Помощь в написании студенческих работ
Антистрессовый сервис

Проектирование несущих железобетонных конструкций многоэтажного промышленного здания

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

Выбор типа панелей производится на основе экономических и эксплуатационных критериев. В курсовой работе предлагается выбрать тип панели по собственному усмотрению и использовать рёбристые панели (рис. 1.3, а), или панели типа «2Т» (рис. 1.3, б). В данном примере расчёта применяются рёбристые панели перекрытия. Рекомендуемые размеры сечения и нагрузка от собственного веса для различных типов… Читать ещё >

Проектирование несущих железобетонных конструкций многоэтажного промышленного здания (реферат, курсовая, диплом, контрольная)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра «Строительные конструкции, здания и сооружения»

КУРСОВОЙ ПРОЕКТ

по дисциплине

" Строительные конструкции"

ПРОЕКТИРОВАНИЕ НЕСУЩИХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ МНОГОЭТАЖНОГО ПРОМЫШЛЕННОГО ЗДАНИЯ Разработала: ст.гр. ВЭС-311

Руководитель проекта: профессор Швидко Я.И.

МОСКВА — 2009

Проектирование несущих железобетонных конструкций многоэтажного промышленного здания

Исходные данные

Вариант №

Количество этажей

Расстояние между продольными разбивочными осями

L =

м

Количество пролётов поперёк здания

Расстояние между поперечными разбивочными осями

l =

м

Количество пролётов вдоль здания

Высота типового этажа

4,2 м

Нормативная временная нагрузка на перекрытие

v =

кН/м2

Расчётная снеговая нагрузка на покрытие (г. Москва)

1,8 кН/м2

Классы арматуры для конструкций

с напрягаемой арматурой

А1000 (A-VI)

с ненапрягаемой арматурой

А400 (A-III)

Классы бетона для конструкций

с напрягаемой арматурой

В40

с ненапрягаемой арматурой

В25

Условное расчётное сопротивление основания

0,25 МПа

Глубина заложения фундамента

1,3 м

Варианты заданий

ВЭС-311

ВЭС-311

вар.

L= l,

м

v,

кН/м2

вар.

L= l,

м

v,

кН/м2

вар.

L= l,

м

v,

кН/м2

вар.

L= l,

м

v,

кН/м2

7,2

9,5

6,6

9,5

2,5

6,6

8,4

2,5

7,8

10,5

7,2

6,6

10,5

7,2

3,5

8,4

8,4

3,5

7,8

8,4

8,4

7,8

8,4

4,5

4,5

7,8

8,4

5,5

7,2

5,5

7,8

7,2

6,6

8,4

6,5

7,2

6,5

7,8

7,2

8,4

8,4

7,5

7,8

7,5

7,2

6,6

6,6

4,5

8,4

7,2

4,5

8,5

6,6

5,5

7,2

7,8

5,5

7,8

6,6

6,5

7,2

7,8

6,5

Номер варианта соответствует номеру в журнале группы.

Без задания работа не принимается.

  • Проектирование несущих железобетонных конструкций многоэтажного промышленного здания
  • Введение
  • 1. Компоновка конструктивной схемы каркаса здания
  • 1.1 Объёмно-планировочные параметры здания
  • 1.2 Состав и работа каркаса здания
  • 1.3 Температурные швы
  • 1.4 Колонны и наружные стены
  • 1.5 Ригели
  • 1.6 Панели перекрытия
  • 1.7 План и поперечный разрез здания
  • 2. Определение нагрузок и статический расчёт элементов каркаса
  • 2.1 Общие положения
  • 2.2 Коэффициенты надежности по нагрузке
  • 2.3 Нагрузки на перекрытие и покрытие
  • 2.4 Статический расчёт панели перекрытия
  • 2.4.1 Расчётная схема панели
  • 2.4.2 Расчётная нагрузка
  • 2.4.3 Внутренние усилия в панели
  • 2.5 Статический расчёт поперечной рамы каркаса
  • 2.5.1 Расчётная схема поперечной рамы
  • 2.5.2 Нагрузка на ригель поперечной рамы
  • 2.5.3 Внутренние усилия в ригеле
  • 2.5.4 Продольные усилия в колонне 1-го этажа
  • 3. Расчёт и конструирование предварительно напряженной панели перекрытия
  • 3.1 Характеристики прочности бетона и арматуры
  • 3.2 Предварительное напряжение арматуры
  • 3.2.1 Методы натяжения арматуры
  • 3.2.2 Способы натяжения арматуры
  • 3.2.3 Величина предварительных напряжений в арматуре
  • 3.3 Граничная относительная высота сжатой зоны бетона
  • 3.4 Опалубочные размеры панели
  • 3.4.1 Основные габаритные размеры панели
  • 3.4.2 Ширина продольного ребра панели
  • 3.4.3 Размеры полки (плитной части)
  • 3.5 Эквивалентное поперечное сечение панели
  • 3.5 Подбор продольной рабочей арматуры панели
  • 3.6 Конструирование поперечной рабочей арматуры панели
  • 3.7 Расчет полки панели на местный изгиб
  • 3.7.1 Общие соображения
  • 3.7.2 Нагрузки на полку панели
  • 3.7.3 Расчётная схема полки, внутренние усилия
  • 3.7.4 Поперечное сечение полки
  • 3.7.5 Подбор рабочей арматуры
  • 3.7.6 Конструирование сеток
  • 3.8 Рабочие чертежи панели перекрытия
  • 4. Расчет и конструирование ригеля перекрытия
  • 4.1 Прочностные и деформативные характеристики бетона и арматуры
  • 4.2 Подбор продольной рабочей арматуры ригеля
  • 4.3 Подбор продольной рабочей арматуры ригеля
  • 4.4 Подбор поперечной рабочей арматуры ригеля
  • 4.4.1 Конструирование поперечной арматуры
  • 4.4.2 Общие соображения по расчёту прочности наклонных сечений
  • 4.4.3 Расчет на действие поперечной силы по наклонной трещине
  • 4.4.3 Проверка прочности на действие поперечной силы по наклонной полосе между наклонными трещинами
  • 4.5 Обрыв продольной арматуры в пролёте
  • 4.6 Определение несущей способности нормальных сечений ригеля
  • 4.7 Определение длины заделки арматурных стержней
  • 4.8 Определение экономического эффекта от снижения расхода арматуры
  • 4.9 Конструктивное армирование ригеля, опорный узел
  • 5. Расчёт и конструирование колонны
  • 5.1 Подбор продольной арматуры
  • 5.2 Конструирование поперечной арматуры колонны
  • 6. Расчёт и конструирование фундамента
  • 6.1 Общие соображения
  • 6.2 Определение площади подошвы фундамента
  • 6.3 Определение основных размеров фундамента
  • 6.4 Расчёт фундамента на продавливание
  • 6.5 Проверка прочности плиты по наклонному сечению
  • 6.6 Подбор арматуры подошвы фундамента
  • Список литературы
  • Приложение
  • Краткие теоретические сведения

Многоэтажные промышленные здания служат для размещения различных производств: цехов лёгкого машиностроения, приборостроения, химической, электрои радиотехнической промышленности, а также складов, холодильников, гаражей, предприятий железнодорожного транспорта и прочих объектов. Для всех названных производств характерны сравнительно небольшие вертикальные и горизонтальные нагрузки на конструкции здания.

Многоэтажные производственные здания целесообразно строить, когда технологический процесс организован по вертикальной схеме или когда площадь территории, выделенная для строительства, ограничена и стеснена.

Чаще всего многоэтажные производственные здания выполняют из железобетона, так как в настоящее время он является одним из основных материалов капитального строительства и реконструкции.

Основу многоэтажного производственного здания образует железобетонный каркас, состоящий из колонн, ригелей, плит перекрытия и элементов жесткости. Иногда здания проектируют с неполным каркасом, в котором колонны располагаются только внутри, а наружные стены исполняют роль несущих и ограждающих конструкций.

Требованиям индустриализации строительства в наибольшей степени отвечают сборные железобетонные конструкции, возведение которых на строительной площадке осуществляется из заранее заготовленных элементов. Их производство ведется на базе развитой сети высокомеханизированных и автоматизированных предприятий сборного железобетона, специализированных на выпуск определенного ассортимента изделий и конструкций. Вместе с тем, в настоящее время в строительстве широко применяется и монолитный железобетон.

В данной работе выполняется проектирование основных несущих конструкций сборного железобетонного каркаса многоэтажного производственного здания. Целью проектирования является разработка наиболее технологичных конструктивных решений, обеспечивающих несложное, быстрое и экономичное изготовление, транспортирование и монтаж конструкций, которые будут надёжны и безопасны в эксплуатации.

Проектирование ведется в соответствии с действующими нормативными документами (СНиП, ГОСТ), составляющими техническую и юридическую основу проектных работ и обеспечивающими необходимую надёжность и экономичность строительных объектов.

1. Компоновка конструктивной схемы каркаса здания

1.1 Объёмно-планировочные параметры здания

Таблица 1.1.

Расстояние между продольными разбивочными осями

L

по заданию

7,8 м

Количество пролётов поперек здания

n

по заданию

Ширина здания (в осях)

L0

L· n

31,2 м

Расстояние между поперечными разбивочными осями

l

по заданию

7,8 м

Количество пролетов вдоль здания

m

по заданию

Длина здания (в осях)

l0

l· m

101,4 м

Высота этажа

H

по заданию

4,2 м

Количество этажей

по заданию

1.2 Состав и работа каркаса здания

Продольные и поперечные разбивочные оси образуют сетку, в узлах которой устанавливаются колонны. Расстояние между продольными разбивочными осями принято называть пролётом здания, между поперечными — шагом колонн.

Колонны по высоте имеют выступающие части — консоли, на которые устанавливаются балки — ригели. Сверху на ригели укладываются панели перекрытия.

На панели действуют вертикальные нагрузки (эксплуатационные), которые передаются затем через ригели на колонны, а с них через фундаменты на грунт основания. Горизонтальные нагрузки (ветровые) воспринимаются наружными стенами здания, которые выполняются из кирпича. На них передается также и часть вертикальных нагрузок.

Конструктивная система здания с использованием колонн и несущих стен носит название неполного каркаса.

1.3 Температурные швы

Чтобы в элементах каркаса не возникали дополнительные усилия от изменения температуры, здание в необходимых случаях разрезают на отдельные самостоятельные блоки (температурные отсеки) поперечными и продольными температурными швами.

По требованиям СНиП наибольшая длина температурного отсека составляет 60 м.

Длина здания l0 = 101,4 м > 60 м, поэтому необходимо устройство поперечного температурного шва.

Предусматриваем шов в середине длины здания, тогда длина температурного отсека составит:

lt = l · 7= 7,8 · 7 = 54,6 м < 60 м.

Температурный шов представляет собой два ряда колонн, смещённых от разбивочной оси на 500 мм.

1.4 Колонны и наружные стены

Сечение колонн обычно принимают квадратным со стороной 300, 350, 400, 450 мм (в соответствии с требованиями унификации). С увеличением нагрузки увеличивается и сечение колонн.

Толщина наружной стены принимается кратной размерам кирпича (250120 мм, высота 65 мм), с учётом 10 мм на вертикальный шов:

380 мм = 120+10+250 мм

(1,5 кирпича)

510 мм = 250+10+250 мм

(2 кирпича)

640 мм = 250+10+120+10+250 мм

(2,5 кирпича)

Принимаем сечение колонн 450450 мм, толщину кладки наружных стен 640 мм (постоянной на всех этажах).

1.5 Ригели

Принимаем поперечное направление ригелей, т. е. располагаем ригели поперёк здания. В этом случае они образуют вместе с колоннами раму с жесткими узлами, обеспечивая дополнительную пространственную жесткость каркаса в поперечном направлении.

Сечение ригеля принимаем прямоугольным, так как оно наиболее простое в изготовлении (а так же и в расчёте). Назначаем размеры сечения ригеля (рис. 1.1 и прил.1):

высота hr = (1/10…1/15) L = 780…520 мм; принимаем hr = 750 мм (кратно 50 мм);

ширина br = (0,3…0,4) hr = 225…300 мм; принимаем br = 250 мм (кратно 50 мм).

Чем больше высота сечения ригеля, тем лучше он работает на восприятие нагрузки, но строительная высота перекрытия при этом увеличивается.

Ригели, находящиеся у продольной наружной стены, опираются одним концом на эту стену, а другим — на консоль колонны. Глубину заделки ригеля в стену примем равной длине кирпича (250 мм).

1.6 Панели перекрытия

Выбор типа панелей производится на основе экономических и эксплуатационных критериев. В курсовой работе предлагается выбрать тип панели по собственному усмотрению и использовать рёбристые панели (рис. 1.3, а), или панели типа «2Т» (рис. 1.3, б). В данном примере расчёта применяются рёбристые панели перекрытия. Рекомендуемые размеры сечения и нагрузка от собственного веса для различных типов панелей представлены в Приложении 1.

Схема раскладки панелей. Принимаем наиболее распространённый вариант раскладки (подходит для любого типа панелей): между колоннами укладываются связевые панели, которые служат распорками, передающими горизонтальные нагрузки. Рядовые и связевые панели имеют одинаковую ширину; укладываемые у продольных стен доборные панели в два раза уже рядовых (рис. 1.2).

Заделка панелей в стены:

в продольные стены панели не заделываются;

в поперечные стены заделка составляет 130 мм

(половина кирпича с учётом толщины раствора шва: 120 + 10 мм).

Привязка наружных стен к разбивочным осям:

к продольной оси: нулевая привязка

(внутренняя грань стены совмещена с разбивочной осью);

к поперечной оси: привязка 130 мм

(внутренняя грань стены смещена с разбивочной оси внутрь здания на величину заделки панели в стену).

Размеры сечения панели перекрытия:

высота hп = (1/20…1/30) l = 390…260 мм, принимаем hп = 350 мм (кратно 50 мм);

ширина панели bn назначается такой, чтобы в соответствии со схемой раскладки на длине пролёта можно было разместить целое число панелей. При этом ширина панели должна находиться в пределах 1200…1500 мм. Рекомендуемая ширина панелей представлена в таблице 2 Приложения 1.

Принимаем ширину панели bn = 1300 мм (кратно 100 мм), тогда между продольными осями укладывается 6 панелей.

1.7 План и поперечный разрез здания

Компоновка конструктивной схемы каркаса заканчивается изображением плана и поперечного разреза здания (масштаб М 1: 200).

Основные сборные конструктивные элементы каркаса на строительных чертежах принято обозначать марками (например: П-1, П-2, П-3 — панели перекрытия соответственно рядовые, связевые и доборные). Однотипные элементы получают одинаковые марки.

Колонны здания для удобства изготовления, транспортировки и монтажа разделяются по высоте на отдельные монтажные элементы. Длина монтажного элемента может составлять 1; 2 и 3 этажа (но не более 18 м для возможности перевозки).

Для удобства выполнения работ по замоноличиванию стыков и сварки выпусков арматуры стык колонн располагается выше пола перекрытия на 800 мм.

Для изображения на поперечном разрезе задают ориентировочные (предварительные) размеры консольного выступа колонн (напр.250 250 мм, скос под углом 45є) и фундамента (трёхступенчатый, высота ступени 350 мм). Глубина заложения подошвы фундамента df принимается по заданию.

2. Определение нагрузок и статический расчёт элементов каркаса

2.1 Общие положения

В Нормах проектирования (СНиП [1]) указаны нормативные значения нагрузок (qn), которые соответствуют условиям нормальной эксплуатации сооружений (за это их называют эксплуатационными).

Нормативные нагрузки приняты с обеспеченностью (доверительной вероятностью), равной 0,95. Это означает, что из 100 нагрузок 95 не будут превышать установленного нормативного значения.

В практических расчётах используются расчётные значения нагрузки (q), получаемые путём умножения их нормативной величины qn на коэффициент надёжности по нагрузке гf, учитывающий статистический характер изменчивости нагрузок:

q = qn · гf

Расчётные нагрузки имеют обеспеченность 0,997…0,999, что вполне достаточно для проведения расчётов по прочности.

2.2 Коэффициенты надежности по нагрузке

Таблица 2.1.

Вид нагрузки

гf

пункт СНиП [1]

Постоянная:

собственный вес конструкций

железобетонных

1,1

табл.1

изоляционных, выравнивающих и отделочных слоев, выполняемых на строительной площадке

1,3

Временная

снеговая

1,4

п. 5.7

технологическая v? 2 кН/м2

1,2

п. 3.7

Расчётные значения нагрузок также принято умножать на коэффициент надёжности по назначению здания гn, учитывающий степень ответственности зданий и сооружений, которая характеризуется значимостью экономических, социальных и экологических последствий отказов этих объектов.

Здание в данном проекте, как и большинство зданий, относится ко II-му уровню ответственности (нормальному), которому соответствует коэффициент гn = 0,95 (прил.7* СНиП [1]).

2.3 Нагрузки на перекрытие и покрытие

Таблица 2.2.

Вид нагрузки

Толщина слоя, м

Объемный вес, кН/м3

Нагрузка, кН/м2

нормативная

гf

расчётная

Нагрузка на перекрытие:

Постоянная

(собственный вес конструкций):

Рёбристая панель перекрытия (Прил.1)

2,5

1,1

2,750

Стяжка из цем. раствора

0,015

0,27

1,3

0,351

Плиточный пол

0,015

0,3

1,3

0,390

Временная (по заданию)

8,0

1,2

9,600

Полная (постоянная + временная) Р0

11,07

13,091

Нагрузка на покрытие:

Постоянная

(собственный вес конструкций):

Рёбристая панель покрытия (Прил.1)

2,5

1,1

2,750

Пароизоляция: 2 слоя рубероида на мастике

0,1

1,3

0,130

Утеплитель: плиты минераловатные

0,15

0,45

1,3

0,585

Стяжка из цем. раствора

0,02

0,36

1,3

0,468

Гидроизоляция: 3 слоя рубероида на мастике

0, 20

1,3

0,260

Слой гравия на мастике

0,02

0,40

1,3

0,520

Временная (снеговая, по заданию)

1,29

1,4

1,800

Полная (постоянная + временная) Р1

5,30

6,513

2.4 Статический расчёт панели перекрытия

2.4.1 Расчётная схема панели

Расчётной схемой панели перекрытия является балка, свободно лежащая на двух опорах (рис. 2.1).

Расчётный пролёт панели — это расстояние между центрами её опорных площадок:

где br — ширина ригеля (п. 1.5).

2.4.2 Расчётная нагрузка

Панель воспринимает нагрузку, действующую в пределах её номинальной ширины bп = 1,3 м (п. 1.6).

Полная расчетная нагрузка на панель:

q = Р0 bn n = 13,0911,30,95 = 16,167 кН/м.

2.4.3 Внутренние усилия в панели

Наибольшие внутренние усилия в панели перекрытия от действия полной расчётной нагрузки вычисляются по формулам сопротивления материалов:

изгибающий момент (в середине пролёта):

поперечная сила (на опоре):

.

Рис. 2.1.

Конструктивная (а) и расчётная (б) схема панели перекрытия; эпюры внутренних усилий (в).

2.5 Статический расчёт поперечной рамы каркаса

2.5.1 Расчётная схема поперечной рамы

Многоэтажная многопролётная поперечная рама каркаса здания является сложной статически неопределимой системой. При расчете её делят на ряд простых, размещая шарниры посередине высоты стоек рамы, и рассматривают отдельно рамы верхнего, первого и типового этажа (рис. 2.2). Усилия во всех ригелях средних пролетов будут одинаковыми, поэтому достаточно рассматривать трёхпролётные рамы. Расчёт проведём для рамы типового этажа (рис. 2.2, б).

Средний пролёт рамы равен расстоянию между продольными разбивочными осями L = 7,8 м.

Величина крайнего пролета рамы — это расстояние от оси крайнего ряда колонн до центра опорной площадки ригеля на стене:

где а = 250 мм — глубина заделки ригеля в стену.

Внутренние усилия в раме определяют от совместного действия постоянной (q) и временной (v) нагрузки, рассматривая три комбинации с различными схемами действия временной нагрузки (рис. 2.2, б).

Если построить все три эпюры моментов на одном чертеже и учитывать только максимальные по абсолютной величине значения, можно получить так называемую огибающую эпюру моментов и использовать её в расчете (рис. 2.2, б).

Определение внутренних усилий можно производить:

вручную с помощью специальных таблиц (такой метод в настоящее время представляет в основном академический интерес);

с помощью IBM (что в основном и имеет место в реальной практике проектирования).

В данной работе мы не будем пользоваться ни одним из этих способов, а проведем расчет упрощённо, как делают старые опытные проектировщики: на действие полных нагрузок.

Рис. 2.2.

а — расчётная схема поперечной рамы здания;

б — условная рама типового этажа, схемы её загружения и эпюры внутренних усилий;

в — определение поперечных усилий на участке стержня из условий равновесия.

При определении нагрузок от собственного веса конструкций часто используют понятие объёмного веса материала. Его следует отличать от объёмной массы (плотности). Например, объёмная масса железобетона = 2500 кг/м3, по этой величине путём несложного преобразования можно найти объёмный вес железобетона: 0 = 25 кН/м3.

2.5.2 Нагрузка на ригель поперечной рамы

Ригель воспринимает нагрузку, действующую на грузовой площади шириной, равной расстоянию между поперечными разбивочными осями l = 7,8 м, а также нагрузку от собственного веса.

Расчётная линейная нагрузка на ригель от его собственного веса:

qr = br hr b f = 0,250,75 251,1 = 5,156 кН/м,

где

br, hr — размеры поперечного сечения ригеля (п. 1.5);

гb = 25 кН/м3 — объёмный вес конструкций из тяжелого бетона;

гf = 1,1 — коэффициент надёжности по нагрузке (табл.2.1).

Продольная расчетная линейная нагрузка на ригель:

q = (P0l + qr) n = (13,0917,8 + 5,156) 0,95 = 101,90 кН/м.

2.5.3 Внутренние усилия в ригеле

По данным методических указаний доцента Н. А. Тимофеева [6], значения ординат огибающей эпюры моментов в ригеле обычно не превышают следующих величин:

в крайнем пролёте:

на левой средней опоре:

M21 = M23 = 0,085 qL2 = 0,85 101,90 (7,8) 2 = 526,97 кНм,

в среднем пролёте:

M22 = 0,055 qL2 = 0,55 101,90 (7,8) 2 = 340,98 кНм,

на правой средней опоре:

M32 = 0,065 qL2 = 0,65 101,90 (7,8) 2 = 402,97 кНм.

Значения поперечных сил на опорах определяются методами строительной механики (рис. 2.2, в):

QA = Qq + QM, QB = Qq — QM,

где:

Qq - поперечная сила от действия равномерно распределённой нагрузки:

;

QM — поперечное усилие от действия опорных изгибающих моментов:

.

В крайнем пролёте:

,

Q12 = 403,78 + (- 66,49) = 337,29 кН, Q21 = 403,78 — (- 66,49) = 470,27 кН.

В среднем пролёте:

,

Q23 = 397,41 + 15,77 = 413,18 кН,Q32= 397,41 — 15,77 = 381,64 кН.

Расчетный изгибающий момент на средней опоре определяется в сечении ригеля по грани колонны; величину этого момента можно вычислить по формуле:

где hк - ширина колонны: hк = 450 мм (п. 1.4).

2.5.4 Продольные усилия в колонне 1-го этажа

Колонны здания работают в составе поперечной рамы каркаса, поэтому в них возникают продольные силы и изгибающие моменты. Последние обычно невелики, поэтому мы ограничимся только определением продольных усилий. Наибольшая продольная сила в колонне возникает на уровне пола 1-го этажа (сечение «к» на рис. 2.2, а).

Колонна воспринимает со всех этажей нагрузку, действующую на её грузовой площади размером Ll, а также нагрузку от собственного веса.

Нагрузка от собственного веса колонны

Нормативная нагрузка:

где

nэ = 5 — число этажей (табл.1.1); H = 4,2 м - высота этажа; hk — ширина колонны.

Расчётная нагрузка:

Gk = Gk,nf = 106,311,1 = 116,94 кН.

Продольная сила в колонне на уровне пола 1-го этажа:

От нормативной нагрузки:

Nk,n = Gk,n + Ll [P0,n (nэ — 1) + P1,n] =

= 106,31 + 7,87,8 [11,07 (5 — 1) + 5,30] = 3 123 кН.

От расчётной нагрузки:

Nk = n (Gk + Ll [P0 (nэ — 1) + P1]) =

= 0,95 (116,94 + 7,87,8 [13,091 (5 — 1) + 6,513]) = 3 514 кН.

3. Расчёт и конструирование предварительно напряженной панели перекрытия

3.1 Характеристики прочности бетона и арматуры

Бетон

Применяем тяжелый бетон класса В40 (по заданию), подвергнутый тепловой обработке при атмосферном давлении.

Расчётное сопротивление сжатию Rb = 22,0 МПа (табл.13 СНиП [2]).

Бетон находится под воздействием длительной нагрузки, поэтому в расчетах умножаем его расчётное сопротивление на коэффициент условий работы гb2 = 0,9 (табл.15 СНиП [2]).

Арматура

Продольная рабочая арматура панели — предварительно напрягаемая, класса А-VI (А1000) — по заданию.

Сопротивление растяжению:

нормативное Rsn = 980 МПа (табл. 19* СНиП [2]),

расчётное Rs = 815 МПа (табл.22* СНиП [2]).

Полка панели армируется сеткой из проволочной арматуры класса Вр-I (В500).

Расчётное сопротивление растяжению Rs = 410 МПа (табл.23* СНиП [2]).

3.2 Предварительное напряжение арматуры

Предварительно напряженная арматура — это арматура, получающая начальные (предварительные) напряжения в процессе изготовления конструкций до приложения внешних нагрузок в стадии эксплуатации.

3.2.1 Методы натяжения арматуры

Существуют два метода натяжения арматуры: натяжение на упоры и натяжение на бетон. Натяжение на бетон применяется, как правило, только в монолитных конструкциях.

Используем метод натяжения арматуры на упоры, так как он наиболее целесообразен в условиях заводского изготовления железобетонных конструкций.

Арматура до бетонирования натягивается и затем фиксируется в натянутом состоянии на жестком стенде или форме. После укладки в форму бетона и набора им необходимой передаточной прочности арматура освобождается от натяжных приспособлений. Арматура, стремясь сократиться, обжимает бетон, а сама остается растянутой.

3.2.2 Способы натяжения арматуры

Существует 4 способа натяжения арматуры (из них получили распространение только первые два):

Механический (с помощью домкратов, рычагов, грузов).

Электротермический (с помощью эл. тока).

Электротермомеханический (комбинированный).

Физико-химический (самонапряжение).

Используем электротермический способ натяжения, так как он является наиболее распространённым благодаря своей простоте, малой трудоёмкости и сравнительно низкой стоимости оборудования.

Стержни арматуры нагревают до температуры 300…350єС с помощью электротока и в нагретом состоянии закрепляют в упорах формы. При остывании стержни, стремясь сократиться, натягиваются, что используется для обжатия бетона. Точность этого метода по сравнению с остальными более низкая. Кроме того, этот способ достаточно энергоёмкий и не может применяться для натяжения арматуры классов Aт-VII, B-II, Bр-II, К-7, К-19.

3.2.3 Величина предварительных напряжений в арматуре

Допустимое отклонение значения предварительного напряжения при электротермическом способе натяжения определяются по формуле (2) СНиП [2]:

где l — длина натягиваемого стержня (расстояние между наружными гранями упоров): l = 7,8 м.

В соответствии с формулой (1) СНиП установим пределы, в которых можно назначать величину предварительного напряжения в арматуре:

sp 0,3 Rsn + p = 0,3980 + 76,15 = 370,15 МПа;

sp Rsn — p = 980 — 76,15 = 903,85 МПа.

Границы этого интервала установлены на основе следующих соображений:

при высоких значениях предварительных напряжений существует опасность разрыва арматурной стали или её проскальзывания в захватах при натяжении; опасность разрушения бетона или образования в нём трещин вдоль напрягаемой арматуры.

низкие значения предварительных напряжений неэффективны, т.к. почти всё напряжение будет утрачено в результате потерь.

Величина предварительного напряжения назначается обычно близкой к верхнему пределу: уsp 0,9Rsn = 0,9980 = 882 МПа. Принимаем уsp = 800 МПа.

Передаточная прочность бетона Rbp — это прочность бетона к моменту его обжатия усилием натяжения арматуры.

Передаточная прочность бетона назначается не менее (п. 2.6* СНиП [2]):

Rbp 0,5 B = 0,540 = 20 МПа, где В — класс бетона, В = 40 МПа.

Rbp 15,5 МПа.

Принимаем Rbp = 20 МПа.

Возможные производственные отклонения от заданного значения предварительного напряжения арматуры учитываются в расчётах коэффициентом точности натяжения арматуры гsp:

sp = 0,9 — при благоприятном влиянии предварительного напряжения;

sp = 1,1 — при неблагоприятном влиянии предварительного напряжения.

Значение sp = 1,1 соответствует случаю, когда увеличение усилия обжатия сверх проектного неблагоприятно сказывается на работе конструкции, например, при расчёте прочности железобетонного элемента в стадии обжатия.

3.3 Граничная относительная высота сжатой зоны бетона

Граничное значение относительной высоты сжатой зоны бетона определяется по формуле (25) СНиП [2]:

где

щ — характеристика сжатой зоны бетона, определяемая по формуле (26) СНиП [2]:

щ = - 0,008 Rbb2 = 0,85 — 0,008 22 0,9 = 0,6916;

— коэффициент, учитывающий вид бетона; для тяжелого бетона = 0,85;

Rb здесь следует брать в МПа.

уsR — напряжение в арматуре, определяемое по формуле:

уsR = Rs + 400 — уspsp = 815 + 400 — 8000,9 = 495 МПа;

здесь используется значение sp = 0,9.

уsc,u — предельное напряжение в арматуре сжатой зоны, принимаемое при b2 < 1,0 равным уsc,u = 500 МПа.

Тогда

3.4 Опалубочные размеры панели

Опалубочные размеры необходимы для изготовления опалубочных форм сборных железобетонных элементов. Обычно предусматривается применение типовых опалубочных форм. Чертежи железобетонных элементов, на которых показано не армирование, а только наружные размеры элементов, называются опалубочными.

3.4.1 Основные габаритные размеры панели

а) номинальные — в осях. Эти размеры установлены в процессе компоновки конструктивной схемы каркаса здания:

длина ln = 7800 мм

ширина bn = 1300 мм

высота hn = 350 мм.

б) конструктивные — с учётом зазоров, которые необходимы:

для возможности свободной укладки сборных элементов при монтаже (зазор не менее 10 мм);

для возможности замоноличивания швов между элементами (зазор не менее 30 мм при высоте элементов более 250 мм, п. 5.51 СНиП [2]).

Устраиваем зазоры (рис. 3.1): Д = 30 мм, Д1 = 10 мм, тогда конструктивные размеры панели будут такими:

длина lk = ln — Д = 7 800 — 30 = 7 770 мм,

ширина bk = bn - Д1 =1 300 — 10 = 1 290 мм.

Принимаем величину уступа в поперечном сечении ребристой панели д = 15 мм, тогда зазор Д2:

Д2 = Д1 + 2д = 10 + 2 · 15 = 40 мм > 30 мм,

требования СНиП выполнены.

3.4.2 Ширина продольного ребра панели

внизу (b1) принимается из условия обеспечения требуемой толщины защитного слоя бетона b1? 70…80 мм, принимаем b1 = 80 мм.

вверху (b2) принимается из условия обеспечения уклона граней ребра, равного 1/10:

в рёбристой панели: ;

в панели типа «2Т»: .

средняя ширина:

3.4.3 Размеры полки (плитной части)

ширина (расстояние в свету между продольными рёбрами):

в ребристой панели: .

в панели типа 2Т: консольный свес .

толщина hf? 50…60 мм, принимаем hf = 60 мм.

Поперечные рёбра

Поперечные ребра панели предусматриваются по её краям, и иногда — по длине пролета (мы их устанавливать не будем). Размеры поперечных ребер назначаем конструктивно (см. рис. 3.1.)

3.5 Эквивалентное поперечное сечение панели

При расчете фактическое поперечное сечение панели заменяется эквивалентным тавровым сечением (рис. 3.2.) Оно имеет ту же площадь и те же основные размеры.

В расчетах на трещиностойкость, которые мы выполнять не будем, используется приведённое сечение: площадь сечения арматуры приводится к площади сечения бетона, исходя из равенства их деформаций.

Рис. 3.1

Поперечное и продольное сечение рёбристой панели (а) и панели типа «2Т» (б).

Рис. 3.2

Эквивалентное поперечное сечение панели.

Полная высота сечения равна высоте панели: h = hn = 350 мм.

Полезная (рабочая) высота сечения h0 = h - a, где

а — расстояние от нижней растянутой грани сечения до центра тяжести продольной рабочей арматуры.

Принимаем а = 3 см, тогда h0 = 35 — 3 = 32 см.

Толщина стенки эквивалентного сечения равна суммарной толщине ребер:

b = 2bm = 2· 9 = 18 см.

Толщина полки hf = 6 см.

Участки полки, удаленные от ребра, напряжены меньше, чем соседние участки. Поэтому ширина свеса полки в каждую сторону от ребра bef ограничивается двумя условиями (п. 3.16 СНиП [2]); она должна быть:

не более 1/6 пролета элемента: bef? l/6 = 7800/6 = 1300 мм.

в рёбристой панели, когда расстояние между поперечными ребрами больше, чем между продольными:

при hf? 0,1h: bef? с/2

при hf < 0,1h: bef? 6 hf

В панели типа «2Т»: bef? c1, а также:

при hf? 0,1h: bef? 6 hf

при 0,05 h? hf < 0,1h: bef? 3 hf

при hf < 0,05 h: свесы не учитываются

В данной рёбристой панели 0,1h = 0,1· 35 = 3,5 см < hf = 6 см, поэтому

bef? c/2 = 106/2 = 53 см.

Принимаем bef = 53 см, тогда принимаемая в расчете ширина полки bf:

bf = 2 b2 + 2 bef = 2· 10 + 2· 53 = 126 см.

В панели типа «2Т»: bf = 2 b2 + 2 bef + с.

3.5 Подбор продольной рабочей арматуры панели

Определение требуемой продольной рабочей арматуры производят с помощью вспомогательного коэффициента А0:

Все величины в расчётных формулах рекомендуется брать в кН и см:

М = 119,04 кН = 11 904 кН· см; Rb = 22 МПа = 2,2 кН/см2.

По значению коэффициента А0 находим значения относительной высоты сжатой зоны о = x / h0 и относительного плеча внутренней пары сил з0 = z0 / h0, используя специальную таблицу или предлагаемые аналитические зависимости:

з0 = 1 — 0,5о = 0,976.

Фактическая высота сжатой зоны:

х = о h0 = 0,47 732 = 1,53 см < hfґ = 6 см,

поэтому граница сжатой зоны находится в пределах полки.

Для напрягаемой арматуры необходимо использовать коэффициент условий работы гs6, который учитывает увеличение сопротивления арматуры при её деформациях за границей условного предела текучести; этот коэффициент определяется по формуле (27) СНиП [2]:

где з — коэффициент, учитывающий класс арматуры; для арматуры класса А-VI з=1,10 (п. 1.13. СНиП [2]). Тогда

поэтому принимаем гs6 = з = 1,10.

Требуемая площадь сечения продольной рабочей арматуры:

По сортаменту арматуры назначаем диаметр стержней так, чтобы он был не менее требуемой величины Аs. Число стержней — 2, по одному в каждом ребре.

Принимаем 2 18 А 1000 (А-VI), Аs = 5,09 см2.

Сортамент арматуры можно найти в Приложении 3. Не следует создавать излишний запас прочности элемента. Переармированные элементы не только неэкономичны, но и опасны (см. Приложение 5).

Толщина защитного слоя бетона аb продольной рабочей арматуры, необходимого для предохранения её от коррозии, должна составлять (п. 5.5 СНиП [2]):

не менее диаметра стержня: аb? d = 18 мм,

не менее 20 мм (в ребрах высотой h? 250 мм): аb? 20 мм.

Защитный слой бетона — это толщина слоя бетона от грани элемента до ближайшей поверхности арматурного стержня.

Фактическая толщина защитного слоя:

аb = а — 0,5 d = 30 — 0,5· 18 = 21 мм > 20 мм,

значит, требования СНиП по величине защитного слоя выполнены.

Если бы указанные требования не выполнялись, расстояние а пришлось бы увеличить, а расчёт (п. 3.6.) произвести заново.

3.6 Конструирование поперечной рабочей арматуры панели

Конструирование поперечной арматуры заключается в выборе класса, диаметра и шага поперечных стержней. Обычно конструирование сопровождается расчётом, в результате которого устанавливается, обеспечена ли прочность элемента по наклонному сечению. Однако, учитывая сравнительно небольшой объем курсового проекта, ограничимся лишь конструированием.

Используем поперечную арматуру из проволоки класса Вр-I, диаметром 5 мм (5Вр-I).

Шаг поперечной арматуры назначаем не основе конструктивных требований п. 5.27 СНиП [2]:

на приопорных участках длиной, равной ј пролета l0= l/4 = 7,8/4 = 1,95 м

при высоте сечения h? 450 мм (в данном случае h = 350 мм) шаг поперечной арматуры должен быть не более:

S1 150 мм.

Принимаем S1 = 150 мм (кратно 50 мм), см. прил.1.

на остальной части пролёта при высоте сечения h > 300 мм шаг поперечной арматуры должен быть не более:

S2 500 мм.

Принимаем S2 = 250 мм (кратно 50 мм).

При h? 300 мм поперечную арматуру на этом участке допускается не устанавливать.

Поперечные стержни входят в состав плоского каркаса, которому присвоим марку К-1 (см. арматурные чертежи в графической части). Продольные стержни этого каркаса принимаем конструктивно, из арматуры 8А-I.

Для возможности свободной укладки каркаса в форму концы всех его стержней должны отстоять от грани элемента на 10 мм (п. 5.9 СНиП [2]). Величина защитного слоя бетона для поперечной и конструктивной арматуры в рёбрах высотой h? 250 мм должна быть не менее диаметра стержня и не менее 15 мм (п. 5.6 СНиП).

Продольная напрягаемая арматура не входит в состав никаких каркасов, так как приварка к ней стержней ухудшает её прочностные свойства.

Поперечные ребра армируем каркасами К-2. Используем те же виды арматуры, что и для каркаса К-1. Шаг стержня назначаем конструктивно (например, 200 мм).

3.7 Расчет полки панели на местный изгиб

3.7.1 Общие соображения

Плитная часть панели (или просто плита), называемая в тавровом сечении полкой, работает на изгиб как пластина, опёртая по контуру на продольные и поперечные ребра. Работа плиты под действием нагрузок зависит от соотношения сторон опорного контура.

При отношении сторон l2/l1 > 2 (рис. 3.3, а), плиты работают в направлении меньшей стороны, а в другом направлении за них работают рёбра. Такие плиты называются балочными, так как их рассчитывают как балки пролётом l1, выделяя из них полосы шириной b = 1 м.

При отношении сторон l2/l1? 2 (рис. 3.3, б), что бывает, например, при частом расположении поперечных рёбер, плиты работают в двух направлениях в плане и их называют за это плитами, опёртыми по контуру. Изгибающие моменты в таких плитах меньше, чем в балочных, поэтому опёртые по контуру плиты являются более эффективными. Следует помнить, что в запас прочности расчёт такой плиты можно провести и по балочной схеме.

Очевидно, что в нашей панели перекрытия, у которой поперечные ребра расположены только по краям, имеем дело с балочной плитой.

3.7.2 Нагрузки на полку панели

Равномерно распределённая нагрузка на полку панели с несущественным превышением может быть принята такой же, как и для всей плиты (табл.2.1). Линейную расчётную нагрузку определяем сбором поверхностной нагрузки с условной ширины b = 1 м:

q = P0 b гn = 13,091· 1,0·0,95 = 12,436 кН/м.

3.7.3 Расчётная схема полки, внутренние усилия

В рёбристой панели расчётная схема полки принимается в виде балки с жёсткой заделкой на концах (рис. 3.4, а), в панели типа 2 Т — в виде двухопорной консольной балки (рис. 3.4, б).

Расчётный изгибающий момент:

в рёбристой панели (с учётом перераспределения усилий):

;

в панели типа 2Т:

.

Рис. 3.3.

Плиты балочные (а) и опёртые по контуру (б).

Рис. 3.4.

Внутренние усилия в полке рёбристой панели (а) и панели типа 2 Т (б); условное поперечное сечение полки (в).

3.7.4 Поперечное сечение полки

Условное поперечное сечение полки (рис. 3.4, в) — прямоугольное, шириной b = 100 см, высотой hf = 6 см.

Плита армируется сеткой из арматуры 5 В 500, Rs = 410 МПа.

Минимальная толщина защитного слоя бетона в плитах толщиной до 100 мм составляет аb = 10 мм (п. 5.5 СНиП [2]). Тогда минимально необходимое расстояние от нижней грани сечения до центра тяжести арматуры (диаметром d = 5 мм):

а = аb + 0,5d = 100 + 0,5· 5 = 12,5 мм,

принимаем а = 15 мм. Рабочая высота сечения h0 = hf — a = 6 — 1,5 = 4,5 см.

3.7.5 Подбор рабочей арматуры

Параметр А0: .

Относительная высота сжатой зоны: .

Относительное плечо внутренней пары сил: з = 1 — 0,5о = 0,984.

Требуемая площадь арматуры: .

По сортаменту арматуры определяем, что нам необходимо не менее четырех стержней, площадь сечения 45 В 500 равна Аs = 0,79 см2.

Шаг арматурных стержней тогда составит: .

Шаг продольной рабочей арматуры сетки при высоте плиты до 150 мм должен составлять не более 200 мм (п. 5.20 СНиП [2]), поэтому принимаем S = 200 мм (кратно 50 мм).

3.7.6 Конструирование сеток

Выбранная рабочая арматура располагается параллельно короткой стороне сетки. В направлении длиной стороны арматуру ставим конструктивно: принимаем стержни 4 В 500 с шагом 200 мм (допускается не более 200 мм, кратно 50 мм).

Арматурная сетка размещается в растянутой зоне сечения полки, положение которой определяется по эпюре изгибающих моментов (рис. 3.4).

В рёбристой панели используется две сетки: пролётные моменты воспринимают сетки С-1, установленные у нижней грани сечения; опорные моменты воспринимают аналогичные, но более узкие сетки С-2 (2 шт.), установленные у верхней грани сечения.

В панели типа используется одна сетка С-1, расположенная у нижней грани сечения; вблизи ребер и на консолях стержни сетки переводятся в верхнюю зону.

Шаг стержней у краев сетки может отличаться от основного (в меньшую сторону, кратно 10 мм).

3.8 Рабочие чертежи панели перекрытия

На основе полученных в ходе расчета и конструирования данных выполняем арматурные чертежи панели перекрытия. На них показывается размещение арматуры в сечении элемента, и, кроме того, вычерчиваются отдельно арматурные каркасы и сетки.

Эти чертежи являются рабочими: по ним будет изготавливаться конструкция, поэтому они должны обладать достаточной степенью детализации.

Для того чтобы оперативно определять, какое количество арматуры нужно для изготовления железобетонного изделия, на рабочих чертежах приводятся эти сведения в виде таблицы, которую принято называть спецификацией арматуры.

4. Расчет и конструирование ригеля перекрытия

4.1 Прочностные и деформативные характеристики бетона и арматуры

Бетон

Используем тяжелый бетон класса В25 (по заданию), подвергнутый тепловой обработке при атмосферном давлении.

Расчетные сопротивления бетона (табл.13 СНиП [2]):

сжатию Rb = 14,5 МПа,

растяжению Rbt = 1,05 МПа.

Коэффициент условий работы, учитывающий длительность действия нагрузки гb2 = 0,9 (табл.15 СНиП [2]).

Начальный модуль упругости бетона Еb = 27 000 МПа (табл.18 СНиП [2]).

Арматура

Продольная рабочая арматура — ненапрягаемая, класса А400 (А-III) диаметр 10…40 мм.

Расчётное сопротивление растяжению Rs = 365 МПа (табл.22* СНиП [2]).

Модуль упругости арматуры Es = 200 000 МПа (табл.29* СНиП [2]).

Показать весь текст
Заполнить форму текущей работой