Помощь в написании студенческих работ
Антистрессовый сервис

Проектирование одноэтажного здания с несущим деревянным каркасом

КурсоваяПомощь в написанииУзнать стоимостьмоей работы

Шагом рам называется расстояние между двух рядом стоящих рам в плоскости стены. В зданиях такого типа он зависит от нагрузок на покрытие и обычно составляет 3.5 до 5 метров. Так как проектируемое здание будет с внутренним отоплением (т.е. покрытие будет утепленное), а снеговая нагрузка будет соответствовать 5-му снеговому району, зададим 15 по 4.5 м и крайние по 3.6 м. Высота здания, пролет фермы… Читать ещё >

Проектирование одноэтажного здания с несущим деревянным каркасом (реферат, курсовая, диплом, контрольная)

Санкт-Петербургский Государственный Политехнический Университет

Пояснительная записка к курсовому проекту

«Деревянные конструкции»

Выполнил:

студент группы 3017/1

Проверил:

Семенов К.В.

Санкт-Петербург

2007 г.

1. Конструктивная схема здания.

1.1. Деревянные фермы.

1.2. Выбор шага рам.

1.3. Связи.

2. Конструирование и расчет покрытия здания.

2.1. Конструкция покрытия.

2.2. Подбор сечения рабочего настила.

2.3. Подбор сечения стропильных ног.

2.4. Подбор сечения прогонов

2.5. Расчет гвоздевого забоя.

3. Расчет и конструирование элементов ферм.

3.1. Определение усилий в стержнях ферм.

3.2. Подбор сечений элементов ферм.

4. Расчет и конструирование узлов ферм.

4.1 Опорный узел на натяжных хомутах.

4.2 Промежуточный узел.

4.3 Коньковый узел.

4.4 Центральный узел нижнего пояса.

Список используемой литературы.

1. Конструктивная схема здания

Проектируется одноэтажное здание с несущим деревянным каркасом. Основу каркаса составляют последовательно расположенные рамы, образованные двумя колоннами и ригелем. В качестве ригеля используется полигональная деревянная ферма. Колонны жестко закреплены в фундаменте в плоскости рамы и шарнирно в плоскости стены.

Пространственная жесткость здания обеспечивается связями, объединяющими отдельные рамы.

1.1 Деревянные фермы

Рассмотрим полигональную деревянную ферму.

В фермах различают следующие элементы:

1 — Нижний пояс.

2 — Верхний пояс.

3 — Раскосы.

4 — Стойки.

Все элементы фермы в данном проекте выполнены из деревянного бруса, за исключением стоек, которые выполняются из стального кругляка.

Высота фермы определяется по пролету. Для полигональной фермы: hф =1/6Lф— 8-ти панельная ферма В данном проекте пролет фермы Lф=19,2 метра, поэтому высота фермы hф=1/6*19,2=3,2 метра Точки пересечения элементов фермы — узлы. Выделяют несколько характерных узлов:

5 — Опорные.

6 — Коньковый.

7 — Центральный узел нижнего пояса.

Расстояние между соседними узлами нижнего пояса называется длиной панели (lп). В этом проекте рассмотрена равно панельная ферма.

1.2 Выбор шага рам

Шагом рам называется расстояние между двух рядом стоящих рам в плоскости стены. В зданиях такого типа он зависит от нагрузок на покрытие и обычно составляет 3.5 до 5 метров. Так как проектируемое здание будет с внутренним отоплением (т.е. покрытие будет утепленное), а снеговая нагрузка будет соответствовать 5-му снеговому району, зададим 15 по 4.5 м и крайние по 3.6 м. Высота здания, пролет фермы и ветровой район при назначении шага рам не учитываются.

1.3 Связи

Конструктивная схема каркаса одноэтажного деревянного здания с полигональной 8-ти панельной фермой и схема размещения связей представлены на рисунке:

1 — вертикальные связи между фермами. Размещаются так, чтобы ни одна ферма не осталась без вертикальных связей, что приводит к их расстановке через пролет между рамами, а при четном количестве пролетов приходится их устанавливать подряд в двух пролетах (например, у одного из торцов здания).

2 — связи в плоскости верхних поясов ферм. Устанавливаются в торцевых пролетах, но если длина здания превосходит 30 м, то они устанавливаются и в центральных пролетах, по возможности с равным шагом.

3 — связи в плоскости нижних поясов ферм. Эти связи расставляются так, чтобы на виде снизу они проецировались на связи в плоскости верхних поясов ферм.

Связи 1, 2 и 3 принято называть ветровыми, так как они, придавая пространственную жесткость конструкции, позволяют наряду с прочими элементами каркаса распределять ветровую нагрузку, действующую на торец здания между всеми рамами.

Кроме связей между фермами в каркасе здания выделяют связи между колоннами:

6 — горизонтальные связи между колоннами.

7 — связи в плоскости стены между колоннами. Они устанавливаются в крайних от торцов здания пролетах, а в зданиях, длинна которых превосходит 30 м, и в центральных пролетах.

На рисунке изображены также прогоны (4) и стропильные ноги (5) — это элементы покрытия, не входящие в структуру связей. Прогоны располагаются вдоль всего здания по узлам верхних поясов ферм. Стропильные ноги укладываются поперек прогонов в плоскости верхних поясов ферм с шагом от 0.8 до 1.2 м в зависимости от величины снеговой нагрузки. В этом курсовом проекте шаг стропильных ног принят равным 0,9 м.

2. Конструирование и расчет покрытия здания

2.1 Конструкция покрытия

1 — Прогон.

2 — Стропильные ноги.

3 — Рабочий настил.

4 — Пароизоляция.

5 -Утеплитель.

6 — 3 слоя рубероида.

2.2 Подбор сечения рабочего настила

Рабочий настил рассчитывается на прочность и прогиб. Выполняется из досок. Для обеспечения достаточной жесткости, каждая доска опирается как минимум на 3 опоры (имеется двухпролетная неразрезная балка).

Расчет рабочего настила по первой группе предельных состояний.

Первое сочетание нагрузок: постоянная (собственного веса) + временная (снеговая).

Расчетная схема:

Таблица 1. Нагрузки собственного веса.

№ п. п.

Наименование

gн, кгс/м3

g, кгс/м3

3-х слойный ковер рубероида на битумной мастике

1.1

Утеплитель с=100 кг/см3

1.2

8.4

Пароизоляция

1.1

3.3

Рабочий настил (t=25 мм)

12.5

1.1

13.8

Итого:

32.5

36.5

Обозначения в таблице:

gн — нормативная нагрузка собственного веса;

— коэффициент надежности по нагрузке собственного веса;

g — расчетная нагрузка собственного веса.

Определим снеговые нагрузки. Снеговой район = 5 P**= 320 кг/м2

Далее определяем погонные нагрузки q и P.

q = g * b = 36.5 кг/м — расчетная

qн= gн*b=32.5 кг/м — нормативная

где b — ширина полосы сбора нагрузки (b = 1 м);

P*= P*** cos=320*1=320кг/ м2

P= P** B=320кг/ м2 — расчетная

Pn= P*0.7=224кг/ м2 — нормативная

где — угол наклона кровли к горизонту (cos ? 1).

Расчет по прочности:

= Mmax / W <= Rизг * mв

где — напряжение;

Mmax — расчетный изгибающий момент;

W — момент сопротивления рабочего настила;

Rизг — расчетное сопротивление изгибу (Rизг = 130 кгс/см?);

mв — температурно-влажностный режим-коэффициент, учитывающий работу древесины, зависящий от отапливаемости здания (так как здание отапливается mв =1).

Мmax = 0.125(q+ P) * Lnр? = 0.125 * (36.5+ 320) * 0.9? = 36.09 кгс*м

W = b * h? / 6 = 1 * 0.0252 / 6= 1.04*10-4 м?

= 36.09/1.04*10-4 =3.46*105 кг/ м2 < Rизг * mв = 130 * 1= 13*105 кг/ м2

Расчет на жесткость:

f=2.13*(qн+Pn)* L4nр /384/E/I<=1/150* Lnр

где f — допустимый прогиб;

E — модуль нормальной упругости (E = 1 * 105 кг/см2);

I — момент инерции.

I=b*t3/12=1* 0.0253/12=1.3*10-6 м4

f=2.13*(32.5+224)*0.94 / 384/ 105/104/1.3* 10-6=0.72*10-3м.

1/150* Lnр=0,9/150=6*10-3

0,72*10-3<6*10-3

Второе сочетание нагрузок: постоянная (собственного веса) + монтажная.

Расчетная схема:

= Mmax / W <= Rизг * mв

Мmax = 0.07 * q* Lnр? * + 0.207 * 2 * Pч * Lnр

где Pч -вес человека (Pч=100кг)

Рр.ч= Pч* =100*1,2=120 кгс

где Pр.ч — расчетный вес человека;

- коэффициент надежности по монтажной нагрузке ( = 1.2).

Mmax = 0.07 * 36,5 * 0,92 + 0.207 * 2 * 120 * 1,205 = 39,32 кгс*см

= 39.32 / 1.04*10-4 = 378 076 кгс/м? < Rизг * mв = 130 * 1 =13*105 кгс/м2 Прочность обеспечена.

2.3 Подбор сечения стропильных ног

Нормы предписывают выполнять расчет стропильных ног как однопролетную балку.

Расчетная схема:

Расчетный пролет стропильной ноги вычисляется по формуле:

Lоб = d / cos = 2.4 / 1 = 2.4 м где d — длина панели фермы (d = 2.4 м).

Определим нагрузки:

Собственный вес:

qн= gн* c*cos+ 5=36.5*0.9*1+5=34.75 кг/м

q = g * с * cos + 5* = 36.5*0.9*1+5*1.1=37.85 кг/м Снеговая нагрузка: P= P* * c*cos =320*0.9*1=288 кг/ м

Pn= P*0.7=288*0.7=201.6кг/ м

Проверка на прочность:

= Mmax / W <= Rизг * mв

Мmax = 0.125 * (q+ P) * Lоб? = 0.125 * (37.85+ 288) * 2.4? = 234.6 кгс*м

W = b * h? / 6 = 7.5 * 12.52 / 6= 195.31 cм?

= 234*102 /195.31=12*105 кг/ м2 < Rизг * mв = 130 * 1= 13*105 кг/ м2

Подобранное сечение проверяем на прогиб:

f=5*(qн+Pn)* L4об /384/E/I<=1/200* Lоб

I=b*h3/12=7.5* 12.53/12=7813 cм4

f=5*(34.75+201.6)*2404 / 384/ 100*105/7813=0.13 см

1/200* Lnр=2.4/200=1,2 см

0,13<1,2

Прочность обеспечена. Принимаем поперечное сечение стропильной ноги 125*75 мм.

2.4 Подбор сечения прогона

Прогон проверяют на прочность и на прогиб.

Подбор сечения прогона.

От собственного веса

qн = gн * d + 15=32, 5*2.4+20=98 кг/м

q = g * d + 20*=36.5*2.4+20*1.1=109,6 кг/м

Снеговая нагрузка

P= P* d=320*2.4=768 кг/ м

Pn= P*0.7=768*0.7=537,6 кг/ м

Где d — расстояние между прогонами по горизонтали (а = 4,5м); = 1.1

Проверка на прочность:

= Mmax / W <= Rизг * mв

Мmax = 1/12 * (q+ P) * Lпр? = 1/12 * (109,6+768) * 4.5? = 1480,95 кгс*м

W =2* b * h? / 6 =2*6 * 252 / 6= 1012,5 см?

=1480.95/1012,5 =118,47 кг/ см2 < Rизг * mв = 130 * 1= 130 кг/ см2

Подобранное сечение проверяем на прогиб:

f=(qн+Pn)* L4пр /384/E/I<1/200* Lпр

I=2*b*h3/12=2*6 253/12=15 625 cм4

f=(98+537.6)*4.54 / 384/ 100*105/15 625=0.434 см.

1/200* Lnр =4.82/200=2,41 см.

0,45<2,25

Прочность обеспечена.

Принимаем поперечное сечение прогона из двух досок 60*250 мм.

2.5 Расчет гвоздевого забоя

Определяем Q = Mоп /2/ a

Находим количество гвоздей n =Q/ Tгв,

Tгв — несущая способность 1-го гвоздя.

Mоп =Мmax = 1/12 * (q+ P) * Lпр? = 1/12 * (109.6+768) * 4.5? = 1480.95 кгс*м Примем диаметр гвоздя dгв= 5.5 мм Определяем a = 0.2*L — 23 dгв = 0.2 * 4.5 — 23*55*10-4 = 0,7735 м

n=1480.95 /2/0.7735=7,9

Принимаем n = 8 шт.

3. Расчет и конструирование элементов ферм

3.1 Определение усилий в стержнях фермы

Все вертикальные нагрузки, действующие на ферму, делятся на постоянные и временные. При определении усилий принимается, что все нагрузки приложены к узлам верхнего пояса.

P — узловая нагрузка от действия снега.

G — узловая нагрузка от действия собственного веса.

G =( gпокр + gсв)*а*d/cosб; gпокр= g+gоб+gпр

где d — длина панели, измеряемая вдоль верхнего пояса фермы;

а — ширина панели;

gобр=A/c*с*гf

где с-плотность древесины (500 кг/м3); гf-коэффицмент (1,1)

gобр=0,075*0,1*500*1,1/0.9=4,583 кг/м2

gпрпр/d*с*гf; gпр=0.2*0.1*500*1.1/1.2=9,16 кг/м2

gпокр=36,5+4,58+9,16=50,246

gсв=; gсв==39,317 кг/м2

G=(50.246+39.317)*10.8= 967.287 кг P=P*10.8= 3456 кг

Расчет выполняется на единичных нагрузках, приложенных к половине фермы.

Элемент

Усилие от 1

NG

NP

N

фермы

слева

справа

везде

кг

кг

кг

В1

В2

— 2,43

— 0,97

— 3,4

— 3288,8

— 11 750,4

— 15 039,2

В3

— 3,55

— 1,77

— 5,32

— 5145,96

— 18 385,92

— 23 531,22

В4

— 3,67

— 2,44

— 6,11

— 5910,1

— 21 116,16

— 27 026,26

Н1

2,42

0,97

3,39

3279,1

11 715,84

14 994,94

Н2

3,53

1,76

5,29

5116,95

18 282,24

23 399,19

Н3

3,65

2,43

6,08

5881,1

21 012,48

26 539,72

Н4

5803,72

26 539,72

Р1

— 3,48

— 1,39

— 4,87

— 4710,69

— 16 830,72

— 21 541,41

Р2

— 1,68

— 1,2

— 2,88

— 2785,79

— 9953,28

— 12 739,07

Р3

— 0,19

— 1,06

— 1,25

— 1209,11

— 4320,98

— 5529,11

Р4

1,08

— 0,95

0,13

125,747

— 3283,2/

+3732,48

3858,227

С1

— 0,5

— 0,5

— 483,64

— 1728

— 2211,64

С2

1,26

0,9

2,16

2089,34

7464,96

9554,3

С3

0,15

0,82

0,97

938,27

3352,32

4290,59

С4

— 0,86

0,76

— 0,1

— 96,728

— 2972,16/

+2626,56

— 3068,88/

— 2529,83

С5

где NG — реальное усилие в стержнях фермы от сил G;

NP — реальное усилие от снеговой нагрузки;

N — суммарное усилие

3.2 Подбор сечений элементов ферм

Нижний пояс.

Подбираем одно сечение на весь пояс. За основу берем элемент Н3, с Nmax=26 839,58 кг.

1. Из условия прочности (1) для центрально растянутого стержня определяем требуемое значение площади ослабленного врубкой сечения где mв=1 (группа конструкций АI) и mо=0,8.

2.При максимальной степени ослабления сечения н.п. врубкой на глубину hвр=¼hнп (hнп — высота сеченя н.п.) полная площадь поперечного сечения определяется как

.

3. С учетом требования hнп1,5bнп (bнп — ширина сечения н.п.) и сортамента пиломатериалов хвойных пород (приложение 4) выбираем сечение н.п. bнпxhнп=200×225 мм, при котором Абр=450 см2.

4. Из условия hвр¼hнп задаемся глубиной врубки в нижний пояс hвр=56 мм (значение hвр должно быть кратно 0,5 см) и проверяем прочность ослабленного сечения

(Условие выполняется)

Верхний пояс.

1. Из условия прочности центрально-сжатого стержня (2) определяем требуемое значение площади ослабленного врубкой сечения где Rc=140 кг/см2 (для изготовления поясов фермы применяется древесина II сорта).

2. Определяем требуемое значение полной площади поперечного сечения с учетом ослабления сечения в.п. врубкой (hвр=¼hвп)

.

3.Ширина сечения в.п. bвп принимается равной bнп 0, т. е. bвп=bнп=20 см. Требуемое значение высоты сечения в.п. определяем как С учетом сортамента и требования hвпbвп назначаем сечение в.п. bвпxhвп=200×200 мм, при котором Абр=400 см2.

4. Вычисляем радиусы инерции сечения ry=rx=0,289hвп0,0578 м. Расчетные длины в.п. в плоскости и из плоскости фермы при установке прогонов в каждом узле в.п. равны между собой lx=ly=d/cos=2,4/12,4 м. Определяем гибкости в.п. x и y: x=y=lx/rx=2,4/0,0578=41,522 < 70

Условие прочности не выполняется! Увеличим сечение в.п.

5. Так как максимальная гибкость не превышает 70, коэффициент продольного изгиба вычисляем по формуле

6. Выполняем проверку устойчивости в.п. по формуле (3) с учетом Арбр

Опорный раскос.

Элемент Р1.

1. Так как раскосы по длине не имеют ослаблений в виде врубки, основной формулой для подбора поперечного сечения является условие устойчивости (3).

Задаемся значением коэффициента продольного изгиба в пределах от 0,5 до 0,7, например = 0,5 и определяем требуемое значение площади поперечного сечения раскоса

2. С учетом сортамента и требования bр=bнп назначаем размеры поперечного сечения опорного раскоса bрxhр=200×175 мм, Абр=350 см2.

3. Расчетные длины опорного раскоса в плоскости фермы принимается равной расстоянию между центрами соединяемых им узлов фермы. В нашем примере lx=ly=3,451 м. Радиусы инерции rx =0,289*0,175=0,5 075 м.

ry = 0,289*0,2=0,0578 м Определяем гибкости опорного раскоса:

где []=120 — предельная гибкость для сжатого верхнего пояса и опорного раскоса (для промежуточных раскосов []=150). Так как max < 70, определяем по формуле

.

4. Выполняем проверку устойчивости опорного раскоса

.

(Условие устойчивости выполняется)

Элемент Р2.

1. Так как раскосы по длине не имеют ослаблений в виде врубки, основной формулой для подбора поперечного сечения является условие устойчивости (3).

Задаемся значением коэффициента продольного изгиба в пределах от 0,5 до 0,7, например = 0,5, и определяем требуемое значение площади поперечного сечения раскоса

2. С учетом сортамента и требования bр=bнп назначаем размеры поперечного сечения опорного раскоса bрxhр=200×150 мм, Абр=300 см2.

3.. Расчетные длины раскоса в плоскости фермы принимается равной расстоянию между центрами соединяемых им узлов фермы. В нашем примере lx=ly=3,63 м. Радиусы инерции

ry=0,289hp=0,289*0,2=0.0578 м,

rx=0,289bp=0,289*0,15=0.4 335 м.

Определяем гибкости опорного раскоса:

где []=120 — предельная гибкость для сжатого верхнего пояса и опорного раскоса (для промежуточных раскосов []=150). Так как max >70, определяем по формуле

.

4. Выполняем проверку устойчивости опорного раскоса

.

(Условие устойчивости выполняется)

Элемент Р3.

1. Так как раскосы по длине не имеют ослаблений в виде врубки, основной формулой для подбора поперечного сечения является условие устойчивости (3).

Задаемся значением коэффициента продольного изгиба в пределах от 0,5 до 0,7, например = 0,5, и определяем требуемое значение площади поперечного сечения раскоса:

2. С учетом сортамента и требования bр=bнп назначаем размеры поперечного сечения опорного раскоса bрxhр=200×125 мм, Абр=250 см2.

3.. Расчетные длины раскоса в плоскости фермы принимается равной расстоянию между центрами соединяемых им узлов фермы. В нашем примере lx=ly=3,811 м. Радиусы инерции

rx=0,289hp=0,289*0,2=0,0578 м,

ry=0,289bp=0,289*0,125=0,36 123 м.

Определяем гибкости опорного раскоса:

где []=120 — предельная гибкость для сжатого верхнего пояса и опорного раскоса (для промежуточных раскосов []=150).

(Условие устойчивости выполняется)

Элемент Р4.

1. Так как раскосы по длине не имеют ослаблений в виде врубки, основной формулой для подбора поперечного сечения является условие устойчивости (3). Задаемся значением коэффициента продольного изгиба в пределах от 0,5 до 0,7, например = 0,5, и определяем требуемое значение площади поперечного сечения раскоса

2. При подборе сечения 200×75 не будет выполнено условие предельной гибкости, следовательно с учетом сортамента и требования bр=bнп назначаем размеры поперечного сечения опорного раскоса bрxhр=200×100 мм, Абр=200 см2.

3. Расчетные длины раскоса в плоскости фермы принимается равной расстоянию между центрами соединяемых им узлов фермы. В нашем примере lx=ly=4 м. Радиусы инерции инерции rx =0,289*0,1=0,0289 м.

ry = 0,289*0,2=0,0578 м Определяем гибкости опорного раскоса:

где []=120 — предельная гибкость для сжатого верхнего пояса и опорного раскоса (для промежуточных раскосов []=150). Так как max < 70, определяем по формуле

.

4. Выполняем проверку устойчивости опорного раскоса

.

(Условие устойчивости выполняется)

Элемент Р (встречный раскос).

В общем случае расчет встречного раскоса производится аналогично расчетам остальных раскосов. По условиям задания сечение встречного раскоса принимается как у раскоса Р4 (200*100мм).

Стойка.

Элемент С1.

Стойка С1, в отличии от всех остальных, работает на сжатие и, следовательно выполняется из дарева. Сечение стойки принимается минимально возможным в данных условиях 200*100мм

Элемент С2.

Определяем требуемое значение площади поперечного сечения стойки:

где Nст — наибольшее растягивающее усилие.

По приложению 6 принимаем сечение стойки:

d=30мм; Aст=5,06 см2

Элемент С3.

Определяем требуемое значение площади поперечного сечения стойки:

где Nст — наибольшее растягивающее усилие.

По приложению 6 принимаем сечение стойки:

d=20мм; Aст=2,182 см2

Элемент С4.

Определяем требуемое значение площади поперечного сечения стойки:

где Nст — наибольшее растягивающее усилие.

По приложению 6 принимаем сечение стойки:

d=16мм; Aст=1,408 см

4. Расчет и конструирование узлов ферм.

4.1 Опорный узел на натяжных хомутах

1.Проверка на смятие опорного вкладыша по плоскости примыкания опорного раскоса.

Пусть раскос примыкает к нижнему поясу под углом 450.

,

так как 61,54 кг/см2 < 62,69 кг/см2 — условие прочности выполняется.

2. Определение диаметра тяжа.

где

Принимаем d=20 мм Ант = 2,18 см2.

3. Определение количества двухсрезных нагелей для прикрепления накладок к нижнему поясу.

проверим dнаг. = 20 мм толщина накладок, а = 6 dнаг.= 62= 12 см Тс=50сdн=50 202=2000 кг, Та=80аd н=8012,52=2000 кг, Ти=180d н2+2а2=18022+212,52=1032,5 кг, но не более Ти=250dн2=25022=1210 кг.

4. Расчет швеллера.

Расчетная схема:

По конструктивным соображениям подбираем швеллер: h>hнп+6мм Принимаем 30 Wy = 43,6 см3

(условие прочности выполняется).

5.Проверка накладок на смятие.

(условие прочности выполняется).

6. Расчет прочности уголков в торце накладок.

Расчетная схема:

где

Проверим равнобокий уголок 12,5X12,5X8 W=75,9 см3, I = 294 см4

Подходит.

7. Проверка опорной подушки на смятие под воздействием опорного давления.

Nопор= 4(967б287 +3456) = 17 693,148

Требуемая площадь опоры:

Принимаем опорную подушку 200X225мм.

4.2 Промежуточные узлы фермы

Промежуточный узел 2.

Сечение сжатого раскоса bPX hp = 17,5X20 см2, усилие в нем 12 739,07 кг, угол между осями раскоса и верхнего пояса — 40,30.

1. Назначаем глубину врубки раскоса в верхний пояс:

.

Принимаем h вр = 5 см.

2. Проводим проверку на смятие верхнего пояса по площадке смятия.

а) Определим размеры площадки смятия:

б) Условие прочности на смятие:

Прочность на смятие не обеспечена. Изменяем конструкцию узла.

1. Проверяем прочность на смятие в зоне рабочего опирания подушки на верхний пояс. Разность усилий в элементах верхнего пояса, примыкающих к узлу составляет 5010 кг.

Прочность на смятие обеспечена.

2. Проверяем необходимую длину l ск.

Промежуточный узел 4.

Сечение сжатого раскоса bPX hp = 15X20 см2, усилие в нем кг, угол между осями раскоса и верхнего пояса — 48,60.

1. Назначаем глубину врубки раскоса в верхний пояс:

.

Принимаем h вр = 5,6 см.

2. Проводим проверку на смятие верхнего пояса по площадке смятия.

а) Определим размеры площадки смятия:

б) Условие прочности на смятие:

;

Прочность на смятие не обеспечена.

Изменяем конструкцию узла.

1. Проверяем прочность на смятие в зоне рабочего опирания подушки на верхний пояс. Разность усилий в элементах верхнего пояса, примыкающих к узлу составляет 5010 кг.

Прочность на смятие обеспечена.

2. Проверяем необходимую длину l ск.

Промежуточный узел 5.

Сечение сжатого раскоса bPX hp = 20,0X12,5 см2, усилие в нем 5529,11 кг, угол между осями раскоса и нижнего пояса — 510.

1. Назначаем глубину врубки раскоса в верхний пояс:. Принимаем h вр = 5,6 см.

2. Проводим проверку на смятие верхнего пояса по площадке смятия.

а) Определим размеры площадки смятия:

б) Условие прочности на смятие:

;

Прочность на смятие обеспечена.

Промежуточный узел 6.

Сечение сжатого раскоса bPX hp = 20X10 см2, усилие в нем 3858,227 кг, угол между осями раскоса и нижнего пояса — 53,10.

1. Назначаем глубину врубки раскоса в верхний пояс:

.

Принимаем h вр = 5,6 см.

2. Проводим проверку на смятие верхнего пояса по площадке смятия.

а) Определим размеры площадки смятия:

б) Условие прочности на смятие:

;

Прочность на смятие обеспечена.

4.3 Коньковый узел

4.4 Центральный узел нижнего пояса

5. Расчет стыка нижнего пояса

Определение количества двухсрезных нагелей для прикрепления накладок к нижнему поясу.

проверим dнаг. = 24 мм толщина накладок

а > 6 dнаг.= 62,4= 14,16 см, a=150 см Тс=50сdн=50 202,4=2880 кг, Та=80аd н=80 152,4=2880 кг, Ти=180d н2+2а2=1802,42+2152=1486,8 кг,

Список используемой литературы

1. «Конспект лекций по деревянным конструкциям» Семенов К. В. — 2007 г.

2. Карлсен «Деревянные и пластмассовые конструкции».

3. Кауфман «Деревянные конструкции».

Показать весь текст
Заполнить форму текущей работой