Помощь в написании студенческих работ
Антистрессовый сервис

Промышленные схемы и технологический режим производства высокоплавкого пека

РефератПомощь в написанииУзнать стоимостьмоей работы

Пек, полученный на установке периодического действия, по выходу нерастворимых и летучих веществ значительно отличается от пека, полученного обработкой воздухом. Выход нерастворимых веществ в высокоплавком пеке, полученном при дистилляции паром, больше, чем в пеке, полученном обработкой воздухом. Сущность разработанного в УХИНе метода заключается в дополнительной термической обработке пека… Читать ещё >

Промышленные схемы и технологический режим производства высокоплавкого пека (реферат, курсовая, диплом, контрольная)

Промышленные схемы и технологический режим производства высокоплавкого пека

Значительное количество производимой и перерабатываемой каменноугольной смолы определяет ведущую роль коксохимии в обеспечении многих отраслей народного хозяйства углеродистым сырьем.

При этом нужно учесть, что в таких важнейших отраслях промышленности, как черная металлургия (сталеплавильное и доменное производство), цветная металлургия (алюминиевое производство), химическая промышленность, не только увеличивается спрос на углеродистые материалы, но и повышаются требования к их качеству и свойствам.

Сырье для производства

Кокс — твердый горючий остаток, образующийся при нагреве органического вещества без доступа воздуха. Свойства кокса зависят от исходного сырья и условий коксования.

Пековый кокс применяется в основном при производстве электродов, графитоугольных смесей и т. п.

Исходным сырьем для производства пекового кокса является высокотемпературный пек.

Исходным сырьем для получения высокотемпературного пека служат среднетемпературный пек и коксовая смола, образующаяся при коксовании высокотемпературного пека (и пековые дистилляты).

Выход высокотемпературного пека достигает 87−89%. Качество продукта характеризуется следующими данными: температура размягчения 140−150°С, выход веществ, нерастворимых в толуоле 45−50%; выход летучих веществ 49−52%.

Выход пековых дистиллятов 10−13%. Высокотемпературный пек является исходным сырьем для получения пекового кокса.

Для получения высокотемпературного пека воздушным способом применяются кубы-реакторы диаметром 3000 мм и рабочей емкостью 27 м3.

Обогрев куба ведется доменным или коксовым газом. Для улавливания капель фракций пека, уносимых из куба-реактора отработанным воздухом, используется отбойник диаметром 800 мм, изготовленный из стали и теплоизолированный.

В промышленной практике нашли применение установки непрерывного, периодического и полунепрерывного действия.

Принцип получения высокоплавкого пека по схеме первого типа основан на непрерывной дистилляции среднетемпературного пека путем непрерывной подачи его и перегретого пара в куб и непрерывной выдачи высокоплавкого пека.

Работа установки протекает по следующей схеме (рис.1): из испарителя смолоперегонного цеха пек самотеком или насосом из промежуточного сборника непрерывно направляется в куб для получения высокоплавкого пека.

Одновременно в куб через барботер подается перегретый водяной пар. Последний перегревается в змеевике, уложенном в трубчатой печи смолоперегонного агрегата, или в отдельном пароперегревателе.

Высокоплавкий пек из куба поступает в пекоприемник под давлением, поддерживаемым в кубе, а оттуда — в пекоприемники пекококсовых печей или на грануляционный транспортер для отправки в твердом виде потребителю.

Пары пековых масел и водяной пар из куба поступают в конденсатор-холодильник, где конденсируются и охлаждаются.

Из холодильника дистилляты стекают в сепаратор, в котором отделяются от воды. Вода направляется в канализацию, а дистилляты — в приемник.

Основными показателями технологического режима являются расход перегретого пара и температура нагрева пека в кубе.

Рис. 1. Дистилляция пека паром по схеме непрерывного действия: 1-испаритель; 2 - куб; 3 — пароперегреватель; 4 - конденсатор-холодильник; 5 — напорный бак; 6 - фонарь; 7 — грануляционный транспортер; 8 - течки; 9 - питатель; 10 - сборник пековый дистиллятор.

При увеличении удельного расхода пара высокоплавкий пек может быть получен и при более низкой температуре нагрева пека в кубе.

В качестве основного аппарата в процессе дистилляции пека может быть использована также колонна.

При работе на установках периодического действия в куб загружается определенное количество среднетемпературного пека, которое подвергается постепенной обработке водяным перегретым паром до повышения температуры размягчения до 150°.

Схема работы установки периодического действия приведена на рис. 2. Пек из смолоперегонного куба 1 с температурой размягчения 70−75° самотеком поступает в пекоприемник 2.

Из пекоприемника пек выжимают паром под давлением 1,5−2,0 ат пли насосом выкачивают в вертикальный куб 3.

После загрузки пека в куб немедленно начинают подавать перегретый до 350° водяной пар. Водяной пар перегревают в пароперегревателе.

Пар в куб подается через барботер, расположенный в нижней части куба. Куб обогревается коксовым газом.

Перегретый пар подается в куб до получения пека заданной температуры размягчения (135−150°). Пары воды и пековых дистиллятов из куба поступают в конденсатор-холодильник 4, где конденсируются и охлаждаются до 50°. Полученная в конденсаторе-холодильнике жидкость поступает в приемник пековых дистиллятов 5.

Вся система (куб — конденсатор — холодильник — приемник пековых дистиллятов) находится под вакуумом, создаваемым вакуум-насосом 7. Несконденсировавшиеся газы из приемника пековых дистиллятов поступают в вакуум-цистерну 6, а оттуда через вакуум-насос 7 выбрасываются в атмосферу.

Пек из куба перегретым паром выжимают в пекоприемник 8.

Рис. 2. Дистилляция пека паром по схеме периодического действия: 1 — горизонтальный смолоперегонный куб; 2 - пекотушитель; 3 - вертикальный пековый куб; 4 — конденсатор-холодильник; 5 — приемник пековых дистиллятов; 6 - вакуум-цистерна; 7 — вакуум-насос; 8 - напорный бак для пека; 9 - паровой насос; 10 - хранилище пековых дистиллятов; 11 - пароперегреватель; 12 - грануляционный транспортер для пека

Технологический режим:

Температура перегрева пара, 0С 340−360

Температура дымовых газов на

перевале пароперегревателя, °С 680−750

Температура пека в кубе, °С:

в начале операции 250−280

максимальная (в конце операции) 0 С. .380

Температура воды в холодильнике, °С 50

Величина вакуума на фонаре, мм рт. ст330

Расход пара,% от загруженного пека 20

Интенсивная дистилляция пека происходит, начиная с температуры нагрева его в 350−360°. В этот период происходит значительный рост температуры размягчения пека.

Рост температуры размягчения пека в зависимости от температуры нагрева иллюстрируется кривой на рис. 3. Рост температуры нагрева и размягчения пека в зависимости от продолжительности нагрева показан на рис.4

Рисунок 3 Зависимость температуры размягчения пека от температуры его нагрева

Рис. 4 Рост температуры нагрева и размягчения пека в зависимости от продолжительности нагрева

Общая продолжительность одной операции получения высокоплавкого пека складывается из следующих продолжительностей отдельных операций:

Погрузка среднего пека в куб 0,5 часа

Нагрев пека до температуры 350−360° 9 час.

Период интенсивной дистилляции 5 час.

Выдача высокоплавкого пека из куба 0,5 часа

Итого общая продолжительность 15 час.

Пек, полученный на установке периодического действия, по выходу нерастворимых и летучих веществ значительно отличается от пека, полученного обработкой воздухом. Выход нерастворимых веществ в высокоплавком пеке, полученном при дистилляции паром, больше, чем в пеке, полученном обработкой воздухом.

Одна из установок, работающих по полунепрерывной схеме, приведена на рис. 5. Пек с температурой размягчения 60° получается непрерывным способом в кубе.

Рис. 5. Дистилляция пека паром по схеме непрерывного действия: 1 — куб; 2 — колонна; 3 - дегидратор; 4 - конденсатор; 5-насос пека 6 — насос, подающий орошение на колонну

Из куба пек непрерывно перекачивается насосом во второй куб, в котором поддерживается температура 390°. Кубы работают под вакуумом в 250 мм рт. ст. Обогрев кубов производится сжиганием пылевидного пека с температурой размягчения 150°.

В нижней части кубов уложены две перфорированные трубы, через которые подается перегретый пар.

Перегрев пара осуществляется в змеевиках, уложенных в дымоходах кубов. Для конденсации водяных паров установлены дополнительные холодильники.

Часть пека с температурой размягчения 150° периодически спускается из куба таким образом, чтобы уровень оставшегося в кубе пека был выше жаровых труб (подогрев куба не выключается).

Кубы для получения высокоплавкого пека работают около 5 лет. Метод получения высокоплавкого пека с применением топочных газов осуществлен на заводе «Еспенхайн» (Германия) для буроугольного пека по схеме, приведенной на Рис. 6.

Пек с температурой размягчения 60°, полученный на трубчатой установке, насосом перекачивается в кубы периодического действия.

Кубы емкостью 30 т каждый обогреваются коксовым газом. В них подают инертные газы, полученные при сжигании коксового газа в специальном аппарате.

Для сжигания газа взамен воздуха подают дымовые газы из борова кубов; таким образом, инертные газы почти не содержат кислорода и окиси углерода.

Аппарат для сжигания коксового газа представляет собой цилиндр с огнеупорной футеровкой, действующей как контактная масса.

Процесс дистилляции в токе инертных газов производится под вакуумом, достигающим абсолютного давления 110 мм рт. ст.

Пары пековых дистиллятов из куба поступают в змеевиковый холодильник, где при температуре 60° конденсируются. Несконденсировавшиеся инертные газы поступают в промыватель, затем в атмосферу.

После окончания процесса дистилляции пек выжимают из куба газом по пекопроводу с паровой рубашкой в специальные кубы, в которых пек поддерживают в жидком состоянии при температуре 320°.

Кубы служат хранилищами для высокоплавкого пека; из них пек насосом перекачивают в пекококсовые печи. (Рис.6)

Рисунок 6. Схема получения высокоплавкого пека дистилляцией топочными газами: 1-куб, 2-газоподогреватель; 3-приемный куб; 4-камера сгорания; 5-сборник, орошаемый водой; 6-холодильник; 7-сборник паровых дистилляторов; 8-вакуум-насос; 10-ловушка; 11-ревирсер; 12 — компрессор

Получение пека в отечественной коксохимии

Сущность разработанного в УХИНе метода заключается в дополнительной термической обработке пека с температурой размягчения около 60 °C, получаемого непосредственно в смолоперегонном агрегате непрерывного действия или при разбавлении среднетемперагурного пека тяжелыми фракциями смолы.

В процессе термической обработки в результате реакций конденсации и полимеризации, а также частичного пиролиза с последующей конденсацией в пеке накапливаются продукты поликонденсации, что сказывается на его групповом составе и физико-химических свойствах.

Одновременно в процессе длительного нагрева происходит удаление легколетучих компонентов смолы.

Для интенсификации процесса и получения пека с заданной температурой размягчения термическая обработка сочетается с дегидрирующим воздействием кислорода воздуха.

Благодаря экзотермичности реакции поликонденсации температура жидкой фазы поддерживается на требуемом уровне.

Кроме того, подача воздуха способствует перемешиванию содержимого в кубе-реакторе, поддержанию возможных продуктов переокисления во взвешенном состоянии, следовательно, лучшему их удалению.

На рис. 7 показана принципиальная технологическая схема получения электродного пека по указанному методу.

Рисунок 7. Технологическая схема установки для получения электродного пека

Исходный пек непрерывно поступает из испарителя второй ступени Шубчатого смолоперерабатывающего агрегата в первый из двух последовательно соединенных кубов-реакторов

1. По переливу из второго куба пек поступает на склад товарного продукта, где осуществляются его хранение, погрузка в жидком виде в термоцистерны или охлаждение с получением твердого безводного пека. Во второй по ходу пека куб подается воздух от компрессора

2. Отработанный воздух после кубов-реакторов и выбросы из сборников пека поступают в скруббер

3. Отработанный воздух, дистилляты и продукты реакций охлаждаются в конденсаторах-холодильниках 4 для предварительной очистки промывкой поглотительным маслом, а затем направляются на установку каталитической очистки от органических веществ.

Поглотительное масло по мере насыщения и снижения его поглотительной способности выводится насосом 5 на склад масел или в сборник установки

Перечень ссылок

1. Степаненко М. А., Брон Я. А., Кулаков Н. К. Производство пекового кокса.Х., 1964 г. — 310с.

2. Литвиненко М. С. Химические продукты коксования. К.: Техника, 1974 — 265с.

Показать весь текст
Заполнить форму текущей работой