Помощь в написании студенческих работ
Антистрессовый сервис

Структура протокола ISAKMP

РефератПомощь в написанииУзнать стоимостьмоей работы

Оговоримся сразу, способа, полностью защитится от данного типа атак не существует. Атаку можно лишь сделать менее эффективной. В протоколе ISAKMP это достигается в первую очередь за счет откладывания основных «тяжелых» расчетов на более поздние обмены. В первые обмены производятся простые вычисления (выбор параметров соединения). В то же время сама работа протокола состоит из нескольких обменов… Читать ещё >

Структура протокола ISAKMP (реферат, курсовая, диплом, контрольная)

В этом разделе будет рассмотрено, как ISAKMP протокол договаривается о параметрах и обменивается ключами между двумя системами, которые хотят создать секретное соединение [4].

Для того чтобы рассмотреть все на конкретном примере примем, что метод аутентификации — заранее известный секретный ключ (preshared key).

Все пакеты, которыми обмениваются партнеры в процессе установления соединения, начинаются с ISAKMP заголовка. Он содержит некоторую идентифицирующую информацию (Initiator Cookie, Responder Cookie и Message ID), тип обмена, флаги, номер версии и длину всего пакета.

Основное тело пакета состоит из payload-ов. Payload — объем информации, несущий определенную смысловую нагрузку. В дальнейшем этот элемент будем называть «компонентом».

Фаза 1 (Main Mode).

Целью первой фазы является создание секретного соединения, под защитой которого будут проходить все последующие обмены [5]. Фаза состоит из 6 обменов — 3 со стороны инициатора и 3 со стороны ответчика (Рис 1).

Структура фазы 1 (Main Mode).

Рис. 1. Структура фазы 1 (Main Mode)

Структура протокола ISAKMP.

В пакете 1 инициатор посылает SA payload, компонент, который содержит все предлагаемые варианты параметров соединения. Его структура представлена на рисунке 2.

Рис. 2. Структура SA payload

SA payload содержит внутри себя список Proposal payload-ов, каждый из которых представляет собой отдельный протокол. Proposal payload-ы могут объединяться в группы по «И» и по «ИЛИ». Это осуществляется с помощью номеров данных компонент — одинаковые номера означают объединение по «И», а разные по ИЛИ. В свою очередь Proposal payload содержит список Transform payload-ов, которые представляют алгоритмы для данного протокола. Объединены они могут быть только по «ИЛИ». Transform payload содержит список атрибутов, конкретизирующих данный алгоритм (длина ключа) и содержащих другие параметры соединения. Атрибуты не могут выбираться, или принимается весь список атрибутов или все отвергает.

Таким образом, инициатор посылает ответчику на выбор список списков протоколов и для каждого протокола на выбор список алгоритмов. Из всего этого ответчик выбирает список протоколов, причем для каждого протокола может быть выбран только один алгоритм и набор атрибутов для данного алгоритма не может изменяться (ни добавления/удаления, ни изменения), т. е. алгоритм или принимается со всем списком атрибутов, или отвергается. Выбранная информация оформляется также в SA payload, и отправляется инициатору вторым пакетом.

Итогом первых двух пакетов, или первого обмена, становиться договоренность относительно параметров соединения.

В пакетах 3 и 4 передаются KE payload и Nonce payload. В КЕ payload инициатор и ответчик обмениваются своими открытыми ключами для алгоритма Diffie-Hellman. Они потребуются на последующих этапах для расчета общего ключа. Nonce payload содержит случайную последовательность любого размера, которые также будут участвовать при расчете ключевой информации.

После этого обмена можно начать расчет ключевой информации. На основе чужого открытого и своего секретного ключей рассчитывается общий ключ (g^xy) по алгоритму Diffie-Hellman. Затем производится расчет некоторых служебных констант.

SKEYID = PRF (Preshared Key, Ni | Nr).

где Preshared Key — заранее известный секретный ключ.

SKEYID_d = PRF (SKEYID, g^xy | CKY-I | CKY-R | 0).

SKEYID_a = PRF (SKEYID, SKEYID_d | g^xy | CookieI | CookieR | 1).

SKEYID_e = PRF (SKEYID, SKEYID_a | g^xy | CookieI | CookieR | 2).

Из формул видно, что в расчете всех констант (а, следовательно, и во всех последующих расчетах) участвует известный только обменивающимся сторонам секретный ключ (Preshared Key), что обеспечивает аутентификацию сторон, т.к. никто другой не сможет правильно рас читать эти константы.

Из SKEYID_e мы получаем ключевую информацию. Остальные константы будут использованы при дальнейших расчетах.

В пакетах 5 и 6 партнеры обмениваются информацией, которая их идентифицирует (IDii и IDir) и информацией, которая их аутентифицирует (HASH_I, HASH_R). Идентификационная информация передается посредством Identification payload, где указывается тип идентификационной информации (IP адрес, имя пользователя, SubNet и т. п.) и собственно значение.

Аутентификационная информация передается через Hash payload. Его содержимое рассчитывается по следующим формулам (для инициатора и ответчика соответственно):

HASH_I = PRF (SKEYID, g^xi | g^xr | CookieI | CookieR | SAi | IDii).

HASH_R = PRF (SKEYID, g^xr | g^xi | CookieR | CookieI | SAi | IDir).

Последний обмен (пакет 5 и 6) уже передается защищенным с помощью договоренных на первом этапе алгоритмов и рассчитанной после второго пакета ключевой информацией.

Фаза 1 (Aggressive Mode).

Aggressive Mode выполняет те же функции, что и Main Mode, но укладывается всего в три пакета [5]. Такое упрощение, однако, приводит к тому, что он более подвержен атакам, чем Main Mode. На рисунке 3 представлена структура Aggressive Mode.

В пакете 1 инициатор посылает сразу SA payload с предложением параметров соединения, KE payload со своим открытым ключом, Nonce payload со случайной информацией и идентифицирует себя с помощью Identification payload.

Сразу видны недостатки данного режима. В SA payload-е не может быть предложено более одной группы параметров для алгоритма Diffie-Hellman-а т.к. сразу же посылается открытый ключ, а его размер напрямую зависит от этих параметров. В данном режиме, в отличие от Main Mode, идентификационная информация посылается в открытом виде.

Ответчик, получив пакет 1, уже имеет достаточно информации для расчета рабочих констант и своей аутентификационной информации. Поэтому в пакет 2 состоит из тех же частей, что и пакет 1 (с соответствующим наполнением) и добавляется Hash payload, содержащий информацию, аутентифицирующую ответчика. Пакет еще не может быть зашифрован (т.к. инициатор не знает выбранного алгоритма и у него нет ключей), но можно уже провести ключевой информации, которая будет использована в будущем.

Структура фазы 1 (Aggressive Mode).

Рис. 3. Структура фазы 1 (Aggressive Mode).

Инициатор из пакета 2 берет необходимую информацию. Затем вычисляет рабочие константы, аутентификационную информацию и ключи шифрования. Пакетом 3 инициатор аутентифицирует себя.

Фаза 2 (Quick Mode).

Целью второй фазы является получение параметров секретного соединения и ключевой информации [5] [6]. Все пакеты, передаваемые во время второй фазы, защищаются секретным соединением, созданным во время первой фазы. Одновременно с обеспечением конфиденциальности передаваемой информации обеспечивается и целостность данных путем передачи значения хеш-функции от данных.

Структура фазы 2 (Quick Mode).

Рис. 4. Структура фазы 2 (Quick Mode)

Режим состоит из трех пакетов. Его структура представлена на рисунке 4. В первом пакете инициатор посылает SA payload, содержащий предложения о параметрах будущего соединения, случайную информацию (Nonce payload) для создания ключевой информации. Все остальные компоненты пакета являются опциональными. Если для расчета ключевой информации требуется использовать «свежий» ключевой материал, то осуществляется еще один обмен открытыми ключами, в противном случае для расчета берется информация из первой фазы. Также, если локальная политика требует использование во второй фазе идентификационной информации отличной от информации используемой в первой фазе, добавляются соответствующие Identification payload-ы.

Структура второго пакета аналогична первому, только заполняется информацией об ответчике. Исключение составляют только компоненты с идентификационной информацией, которые или принимаются (и тогда в таком же виде и отсылаются) или не принимаются и попытка установления соединения считается неудачной.

Третий пакет посылается инициатором в подтверждение правильности принятой информации и содержит только Hash payload, который вычисляется с помощью буфера случайных данных, посланных ответчиком во втором пакете. Содержимое Hash payload-ов вычисляются по следующим формулам:

HASH (1) = PRF (SKEYID_a, Message ID | SA | Ni [| KE] [| IDic | IDcr]).

HASH (2) = PRF (SKEYID_a, Message ID | Ni | SA | Nr | [| KE] [| IDic | IDcr]).

HASH (3) = PRF (SKEYID_a, 0 | Message ID | Ni | Nr).

Формула для расчета окончательного ключевого материала зависит от того, был ли обмен открытыми ключами для создания нового общего ключа. Если такого обмена не было, то формула следующая:

KEYMAT = PRF (SKEYID_d, protocol | SPI | Ni | Nr).

где protocol — номер протокола, для алгоритма которого считается ключевой материал.

Если все же вычисление общего ключа производилось, формула для расчета окончательного ключевого материала следующая:

KEYMAT = PRF (SKEYID_d, g^xy | protocol | SPI | Ni | Nr).

Таким образом, после второй фазы мы получаем всю необходимую информацию для создания секретного соединения. Список применяемых протоколов и используемых в них алгоритмы получается после обмена SA payload-ами во второй фазе. Ключевая информация для каждого алгоритма рассчитывается по приведенным выше формулам. Следует заметить, что приведенная выше структура протокола была упрощена для простоты восприятия (отсутствует рассмотрение остальных методов аутентификации и New Group Mode).

Виды сетевых атак Не смотря на то, что протокол сам по себе не производит защиту передаваемой информации, а лишь создает соединения для передачи данных, он сам является предметом атаки. Подвергнуться атаке в протоколе могут процесс аутентификации, процесс обеспечения целостности и конфиденциальности передаваемой информации и, наконец, сама работоспособность протокола. В этом разделе мы рассмотрим основные виды сетевых атак и то, как протокол им противостоят [4].

Отказ в обслуживании (Denial of Service).

Данная атака является одной из самых простых и эффективных. Целью атаки является работоспособность системы или, в данном случае, протокола.

Сама атака представляет собой посылку злоумышленником большого числа запросов на создание соединения, вынуждая противоположную сторону тратить ресурсы на их обработку. Чтобы скрыть свой истинный адрес пакеты могут посылаться с фиктивных адресов. Если посылаемые ложные запросы занимают собой все ресурсы системы, то обработка приходящих правильных запросов откладывается на неопределенное время или они просто игнорируются. Со стороны внешнего мира система выглядит неработающей.

Оговоримся сразу, способа, полностью защитится от данного типа атак не существует. Атаку можно лишь сделать менее эффективной. В протоколе ISAKMP это достигается в первую очередь за счет откладывания основных «тяжелых» расчетов на более поздние обмены. В первые обмены производятся простые вычисления (выбор параметров соединения). В то же время сама работа протокола состоит из нескольких обменов, что не позволяет злоумышленнику использовать фиктивные адреса, т.к. не получив информацию от нас, он не сможет правильно сформировать следующий пакет. Т. е. если атака и станет успешной, мы будем точно знать, кто нас атаковал. Однако следует заметить, что данный способ защиты не подходит для Aggressive Mode, который, как уже подчеркивалось, работает быстрее, но менее защищен.

Человек посередине (Man-in-the-Middle).

Целью атаки являются конфиденциальность и целостность данных. Атака заключается в том, что злоумышленник, вклиниваясь в процесс установления секретного соединения, представляется для каждой из сторон ее партнером и проводит установление соединения от ее имени. В результате вместо одного защищенного канала между двумя партнерами получается два канала между каждой из сторон и злоумышленником. Для каждого из партнеров все выглядит обычным образом, но злоумышленник получает возможность не только просматривать данные, передаваемые по «защищенному» каналу, но даже модифицировать их. Структура описанной атаки представлена на рисунке 5.

Рис. 5. Структура атаки «человек посередине»

Структура протокола ISAKMP.

Sx — секретный ключ, Px — открытый ключ Защита от данного вида атаки в протоколе ISAKMP заключается в процессе аутентификации. Обязательное выполнение этого процесса во время первой фазы гарантирует обеим сторонам отсутствие «человека посередине», который смог бы прослушивать и модифицировать передаваемые данные не только во второй фазе, но и при передаче основной информации. В данном случае стойкость протокола к данному типу атаки определяется надежностью метода аутентификации. Для метода заранее известного секретного ключа это определяется уникальностью данного ключа, для методов, использующих сертификаты — достоверностью полученного сертификата.

Повтор посылки (Replay attack).

Атака заключается в перепосылке ранее записанных пакетов в расчете на неправильную реакцию атакуемого. Например, попытаться с помощью пакетов, подслушанных при аутентификации двух партнеров, представиться одним из них при установлении соединения со вторым. Даже если таким образом просто повторят уже проведенное соединение (т.е. в результате будет создано еще одно соединение совпадающие с прежним), это приведет к потере ресурсов.

Для защиты от этой атаки в протоколе был введен Nonce payload, с помощью которого стороны обмениваются случайной информацией. Эта информация потом участвует в расчетах всех констант и ключевых материалов. Использование в каждом обмене «свежей» случайной информации гарантирует защиту от атак с помощью переповторов.

В первой части данного раздела была рассмотрена структура протокола создания защищенных сетевых соединений ISAKMP. В процессе рассмотрения были приведены порядок посылки пакетов, их содержимое и объяснено назначение каждого компонента пакета. Также были даны формулы, по которым проводятся расчеты внутренних констант и окончательного ключевого материала.

Во второй части были представлены основные типы сетевых атак, объяснен принцип их действия и, на основе структуры протокола ISAKMP, показано как он противостоит этим атакам.

Разработка программы Определение места программы в системе защиты сетевого трафика.

Структура протокола ISAKMP.

В этом разделе мы рассмотрим, из каких основных модулей состоит система защиты сетевого трафика, назначение этих модулей и каким образом они взаимодействуют [3].

Рис. 6. Структура системы защиты сетевого трафика

На рисунке 6 представлена структура системы защиты сетевого трафика. Рассмотрим отдельно каждый модуль.

Модуль управления Данный модуль определяет общее поведение системы. Внутри него происходит считывание, проверка и хранение конфигурационной информации, согласно которой он управляет остальными модулями. Модуль имеет интерфейсы почти ко всем остальным модулям. В модуль обработки трафика он прогружает правила фильтрации трафика (входящего и исходящего), правила обработки трафика (заданные вручную в конфигурации и полученные модулем ISAKMP). Из модуля обработки трафика он получает запросы, на создание секретного соединения (правила обработки трафика), которые передает в модуль ISAKMP. Также в процессе работы модуля ISAKMP именно на нем лежит обязанность формулирования предлагаемых вариантов параметров соединения и выбор приемлемого варианта в предложенном наборе. До прогрузки секретного соединения, созданного модулем ISAKMP, оно сохраняется в модуле хранения основной ключевой информации.

Модуль хранения основной ключевой информации Является дублирующим местом хранения правил обработки трафика (еще одно находится в модуле обработки сетевого трафика). Необходимость дублирования информации в двух местах объясняется тем, что время жизни соединения в секундах легче отслеживать в этом модуле, а в килобайтах в модуле обработки трафика. Дополнительно появляется возможность не хранить в модуле обработки трафика информации о соединениях, которыми давно не пользовались, а запрашивать эту информацию по необходимости. Взаимодействие ведется только с модулем управления, от которого принимается информация о соединения для сохранения и команды на удаление соединения, а выдается сигнал о том, что у какого-то соединения кончилось время жизни.

Модуль обработки сетевого трафика Обрабатывает входящий и исходящий трафики согласно правилам фильтрации и правилам обработки трафика, которые прогружает модуль управления. Для противостояния атакам отказа в доступе, если для входящего пакета не находится правила его обработки, то он просто игнорируется. Наоборот, если подобная ситуация произойдет для исходящего пакета, то в модуль управления передастся запрос на создания такого соединения. Также в модуль управления может поступить сигнал о том, что у какого-либо соединения истекло время жизни в килобайтах. От модуля управления данный модуль может получить созданное соединение и сигнал на уничтожение соединения.

Модуль ISAKMP.

По запросу со стороны модуля управления и используя информацию из конфигурации, создает правила обработки трафика. Взаимодействует с модулем управления и модулем хранения ключевой информации ISAKMP. В модуль хранения ключевой информации сохраняются внутренние соединения, созданные во время первой фазы и использующиеся для защиты последующих фаз. От модуля управления получает запрос на создание соединения, информацию из конфигурации для формирования/выбора параметров соединения и формирования/проверки идентифицирующей информации и информацию для аутентификации себя. Обратно в модуль управления отдается созданное соединение или сигнал о неудачной попытке его создания.

Модуль хранения ключевой информации ISAKMP.

Данный модуль является хранилищем информации о секретных соединениях протокола ISAKMP, используемых им для защиты своего трафика. Данные соединения полностью скрыты для модуля управления. Модуль осуществляет прием на хранение информации о соединениях, поиск существующего соединения и отслеживание окончания времен жизни хранимых соединений (при истечении срока соединение тут же удаляется).

На основе представленной структуры можно описать, каким образом программа, реализующая протокол ISAKMP, вписывается в систему защиты сетевого трафика. Программа объединяет собой модуль ISAKMP, модуль хранения ключевой информации ISAKMP и часть модуля хранящую конфигурационную информацию необходимую для работы модуля ISAKMP, осуществляющая запросы на создание нового соединения и приема созданных правил обработки трафика. Таким образом, получается только один интерфейс со всей остальной системой, описывающий взаимоотношения между частью модуля управления вошедшей в состав программы и оставшейся частью модуля управления.

Показать весь текст
Заполнить форму текущей работой