Помощь в написании студенческих работ
Антистрессовый сервис

Исторические аспекты развития вычислительной техники

РефератПомощь в написанииУзнать стоимостьмоей работы

На рис. 6 представлены взлеты и падения развития отечественной вычислительной техники. Для России характерна некоторая трагичность в развитии вычислительной техники. Если первые образцы ЭВМ типа БЭСМ -6 (средний класс производительности) и МИР-1 (ЭВМ малой производительности) были безусловно лучшими в мире по архитектуре, надежности и условиям работы для программистов, то последующие поколения… Читать ещё >

Исторические аспекты развития вычислительной техники (реферат, курсовая, диплом, контрольная)

Первые электронно-вычислительные машины (ЭВМ), которые могли автоматически по заданной программе обрабатывать большие объемы информации, были созданы в 1946 году в США (ЭНИАК) (рис. 5). В 1950 году в СССР (МЭСМ) были созданы первые ЭВМ, а затем БЭСМ. В 40 — 60-х годах производство ЭВМ измерялась единицами, десятками и, в лучшем случае, сотнями штук. ЭВМ были очень дорогими и очень большими (занимали громадные залы) и поэтому оставались недоступными для массового потребителя. Массовое производство сравнительно недорогих персональных компьютеров началось с начала 80-х годов с компьютера Apple (с этого компьютера начала свое существование фирма Apple). Количество произведенных персональных компьютеров начало составлять десятки тысяч в год, что по тем временам было колоссальным достижением.

В начале 80-х годов приступила к массовому производству персональных компьютеров корпорация IBM (компьютеры так и назывались IBM Personal Computer — IBM PC). Достаточно скоро IBM-совместимые компьютеры стали выпускать многие фирмы, и их производство достигло сотен тысяч в год. Производство персональных компьютеров постоянно росло и к концу 1990;х годов достигло 100 млн. в год.

Персональный компьютер постоянно совершенствовался, его производительность возросла на три порядка, при этом, что очень важно, цена практически не изменилась. Персональный компьютер стал доступен массовому потребителю, и теперь в развитых странах мира компьютер имеется на большинстве рабочих мест и в большинстве семей. Можно выделить 4 этапа развития ЭВМ или поколений. В соответствие с принятой в России классификацией эти этапы определяются, прежде всего, уровнем развития технологий производства ЭВМ. Первые ЭВМ в качестве основных элементов — тригеров использовали радиолампы, поэтому появление первых транзисторов привело к резкому снижению объемов ЭВМ и к увеличению их возможностей (второй этап).

Можно выделить 4 этапа развития ЭВМ или поколений. В соответствие с принятой в России классификацией эти этапы определяются, прежде всего, уровнем развития технологий производства ЭВМ. Первые ЭВМ в качестве основных элементов — тригеров использовали радиолампы, поэтому появление первых транзисторов привело к резкому снижению объемов ЭВМ и к увеличению их возможностей (второй этап).

Переход производства ЭВМ на интегральные схемы низкой степени интеграции привели к появлению ЭВМ третьего поколения и сделали возможным и доступным для массового использования микро-ЭВМ небольших размеров. Следующий скачок вызвало появление интегральных схем с высокой степенью интеграции элементов в кристаллах (несколько миллионов элементов в одном кристалле). На этом появились доступные персональные одноплатные ЭВМ, которые и привели к возникновению информационного бума в мире.

Эволюция ЭВМ.

Рисунок 6 Эволюция ЭВМ.

На рис. 6 представлены взлеты и падения развития отечественной вычислительной техники. Для России характерна некоторая трагичность в развитии вычислительной техники. Если первые образцы ЭВМ типа БЭСМ -6 (средний класс производительности) и МИР-1 (ЭВМ малой производительности) были безусловно лучшими в мире по архитектуре, надежности и условиям работы для программистов, то последующие поколения ЭВМ типа ЕС ЭВМ были по сути многоэтапным клонированием западных вычислительных систем. Такая стратегическая ошибка в определении стратегии развития вычислительной техники в СССР привела к глубокому кризису в развитии вычислительной техники. Огромные затраты на производство ЕС ЭВМ не обеспечивали вычислительные потребности страны и привели к безнадежному отставанию России в области массовых вычислительных систем.

Существует и другая более прагматичная классификация, предложенная специалистами Microsoft, которая на наш взгляд более перспективна для прогнозирования дальнейшего анализа развития ЭВМ (рис. 7).

Устройство ПЭВМ.

Рисунок 7 Устройство ПЭВМ.

В соответствие с этой классификацией эволюция развития ЭВМ прошла через три стадии, каждая из которых определялась, прежде всего, теми прагматическими задачами, которые ставило общество перед новой отраслью знаний — информатикой.

Первая эпоха называлась эпохой вычислительных задач. Она возникла в том момент, когда мощный импульс получила атомная энергетика и проектирование устройств и ядерных боеприпасов стало практически невозможным ручными методами. Необходимы были производительные вычислительные машины и соответствующее программное обеспечение их для решения чисто инженерных задач. Наиболее популярным алгоритмическим языком был Fortran. В эту эпоху получили распространение Майн — фреймы (одномашинные комплексы), которые занимали площади до нескольких сотен квадратных метров.

Вторая эпоха развития ЭВМ зародилась в недрах первой эпохи и связано с разработкой относительно не очень дорогих вычислительных машин, основной задачей которых было — высоконадежное и оперативное управление сложным производством на объектах энергетики (в том числе ядерной) и других опасных для экологии и человека производств. На таких производствах необходимо было исключить человека, как очень ненадежное звено в системах управления с низкой скоростью реакции на внезапные ситуации. В России в этот период клонировались серии ЭВМ типа PDP-11, которые у нас проходили как ЭВМ серии СМ (СМ-1, СМ-2, и т. д.). Эти ЭВМ занимали площади 20 кв. м. (размер комнаты), были неприхотливы в обслуживании и имели небольшой штат обслуживающего персонала. В России до сих пор на некоторых объекта энергетики используются эти ЭВМ (например, на Сургутских ГРЭС).

Третья эпоха — эпоха бизнес-задач, возникла в конце 80-х годов как сформировавшейся социальный заказ на массовое внедрение в бизнес новых ЭВМ и новых информационных технологий. Именно в этот период и появились первые ЭВМ, которые по цене (первые образцы стоили $ 5000) были доступны для населения развитых стран. Этот период дал мощный толчок развития всех отраслей знаний и технических систем, резко повысив производительность во всех отраслях знаний.

А что будет дальше? Какой заказ рождается в данный момент? Об этом можно много говорить и частично мы уже ответили на этот вопрос, рассматривая новые направления развития кибернетики — гомеостатики. Сформулируем, а точнее выскажем бездоказательно утверждение о том, что в данный момент формулируется несколько социальных заказов и требований на средства вычислительной техники.

Прежде всего, создание устройств, своевременно прогнозирующих и предупреждающих экологические катастрофы. Эти устройства должны быть встроены в системы управления экологически опасных производств и технологий и алгоритм их функционирования основывается на определенных принципах взаимоотношений с Человеком.

Следующее направление — полная автоматизация рутинных процессов производства и создание интеллектуальных адаптивных к внешним воздействиям устройств с элементами искусственного интеллекта. Наиболее вероятный прорыв возможен на стыке таких наук как кибернетика и генетика, когда будут создаваться комбинированные устройства, включающие электронные элементы и элементы живой природы. Вполне вероятно появление уже через 10 лет устройств подобных Терминатору. Но готовы ли мы к такому скачку развития информационных технологий?

Вопросы для самоконтроля

  • 1. Информатика это технология или отрасль науки?
  • 2. Какие задачи информатики сегодня наиболее актуальны? Что мы понимаем под информатикой?
  • 3. Как вы полагаете, являются ли данные товаром? Могут ли методы быть товаром?
  • 4. Какие научные основы информатики? Что такое кибернетика, какие задачи она решает? Что такое кибернетический контур управления?
  • 5. Что представляет собой новое научное направление в информатике — гомеостатика? Как Вы представляете себе гомеостат? Приведите пример гомеостатов в системе управления.
  • 6. Что означает третий постулат Ю. Горского?
  • 7. Как вы понимаете динамический характер информации? Что происходит с ней по окончании информационного процесса?
  • 8. Можем ли мы утверждать, что данные, полученные в результате информационного процесса, адекватны исходным? Почему? От каких свойств исходных данных и методов зависит адекватность результирующих данных?
  • 9. В чем измеряются данные?
  • 10. Что такое файл, почему для хранения не используются фиксированные по размеру структуры?
  • 11. Как развивалась вычислительная техника по взглядам российских ученых?
  • 12. В чем эволюция развития ЭВМ по Microsoft?
Показать весь текст
Заполнить форму текущей работой