Помощь в написании студенческих работ
Антистрессовый сервис

Протяженность линии. 
Индуктивность проводов

КонтрольнаяПомощь в написанииУзнать стоимостьмоей работы

Необходимую для расчета величину времени максимальных потерь определим из графической зависимости (рис. 5. 1), откуда при Т = 4750 ч и коэффициенте. мощности 0,6 получим = 4 600 ч. Произвести расчёт разветвленноё сети. Провода сталеалюминиевые (АС). Нагрузки и длины заданы. Время использования максимальной нагрузки на всех потребителей 3000 — 5000 час. Эту величину можно найти и по графику:. 4900… Читать ещё >

Протяженность линии. Индуктивность проводов (реферат, курсовая, диплом, контрольная)

Задача 1

Определить протяженность линии.

Дано:

Провод — АС-70

Полное сопротивление провода — Z= 10 Ом Среднегеометрическое расстояние между проводами: Dcp = 2 500 мм Частота f= 50 Гц.

Решение.

При решении предложенной задачи могут быть выбраны два пути: а) техническое решение с использованием справочных данных; б) аналитическое решение на основе расчетных формул Техническое решение:

используя табл. ГОСТ 839–80Е находим для провода АС-70 расчетный диаметр d = 13,5 мм, удельное активное сопротивление r = 0,33 Oм/км В табл. ГОСТ по диаметру провода и заданной величине среднегеометрического расстояния между проводами D = 2500 mm находим удельное индуктивное сопротивление x = 0,386 Oм/км.

В соответствии с зависимостью

Z=

определим величину удельного полного сопротивления:

Z0 = = 0.5078 Ом тогда искомая длина всей линии будет:

L = = = 19,7 км Аналитическое решение:

используя данные табл. ГОСТ 839–80Е и зависимость

r0 = ,

определим удельное активное сопротивление провода:

31,7 км/ом*мм2 — удельная проводимость алюминия

r0 = ,= 0,33 Ом

Из зависимости

х0 = 0,144*lg + 0.016

находим удельное индуктивное сопротивление провода:

х0 = 0,144*lg + 0.016 = 0.386

Полученные данные используются в формуле

Z=

после чего расчет оканчивается аналогично предыдущему.

L = = = 19,7 км

Задача 2

Определить индуктивность проводов, активное и индуктивное сопротивления, ёмкостную проводимость фазы и реактивную мощность, генерируемую линией.

Дано:

Провод АС-70

Длина линии l = 100 км Среднегеометрическое расстояние между проводами: Dcp = 2 500 мм Напряжение линии U = 35 kB

Решение:

Решение. Схема замещения для данной линии дана на рис. 2.1

Рис. 2.1 — Схема замещения для участка линий напряжением 35 кВ и выше Удельное активное сопротивление проводов линии находим по справочным данным табл. ГОСТ 839–80Е

откуда активное сопротивление для всего провода линии

R= r0*l = 0.33 * 100 = 33 Ом Для расчета индуктивности проводавоспользуемся зависимостью

L = *10−4

диаметр провода АС-70 из табл ГОСТ d равен 13,5 см.

После введения числовых величин в зависимость имеем:

L0 = *10−4 = 11,816 * 10−4 Гн/км Индуктивность всего провода равна:

L = L0 * l = 11,816 * 10−4 *100 = 0.11 816 Гн Индуктивное сопротивление любого из проводов линии можно определить из зависимости;

хL = = 2рf*L

хL = 2*3.14*50*0.11 816 = 38.162 Ohm

Удельную емкостную проводимость определим аналитически из зависимости:

b0 = = * 10−6

b0 = = * 10−6 = 2,951* 10−6 Cм/км Реактивная мощность, генерируемая линией, определится из зависимости:

QB = U2 * b0 * l*103

QB = 352 * 2,951 * 10−6 * 100 *103 = 361,495 Вар Активная мощность:

P = U2/R = 352/33 = 37.1212 Вт Таким образом, в линиях большой протяженности реактивная мощность достаточно велика и существенно влияет на напряжение в конце линии, особенно в режиме холостого хода.

Задача 3

Определить параметры схемы замещения трёхфазного трёхобмоточного трансформатора заданного типа: ТДТН-16 000/150

Решение.

Паспортные данные трансформатора ТДТН-16 000/150 ГОСТ 12 965–74Е

Snom кВА

UH, кВ

Потери

uK, %

iX.%

ВН

СН

НН

ХХ, кВт

КЗ, кВт

ВН-СН

ВН-НН

СН-НН

ВН-СН

ВН-НН

СН-НН

38,5

6,6/11

10,5

1,0

Построим схему замещения трёхобмоточного трансформатора:

Рис. 3.1

Рассчитаем основные параметры схемы;

Особенностью расчета параметров трехобмоточного трансформатора является то, что каждая из его обмоток замещается собственным сопротивлением, в то время как и схеме замещения двухобмоточного трансформатора обе обмотки представлены одним сопротивлением активным и индуктивным.

Номинальная мощность трансформатора (100%) соответствует мощности той обмотки, которая связана с источником питания. Для повышающего трансформатора это будет обмотка низшего напряжения (НН), для понижающего — обмотка высшего напряжения (ВН).

Согласно действующему стандарту соотношение между мощностями. отдельных обмоток ВН/СН/НН может быть различным, например 100/100/100, 100/100/66,7 или 100/66,7/100.

Расчет активных сопротивлений. Для удобства обозначим обмотку высшего напряжения индексом 1, среднего напряжения 2 и низшего напряжения 3. В нашем случае, трансформатор небольшой мощности (и его потери заданы одной величиной; тогда при соотношении мощностей 100/100/100 активные сопротивления обмоток равны между собой и составляют половину от «общего» сопротивления, определяемого по формуле

Rобщ = где Ub = 158 kB

Rобщ = = 9,3615 Ом

R1 = R2 = R3 = 0.5*Rобщ = 0,5* 9,3615 = 4,681 Ом Напряжения короткого замыкания для лучей трехлучевой схемы замещения определяются по формулам

Uкз.вн = 0,5(Uк.в-с + Uк. в-н — Uк. с-н) = 0,5(10,5 + 18 — 6) = 11,25%

Uкз.сн = 0,5(Uк.в-с + Uк. с-н — Uк. в-н) = 0,5(10,5 + 6 — 18) = - 0,75%

Uкз.нн = 0,5(Uк.в-н + Uк. с-н — Uк. в-с) = 0,5(18 + 6 — 10,5) = 6,75%.

Тогда реактивные сопротивления обмоток трансформаторов:

ХВ1 = (= = 175,528 Ом ХС2 = (= = - 11,7 Ом = 0 !!!

ХН3 = (= = 105,317 Ом Отрицательное сопротивление в средней обмотке принимаем равным нулю.

Сравним с табличными данными:

Расчетные данные

RT, Ом

ХТ, Ом

кВар

ВН

СН

НН

ВН

СН

НН

4,7

4,7

4,7

103,5

Контур проводимости примем состоящим из потерь активной и реактивной мощностей в режиме холостого хода:

активная мощность Реактивная (намагничивающая) мощность Для данного трансформатора активные сопротивления относительно малы по сравнению с реактивными (на порядок), для более мощных трансформаторов эта разница будет ещё больше.

Сравнивая с табличными данными делаем вывод: расчеты выполнены верно.

Составим окончательно схему замещения трёхфазного трёхобмоточного трансформатора с найденными параметрами.

Рис. 3.2

Задача 4

Определить активные потери в линии электропередачи при заданной нагрузке, переданной по линии, активную энергию и потерям активной энергии за год.

Дано:

Провод: АС-70

Длина линии l = 100 км Потреблённая (заданная) мощность: Рпот = 2 500 кВт Номинальное напряжение: UH = 35 кB

Коэффициент мощности: Cosц = 0.95

Годовой график по продолжительности:

Рис. 4.1 — Годовой график Решение.

Используя табл. ГОСТ 839–80Е, находим r0 = 0.33 Ом/км — активное сопротивление всей линии равно: R=0,33 * 100 = 33 Ом.

Рис. 4.2

Полная мощность, передаваемая по линии в часы максимальной нагрузки при заданном коэффициенте мощности, равна:

SМАХ = = = 4000 кВ*А

Q = Sполн*Sin = [ = 0.95? ц = 18.1850? Sin = 0.312]

Q = 4000 * 0.312 = 1248 Вар Используя зависимость

3*I2 * R*10−3 где I = тогда

3** R*10−3 = 3* * R*10−3 =

= * 33*10−3 = 431,018 Вт — потери активной мощности в линии Для расчета переданной по линии энергии воспользуемся заданным графиком, из которого следует, что площадь этого графика равна годовым переменным потерям электроэнергии в рассматриваемом элементе сети Находим эту площадь как сумму площадей, А = = А1 + А2 + А3 = P1*t1 + p2*t2 + P3*t3 = (3,8*3 + 2,5*4 + 1,0*1.76)*103 = 11 400 + 10 000 + 1760 = 23 160 кВт*час Откуда последовательно для каждой ступени:

Тi =

T = = 6094.75 ч Время максимальных потерь определим по аналитической формуле:

i = (0,124 + Т * 10−4)2 *8760/cosц

= (0,124 + 6094.75 * 10−4)2 *8760/0.95 = 4960,8 ч.

Эту величину можно найти и по графику:. 4900 ч Рис. 4.3 — Графическая зависимость между временем использования максимальной нагрузки Т и временем максимальных потерь

Теперь находим активные потери энергии

1 = * R**10−3

Находим реактивную и полную мощность:

Sполн = = = 2631.58 кВ*А

Q = Sполн*Sin = [ = 0.95? ц = 18.1850? Sin = 0.312]

Q = 2631.58 * 0.312 = 821.05 Вар

2 = * R*2 *10−3 = * 33**10−3 =

= 925 470.8 Вт*час = 925.471 kВт*час в год

Задача 5

трансформатор сопротивление фаза мощность Определить потери активной и реактивной мощностей в трансформаторах при максимальной нагрузке, а также активные потери энергии в этих трансформаторах.

Дано:

Трансформатор: ТДТН-16 000/150

Мощность нагрузки (максимальная) РI = 45 500 кВт Коэффициент мощности: Cosц = 0.60

Время использования максимальной нагрузки на всех потребителей Т = 4750 ч.

Число трансформаторов n = 3

Решение.

Паспортные данные трансформатора ТДТН-16 000/150, ГОСТ 12 965–74Е

Snom кВА

UH, кВ

Потери

uK, %

iX.%

ВН

СН

НН

ХХ, кВт

КЗ, кВт

ВН-СН

ВН-НН

СН-НН

ВН-СН

ВН-НН

СН-НН

38,5

6,6/11

10,5

7,9

Из паспортных данных трансформатора имеем: потери холостого хода 25 кВт; потери короткого замыкания 96 кВт; напряжение короткого замыкания ВН — СН: 10,5%; ВН — НН: 18%; СН — НН: 6%; ток холостого хода 1,0%, номинальная мощность трансформатора 16 000 кВА.

Для удобства обозначим обмотку высшего напряжения индексом 1, среднего напряжения 2 и низшего напряжения 3.

Находим потери активной мощности во всех трёх параллельно работающих трансформаторах:

РТ = n*PХХ +

РТ = 3*25 + = 333.781 kВт.

Находим потери реактивной мощности.

Предварительно найдем потери реактивной мощности в режиме холостого хода:

XX = 0.01*(% I)*SH

XX = 0.01*1,0*16 000 = 160 kВар Потери напряжения короткого замыкания для лучей трехлучевой схемы замещения определяются по формулам

Uкз.вн.1 = 0,5(Uк.в-с + Uк. в-н — Uк. с-н) = 0,5(10,5 + 18 — 6) = 11,25%

Uкз.сн.2 = 0,5(Uк.в-с + Uк. с-н — Uк. в-н) = 0,5(10,5 + 6 — 18) = - 0,75%

Uкз.нн.3 = 0,5(Uк.в-н + Uк. с-н — Uк. в-с) = 0,5(18 + 6 — 10,5) = 6,75%.

Потери реактивной мощности находим по формуле:

I = n*XX + тогда

Расчет потерь энергии произведем по формуле:

= *10−3

t = 8760 ч.

Необходимую для расчета величину времени максимальных потерь определим из графической зависимости (рис. 5. 1), откуда при Т = 4750 ч и коэффициенте. мощности 0,6 получим = 4 600 ч.

Вводя числовые величины в формулу, имеем:

= *10−3 = 1847,394 кВт*час

1,85 МВт*час Рис. 5.1 — Графическая зависимость между временем использования максимальной нагрузки Т и временем максимальных потерь

Задача 6

Произвести расчёт разветвленноё сети. Провода сталеалюминиевые (АС). Нагрузки и длины заданы. Время использования максимальной нагрузки на всех потребителей 3000 — 5000 час.

Расстояние между проводами 5 м (5000 мм).

Расположение треугольником.

Напряжение 10 кВ Длины участков:

(0 — 1) — 5 км;

(1 — 2) — 4 км;

(2 — 3) — 5 км;

(2 — 2/) — 3 км;

(3 — 4) — 2 км;

(3 — 3/) — 6 км.

Нагрузки

Р1 = 6 кВт q1 = 5 Вар Р2 = 8 кВт q2 = 2 Вар Р1/ = 7 кВт q2/ = 3 Вар Р3 = 3 кВт q3 = 1 Вар Р4 = 7 кВт q4 = 2 Вар Р3/ = 4 кВт q1/ = 2 Вар Рис. 6.1

Решение.

Во-первых выберем марку используемого провода АС-95/16

r0 = 0.27 Ом/км

x0 = 0.429 Ом/км находим сопротивления участков линии:

R0 — 1 = 0.27*5 = 1.35 Ом Х0 — 1 = 0,429*5 = 2,145 Ом

1,35 + j2.145

R1 — 2 = 0.27*4 = 1.08 Ом Х0 — 1 = 0,429*4 = 1.716 Ом

1,08 + j1.716

R2 — 3 = 0.27*5 = 1.35 Ом Х0 — 1 = 0,429*5 = 2,145 Ом

1,35 + j2.145

R3 — 4 = 0.27*2 = 0.54 Ом Х0 — 1 = 0,429*2 = 0.858 Ом

0.54 + j0.858

R2 — 2' = 0.27*3 = 0.81 Ом Х2 — 2' = 0,429*3 = 1.287 Ом

0.81 + j1.287

R3 — 3' = 0.27*6 = 1.62 Ом Х3 — 3' = 0,429*6 = 2,574 Ом

1,62 + j2.574

При определении распределения мощностей не учитываем потери мощности. Поэтому имеем:

S34 = 7 + 2j кВА

S33' = 4 + 2j кВА

S23 = (7 + 2j) + (4 + 2j) + (3 + j) = 14 + 5j кВА

S22' = 7 + 3j кВА

S12 = (14 + 5j) + (7 + 3j) + (8 + 2j) = 29 + 10j кВА

S01 = (29 + 10j) + (6 + 5j) = 35 + 15j кВА Рис. 6.2

Сравним потери напряжения в линиях:

34 = = = 0.5496 B

33' = = = 0.903 B

Учитывая, что 33' 34, наибольшая потеря напряжения будет на участке 1 233'

1 233' = 01 + 12 + 23 + 33' =

= + + + 0.903 =

= 7.9425 + 4,848 + 2,9625 + 0.903 = 16,656 16,66 В В процентах это составляет:

* 100% = * 100% = 0.167%, что даже вполне допустимо!

Потеря напряжения в ответвлении 2 — 2':

22' = = = 0.953 B

Список используемой литературы

1. Правила устройства электроустановок (ПУЭ). — 7-е изд. — М.: Издательство НЦ ЭНАС, 2002.

2. Справочник по проектированию электроэнергетических систем. Под редакцией Д. Л. Файбисовича. М.: Издательство НЦ ЭНАС, 2006.

3. В. А. Боровиков, В. К. Косарев, Г. А. Ходот Электрические сети и системы. Л.: Энергия, 1968.

4. В. И. Идельчик Электрические сети и системы. М.: Энергоатомиздат, 1989.

5. Справочник по электрическим установкам высокого напряжения. Под редакцией И. А. Баумштейна, С. А. Бажанова. М.: Энергоатомиздат, 1989.

6. Электрическая часть электростанций и подстанций Неклепаев Б. Н., Крючков Н.П.

Показать весь текст
Заполнить форму текущей работой