Расчет элементов ферменно-стержневой конструкции
Углеродные волокна нашли широкое применение в конструкциях, которые должны иметь ограниченный вес. Среди всех армированных пластмасс углепластики обладают наиболее высокими стойкостью к усталостным испытаниям и долговечностью. Углепластики плохо пропускают рентгеновские лучи. Они имеют очень низкий коэффициент линейного расширения и оказываются наиболее подходящими для конструирования космических… Читать ещё >
Расчет элементов ферменно-стержневой конструкции (реферат, курсовая, диплом, контрольная)
Пермский государственный технический университет Кафедра МКМК Группа ПКМ-03
КУРСОВОЙ ПРОЕКТ Расчетно-пояснительная записка ШЕН. ПКМ03.00.00.02
Тема: расчет элементов ферменно-стержневой конструкции.
Студент _______________ Шустова Е.Н.
Руководитель проекта _______________ Аношкин А.Н.
Проект защищен ______________ с оценкой ____________
Члены комиссии _______________ Чекалкин А.А.
Пермь, 2007
Пермский государственный технический университет Факультет ____________________Аэрокосмический_____________________
Кафедра _____________________ МКМК_______________________________
Дисциплина __________________Строительная механика_________________
Курс_____________ 4__________ Группа_______ПКМ-03 ________________
Студент ______Шустова Е. Н.____Дата_________________________________
ЗАДАНИЕ НА КУРСОВОЙ ПРОЕКТ Тема Расчет элементов ферменно-стержневой конструкции_______________
Краткое обоснование и основные цели проекта _____ Проектирование силовой конструкции представляет собой сложный многоступенчатый процесс, своеобразие которого определяется в основном двумя требованиями к конструкции: прочности или механической надежности, минимальной массы. Поиск путей увеличения прочности без увеличения массы или снижения массы без уменьшения прочности и составляют творческое содержание процесса проектирования силовой схемы конструкции ________
Перечень технических расчетов _______ расчет упругих характеристик слоистого композита по заданным характеристикам слоя; расчет сил в элементах фермы; определение критической нагрузки стержня; определение коэффициента запаса прочности. Определение массы; облегчение конструкции_______________________________________________________
Перечень работ, выполняемых на ЭВМ___ расчет упругих характеристик слоистого композита по заданным характеристикам слоя (mathcad)
Список основной литературы______ Балабух Л.И., Алфутов Н. А., Усюкин В. И. «Строительная механика ракет», 1984 г; Лизин В. Т., В. А. Пяткин В.А. «Проектирование тонкостенных конструкций», 2003г____________________
Срок представления к защите ___________3.05.2007_____________________
Руководитель __________________ Аношкин А.Н.
Студент __________________ Шустова Е.Н.
Введение
Основная часть
I. Исходные данные
1. постановка задачи
2. исходные материалы
3. физико-механические свойства
4. геометрические размеры
II. теоретическая часть
1. модель конструкции
2. свойства углепластиков
III. расчетная часть
1. расчет упругих характеристик слоистого композита по заданным характеристикам слоя
2. расчет сил в элементах фермы
3. определение критической нагрузки стержня
4. определение коэффициента запаса прочности. Определение массы.
5. облегчение конструкции Заключение Список литературы Приложения
Данный курсовой проект содержит основы проектирования ферменно-стержневой конструкции. Работа основана на аналитических методах и поэтому, на первый взгляд, при современных возможностях исследования прочности на основе универсальных методов может показаться несовременной. Между тем основное преимущество аналитических методов исследования состоит в том, что онидают ясное представление о взаимосвязи параметров конструкции с ее несущей способностью, возможностью параметрического анализа и формулировки новых закономерностей. Кроме того (и это главное), современными универсальными пакетами нетрудно рассчитать любую конструкцию, но перед проектантом стоит другая задача: как быстро и грамотно определить параметры конструкции минимальной масс, принять рационально конструкторские решения?
Проектирование силовой конструкции представляет собой сложный многоступенчатыйпроцесс, своеобразие которого оределяется в основном двумя требованиями к конструкции: прочности или механической надежности, минимальной массы. Эти два требования — взаимопротиворечащие, так как, очевидно, проще всего обеспечить механическую надежность, увеличив массу, и, соответсвенно, снизить массу конструкции, уменьшив запасы прочности. Поиск путей увеличения прочности без увеличения массы или снижения массы без уменьшения прочности и составляют творческое содержание процесса проектирования силовой схемы кострукции. 5]
Основная часть
I. Исходные данные
1. Постановка задачи Проверочный расчет на прочность заданной конструкции, определение запасов прочности конструкции в исходном варианте, оценка возможности облегчения конструкции — рациональное проектирование элементов конструкции (стержней), при условии варьирования толщиной (количество слоев), схемой намотки, геометрией поперечного сечения. Форму конструкции и число стержней менять нельзя.
2. Исходные материалы
· Углепластик КМУ 4Л
· Углепластик на основе препрега К
3. Физико-механические свойства материалов
· Плотность Углепластик КМУ 4Л га = 1,5 г/см3
Углепластик на основе препрега К гb = 1,7 г/см3
· Модуль упругости при растяжении вдоль волокон
Еа1 = 140 ГПа Еb1 = 210 ГПа
· Модуль упругости при растяжении поперек волокон
Еа2 = 8 ГПа
Еb2 = 8 ГПа
· Модуль сдвига в плоскости
G12 = 4 ГПа
· Коэффициент Пуассона н12 = 0,25
· Сила тяги
F1 = 10 787 Н
· Сила, возникающая от смещения вектора тяги
F2 = 0,1 F1 = 1078 Н
4. Геометрические размеры
· Высота конструкции
h= 700 мм
· Диаметр шпангоутов
D1 = 700 мм
D2 = 400 мм
· Сечение стержня прямоугольное
a = 0,20 мм
b = 0,36 мм
· Схема армирования
+80/0/0/0/0/-80
· Толщина слоя:
да = 0,18 мм дb = 0.2мм
II. Теоретическая часть
Модель конструкции Данная конструкция состоит из двух кольцевых шпангоутов и симметрично расположенных стержневых элементов фермы. Стержни в узлах соединены шарнирами. Нагрузка приложена в центре меньшего шпангоута и распределена по шести точкам соединения стержней.
Стержень фермы представляет собой слоистый композиционный материал, армированный прямыми волокнами. Верхний и нижний слои — это углепластик КМУ-4Л (наполнитель Лу-П-0,1; связующее ЭНФБ). Средние слои — это углепластик на основе препрега К (наполнитель Кулон-П; связующее ЭНФБ). Верхний слой намотан под углом плюс 800 по направлению к нагрузке, далее четыре слоя — под углом 00, и последний слой намотан под углом минус 800.
Требования предъявляемые к исходным материалам:
· низкая плотность
· высокая удельная прочность
· высокая удельная жесткость По сочетанию прочности и модуля упругости армированные ПКМ с однонаправленной ориентацией волокон существенно превосходят все современные металлические конструкционные материалы. Эти преимущества оказываются тем более значительными, если принять во внимание низкую плотность ПКМ (1300.2000 кг/м3). Основной особенностью армированных пластиков является ярко выраженная анизотропия их механических свойств, определяемая ориентацией волокон в матрице в одном или нескольких направлениях. Выбор ориентации обусловливается распределением напряжений в элементах конструкций. Это дает возможность оптимизировать структуру материала по весовым характеристикам, что позволяет создавать конструкции с минимизированной материалоемкостью.
Углеродные волокна нашли широкое применение в конструкциях, которые должны иметь ограниченный вес. Среди всех армированных пластмасс углепластики обладают наиболее высокими стойкостью к усталостным испытаниям и долговечностью. Углепластики плохо пропускают рентгеновские лучи. Они имеют очень низкий коэффициент линейного расширения и оказываются наиболее подходящими для конструирования космических аппаратов, подвергающихся значительным перепадам температур между солнечной и теневой сторонами[8].
Слоистая структура армированных пластиков дает возможность в широком диапазоне варьировать механические свойства этих материалов.
III. Расчетная часть
1. расчет упругих характеристик слоистого композита (стержня) по заданным упругим характеристикам слоя.
Закон Гука устанавливает функциональную зависимость между напряжениями и деформациями. Напряжения и деформации являются физическими величинами, которые можно классифицировать как тензоры второго ранга.
(1.1)
где уij — тензор напряжений
Cijmn — тензор упругости
еij — тензор деформаций.
Для ортотропного слоя, нагруженного в плоскости армирования 1−2 и для случая плоского напряженно-деформированного состояния закон деформирования выглядит следующим образом:
(1.2)
где
(1.3)
Составим матрицу Q1 для слоев под углом 00
(Па) Составим матрицу Q2 для верхнего нижнего слоев
(Па) Приведенные зависимости относятся к частному случаю, когда оси нагружения x и y совпадают с осями упругой симметрии ортотропного материала 1 и 2. В общем случае эти оси не совпадают, и уравнения состояния отдельных слоев должны быть трансформированы в произвольных осях по следующей схеме:
(1.4)
(1.5)
Матрица трансформации имеет следующий вид:
(1.6)
где m = cos(б) и n = sin(б)
матрица тансформации для б = 0
Матрица трансформации для б = 80
Матрица трансформации для б = -80
Используя зависимости (2), (4) и (5), уравнения состояния слоя впроизвольных осях x и y можно записать в следующем виде:
(1.7)
Введем следующие обозначения
(1.8)
где Иj — относительная толщина слоя Закон деформирования для пакета слоев:
(1.9)
где (1.10)