размножении (клубнями, черенками, луковицами и т. д.).

Отдаленная гибридизация позволяет сочетать в одном организме ценные признаки разных видов и даже родов. Такая гибридизация осуществляется с трудом, и межвидовые гибриды обычно бесплодны, так как затруднена конъюгация хромосом разных видов при мейозе. Преодолеть бесплодность межвидовых гибридов впервые удалось Г. Д. Карпеченко в 1924 г. Он получил гибрид редьки и капусты с диплоидным набором хромосом 18 (9 «редечных» и 9 «капустных»), который был совершенно бесплоден. Для преодоления бесплодия ученый удвоил число хромосом каждого вида (получил полиплоидную форму гибрида), в результате чего в кариотипе оказалось 36 хромосом (по 18 «редечных» и «капустных»). Это создало возможность конъюгации гомологичных хромосом капусты с «капустными» и редьки с «редечными». Каждая гамета несла по одному набору хромосом капусты и редьки (9+9 = 18). В зиготе вновь оказывалось 36 хромосом. Полученный межвидовой гибрид стал плодовитым. Таким образом, полиплоидия является одним из способов восстановления плодовитости межвидовых гибридов у растений.

Еще одним важным методом селекции является получение межвидовых гибридов, сочетающих в себе ценные свойства родительских видов. Межвидовая гибридизация затрудняется тем, что такие гибриды не могут размножаться половым путем. Ведь во время мейоза хромосомы должны сойтись гомологичными парами и конъюгировать между собой. А у особей, даже близких, но все-таки разных видое и число хромосом, и их форма отличаются друг от друга, и нормальная конъюгация невозможна. Один из способов преодолеть бесплодие межвидовых гибридов разработал замечательный отечественныйгенетик Г. Д. Карпеченко, работая с гибридом редьки и капусты. И у редьки, и у капусты гаплоидный набор равен 9 хромосомам. Гибрид имел 18 хромосом в каждой клетке (по 9 от капусты и от редьки) и был бесплодным, поскольку «капустные» и «редечные» хромосомы между собой конъюгировать в мейозе не могли. Тогда Г. Д. Карпеченко сумел получить полиплоид гибрида, который содержал в своих клетках по 36 хромосом: 18 «капустных» и 18 «редечных». Теперь в мейозе 9 «капустных» хромосом стали конкурировать с 9 гомологичными «капустными» хромосомами, а 9 «редечных» — с 9 «редечными-. В каждой гамете получалось по гаплоидному набору «редечных» и «капустных» хромосом (9 + 9 = 18), а при оплодотворении возникал межвидовой полиплоидный гибрид с 36 хромосомами в клетках. Таким образом, Г. Д. Карпеченко преодолел бесплодие межвидовых гибридов у растений.

Отдаленная гибридизация — скрещивание растений разных видов, а иногда и родов, способствующее получению новых форм. Обычно скрещивание происходит в пределах вида. Но иногда возможно получение гибридов от скрещивания растений разных видов одного рода и даже разных родов. Так, существуют гибриды ржи и пшеницы, пшеницы и дикого злака эгилопс. Однако отдаленные гибриды обычно бесплодны. Основные причины бесплодия:

  • — у отдаленных гибридов обычно невозможен нормальный ход созревания половых клеток;
  • — хромосомы обоих родительских видов растений настолько несхожи между собой, что они оказываются неспособными конъюгировать, в результате чего не происходит нормальной редукции их числа, нарушается процесс мейоза.

Эти нарушения оказываются еще более значительными, когда скрещивающиеся виды отличаются по числу хромосом (например, диплоидное число хромосом ржи 14, мягкой пшеницы — 42). Существует немало культурных растений, созданных в результате отдаленной гибридизации. Например, в результате многолетних работ академика Н. В. Цицина и его сотрудников получены ценные сорта зерновых на основе гибридизации пшеницы с многолетним сорным растением пыреем. В результате гибридизации пшеницы с рожью (эти гибриды обычно бесплодны) было получено новое культурное растение, названное тритикале (лат. triticum — пшеница, secale — рожь). Это растение очень перспективно как кормовая и зерновая культура, дающая высокие урожаи и стойкая к неблагоприятным воздействиям внешней среды.

Показать весь текст
Заполнить форму текущей работой