Помощь в написании студенческих работ
Антистрессовый сервис

Соединения деревянных элементов

РефератПомощь в написанииУзнать стоимостьмоей работы

Рисунок 3.3 — Лобовая врубка: 1 — аварийный болт; 2 — врубаемый элемент; 3 — опорный элемент; 4 — гвозди; 5 — подбалка; 6 — опорная подкладка Врубаемый стержень верхнего пояса фермы частью обрезанного под прямым углом и срезанного снизу конца «зубом» вводится во врезку в стержне нижнего пояса и упирается в ее рабочую поверхность. Узкий клиновидный зазор исключает нежелательное сжатие нерабочих… Читать ещё >

Соединения деревянных элементов (реферат, курсовая, диплом, контрольная)

Типы соединений

Размеры лесоматериалов (длина и сечения) ограничены, поэтому отдельно они могут быть применены только в виде стоек и балок невысокой несущей способности. Для создания большинства строительных конструкций деревянные элементы должны быть прочно и надежно соединены между собой. При помощи соединений ряд элементов соединяется по длине — сращивается, по ширине — сплачивается, связывается под углом узлами и прикрепляется к опорам — анкеруется.

Соединения являются наиболее ответственными частями деревянных конструкций. При изготовлении многих соединений в элементах конструкций делают отверстия и врезки, ослабляющие их сечения и повышающие их деформативность. Разрушение деревянных конструкций начинается в большинстве случаев в соединениях. Деформативностью соединений объясняются повышенные прогибы деревянных конструкций. Таким образом, от правильного решения, расчета и изготовления соединений зависят прочность и деформативность конструкций в целом.

Анизотропия строения, малая прочность древесины при скалывании, растяжении поперек волокон и смятии являются причиной сложности и многообразия соединений конструкций из дерева.

Наиболее просто и надежно решаются конструкции соединений сжатых деревянных элементов, в которых усилия передаются непосредственно через контактные поверхности от элемента, к элементу и не требуется специальных рабочих связей. Более сложно решаются соединения изгибаемых элементов, в которых для передачи усилий требуются рабочие связи.

Наиболее сложно решаются соединения растянутых элементов. В них имеется опасность хрупкого разрушения древесины по ослабленным сечениям, а также в результате скалывания и растяжения поперек волокон. Применение в соединениях растянутых элементов податливо работающих связей уменьшает опасность их хрупкого разрушения. Сложность соединения растянутых деревянных элементов приводит в ряде конструкций к замене их металлическими.

По характеру работы все основные соединения деревянных конструкций могут быть разделены на следующие группы:

  • а) соединения без специальных связей, требующих расчета, — упоры и врубки;
  • б) соединения со связями, работающими на сжатие, — шпонками и колодками;
  • в) соединения со связями, работающими на изгиб, — нагелями-болтами, штырями, гвоздями, винтами, деревянными пластинками;
  • г) соединения со связями, работающими на растяжение, — болтами, гвоздями, винтами и хомутами;
  • д) соединения со связями, работающими на сдвиг, — клеевыми швами.

В связи с тем, что одни и те же связи входят в разные группы, удобно изучать соединения деревянных конструкций в следующем порядке: соединения без специальных связей, с деревянными связями, с металлическими связями, с клеевыми связями.

Клеевые соединения, наиболее прогрессивные и технологичные, являются основными соединениями элементов при заводском изготовлении деревянных конструкций. Соединения, не требующие специальных связей (упоры и врубки), применяются главным образом при построечном изготовлении деревянных конструкций. Металлические соединения являются универсальными и широко используются как при заводском, так и при построечном изготовлении деревянных конструкций. Соединения с деревянными связями являются устаревшими типами соединений, требующими значительных затрат ручного труда. Они применяются редко и только при построечном изготовлении деревянных конструкций.

Все соединения деревянных конструкций являются податливыми, за исключением клеевых. Деформации в них образуются в результате неплотностей, возникающих при изготовлении, от усушки и смятия древесины, особенно поперек волокон, и изгиба связей. Величина этих деформаций при длительном действии расчетных нагрузок в соединениях, где древесина работает поперек волокон, принимается равной 3 мм, а во всех других случаях ;

— 1,5−2 мм.

В большинстве соединений деревянных конструкций, кроме клеевых, в результате действия сжимающих усилий или начального обжима, например, при постановке болтов, между соединяемыми элементами возникают силы трения, которые уменьшают усилия в связях. Однако эти силы в результате возможной знакопеременности усилий, усушки древесины и ослабления начальных натяжений связей могут снизиться до нуля и поэтому расчетом не учитываются. Действие сил трения при расчете деревянных конструкций следует учитывать в случае если:

а) если равновесие системы обеспечивается только трением при условии постоянного прижатия элемента и отсутствии динамической нагрузки; при этом коэффициент трения дерева по дереву следует принимать равным:

торца по боковой поверхности — 0,3;

боковых поверхностей — 0,2;

б) если трение ухудшает условия работы конструкции и соединений, то коэффициент трения следует принимать равным 0,6.

Соединения без специальных связей

Соединения элементов, в которых действуют незначительные усилия или усилия передаются непосредственно от одного элемента к другому, не требуют специальных связей, подлежащих расчету. К таким соединениям относятся конструктивные врубки, лобовые упоры и лобовые врубки.

Конструктивные врубки (рисунок 3.1) являются соединениями, в которых возникают усилия намного меньше их несущей способности, и они не требуют расчета. В деревянных конструкциях наибольшее применение находят конструктивные соединения в четверть, в шпунт, в полдерева и косой прируб.

Соединение в четверть представляет собой сплачивание досок кромками по ширине, для чего в них вырезаются односторонние пазы глубиной, несколько больше половины толщины, в которые входят образовавшиеся выступы кромок соседних досок. Обшивки стен из досок, соединенных в четверть, препятствуют продуванию стен и проникновению атмосферных осадков. Сосредоточенные нагрузки в таких обшивках распределяются на две соседние доски.

Соединение в шпунт представляет собой сплачивания досок или брусьев кромками, в одной из которых вырезаны двусторонние пазы, в другой — один средний паз (шпунт), равный примерно трети толщины, в который входит образовавшийся выступ (гребень) соседней доски. Настилы из досок, соединенные в шпунт, препятствуют просыпанию засыпок, и сосредоточенные нагрузки на них распределяются на ряд соседних досок.

Врубка в полдерева представляет собой соединение концов брусьев или бревен с врезками до половины толщины под углом в одной плоскости, стянутых конструктивным болтом. Так соединяются, например, концы стропильных ног в коньке крыш.

Конструктивные врубки а - врубка в полдерева; б - косой прируб; в - соединения в четверть; гсоединения в шпунт; 1 - соединяемые элементы; 2 - стяжные болты.

Рисунок 3.1 — Конструктивные врубки а — врубка в полдерева; б — косой прируб; в — соединения в четверть; г— соединения в шпунт; 1 — соединяемые элементы; 2 — стяжные болты.

Лобовые упоры.

Рисунок 3.2 — Лобовые упоры: а — продольные; б — поперечные; в — наклонные; 1 — стяжной болт; 2 — узловое крепление; 3 — опора; 4 — штырь.

Косой прируб представляет собой продольное сращивание брусьев или бревен концами, в которых сделаны односторонние наклонные врезки длиной, равной удвоенной высоте сечения, с торцами, равными 0,15 высоты сечения. Косые прирубы стягиваются конструктивными болтами и применяются для соединения прогонов и балок по длине.

Лобовые упоры (рисунок 3.2) являются наиболее простыми и надежными соединениями, применяемыми в большинстве видов деревянных конструкций для крепления сжатых стержней. Они работают и рассчитываются на смятие, возникающее в них от действия сжимающих усилий. На растяжение они работать не могут. Лобовые упоры бывают продольными, поперечными и наклонными.

Продольный лобовой упор — это соединение обрезанного под прямым углом конца сжатого стержня с опорой, диафрагмой узла или торца другого такого же стержня в сжатом стыке. В стыке упор перекрывается конструктивно двусторонними накладками толщиной не менее 1/з толщины стержней и длиной не менее трех высот сечения и стягивается конструктивными болтами. В продольном лобовом упоре древесина работает на смятие вдоль волокон и имеет наиболее высокое расчетное сопротивление. В большинстве случаев напряжения смятия достигают незначительной величины, и проверка прочности требуется только в упорах, где на смятие работает только часть площади торца элемента.

Поперечный лобовой упор — это соединение двух стержней под прямым углом, когда торец одного сжатого стержня упирается в пласть другого и закрепляется конструктивными накладками на болтах. Так, например, соединяются стойки с верхними и нижними элементами каркаса. В этом соединении древесина торца работает на смятие вдоль волокон, а древесина пласти — поперек волокон. Соединение рассчитывается только по меньшей прочности древесины при местном смятии поперек волокон.

Наклонный лобовой упор представляет собой соединение двух сжатых стержней под углом меньше прямого. При этом торец одного из них может быть перпендикулярным его оси (соединение подкосов с ригелями в подкосных конструкциях) или торцы обоих элементов наклонены к их осям (коньковый узел безраскосных ферм). В соединении площадь, где смятие происходит под углом к волокнам древесины, имеет меньшее сопротивление смятию, чем вдоль волокон и должна быть проверена по прочности на смятие под углом к волокнам.

Лобовая врубка с одним зубом является простым в изготовлении соединением двух стержней под углом. Она применяется главным образом для соединения стержней малопролетных ферм и подкосных систем в узлах при их построечном изготовлении, причем один из них, врубаемый, должен быть обязательно сжат. Примером лобовой врубки является опорный узел треугольной брусчатой малопролетной фермы (рисунок 3.3).

Лобовая врубка.

Рисунок 3.3 — Лобовая врубка: 1 — аварийный болт; 2 — врубаемый элемент; 3 — опорный элемент; 4 — гвозди; 5 — подбалка; 6 — опорная подкладка Врубаемый стержень верхнего пояса фермы частью обрезанного под прямым углом и срезанного снизу конца «зубом» вводится во врезку в стержне нижнего пояса и упирается в ее рабочую поверхность. Узкий клиновидный зазор исключает нежелательное сжатие нерабочих поверхностей врубки. Глубина врубки hвр в опорных узлах должна быть не более 1/з высоты сечения нижнего пояса h, а расстояние от ее вершины до конца нижнего пояса lск — не менее 1,5 h для получения достаточных площадей растяжения и скалывания. Врубка должна быть центрирована по осям опоры, верхнего пояса и ослабленного врубкой сечения нижнего пояса, для того чтобы в этом сечении не возникло кроме растяжения еще и изгиба от эксцентричного приложения растягивающего усилия. Врубка стягивается дополнительно наклонным болтом, перпендикулярным верхнему поясу и называемым аварийным. Он препятствует расхождению стержней в процессе монтажа фермы в случае возникновения в верхнем поясе растяжения. При разрушении врубки от скалывания аварийный болт включается в работу и предотвращает опасность внезапного обрушения фермы. Опорная подбалка, прибиваемая гвоздями, предохраняет нижний пояс от местного смятия на опоре и необходимости устройства в нем ослабляющей его врезки для шайбы аварийного болта.

Лобовая врубка работает и рассчитывается на смятие от действия сжимающего усилия во врубаемом стержне N и скалывание от действия горизонтальной проекции этого усилия Т, равного растягивающему усилию в нижнем поясе фермы.

Соединения деревянных элементов.
Соединения деревянных элементов.
Смятие древесины. От действия сжимающего усилия N по площади упора торца сжатого стержня в рабочую поверхность врезки растянутого возникают равномерные напряжения смятия. Площадь смятия Fсм определяют в зависимости от глубины врубки hвр, угла наклона сжатого стержня и ширины врубки b, которая в брусьях равна ширине сечения, а в бревнах диаметром d находят из выражения. Соответственно площадь смятия равна во врубках брусьев; во врубках бревен .

Смятие древесины. От действия сжимающего усилия N по площади упора торца сжатого стержня в рабочую поверхность врезки растянутого возникают равномерные напряжения смятия. Площадь смятия Fсм определяют в зависимости от глубины врубки hвр, угла наклона сжатого стержня и ширины врубки b, которая в брусьях равна ширине сечения, а в бревнах диаметром d находят из выражения. Соответственно площадь смятия равна во врубках брусьев; во врубках бревен .

Расчет производят по прочности рабочей площади врезки при местном смятии под углом к волокнам растянутого стержня. Расчетное сопротивление местному смятию под углом к волокнам для лобовых врубок определяют по формуле (2) примечания 2 к таблице 3 СНиП II-25−80.

Проверку прочности лобовой врубки при местном смятии производят из условия: действующее расчетное усилие N не должно превышать расчетной несущей способности соединения Т =Rсмб Fсм.

Скалывание древесины. От действия скалывающих усилий Т вдоль волокон древесины по площади скалывания Fск, равной произведению ширины врубки b на длину скалывания lск, возникают скалывающие напряжения. Длина площади скалывания lск равна расстоянию от нижней точки врубки до конца растянутого стержня, но в расчет принимается длина не более 10 глубин врубки hвр.

Напряжения скалывания распределяются по длине площади скалывания неравномерно, так как силы скалывания действуют с одной стороны от площади скалывания и достигают максимума около врезки. Напряжения же отрыва здесь несколько снижаются в результате прижима, создаваемого вертикальной составляющей усилия сжатия.

Проверка прочности лобовой врубки из условия скалывания: действующее расчетное усилие N не должно превышать расчетной несущей способности соединения Т =Fск.

Расчетное среднее сопротивление скалыванию определяют по формуле (54) СНиП II-25−80,.

где коэффициент, а плечо пары сил скалывания .

Лобовая врубка с двумя зубьями отличается тем, что в сжатом стержне делается две врезки, в результате чего во врубке образуется по две площади смятия и скалывания. Эта врубка является более сложной, трудоемкой и требует повышенной точности изготовления для обеспечения совместной работы всех рабочих площадей. Такая врубка применяется в некоторых случаях для соединения стержней под углом 45° и более.

Соединения с деревянными связями являются трудоемкими и устаревшими соединениями построечного изготовления. Связями служат здесь небольшие деревянные вкладыши. Они плотно вставляются в соответствующие отверстия в соединяемых элементах — бревнах или брусьях — и обеспечивают их совместную работу, воспринимая сдвигающие усилия. Соединения бывают на шпонках, пластинках и штырях.

Соединения на шпонках выполняют при помощи брусков — шпонок или колодок, которые работают на смятие и скалывание и создают поперечный распор элементов, воспринимаемый болтами. Соединения на пластинках выполняют при помощи дубовых пластинок (пластинчатых нагелей), которые работают на изгиб и смятие древесины и не создают поперечного распора. Соединения на штырях выполняют при помощи дубовых штырей (дубовых нагелей), которые тоже работают на изгиб и смятие без поперечного распора.

Эти соединения применяются в некоторых временных деревянных конструкциях.

Соединения со стальными связями

Соединения, в которых усилия отсутствуют или действуют растягивающие, сжимающие или сдвигающие силы, успешно решаются при помощи стальных связей. В число этих связей входят болты, стержни, гвозди, винты, когтевые шайбы, хомуты и некоторые другие связи. Стальные связи в зависимости от характера их работы могут входить в состав стяжных, растянутых или изгибаемых — нагельных соединений. Они являются наиболее универсальными и применяются как при заводском, так и построечном изготовлении деревянных конструкций. Наиболее распространенными стальными связями являются болты и гвозди.

Растянутые болты.

Рисунок 3.4 — Растянутые болты: а — общий вид; б — схема работы болта и древесины; в — схема работы шайбы; 1 — гайка; 2 — стержень; 3 — головка; 4 — шайба; 5 — соединяемые элементы.

Болтовые соединения. Болты (рисунок 3.4) представляют собой стандартизованные изделия из строительной стали. Болты, применяемые в большинстве деревянных конструкций, называются черными и изготовляются без точной обработки. Они отличаются значительной длиной, соответствующей крупным сечениям деревянных элементов, и снабжаются большими квадратными шайбами, необходимыми для распределения усилия в болте на достаточную площадь древесины. Наибольшее распространение получили болты диаметром 12, 16 и 20 мм.

Для постановки болтов в соединяемых элементах просверливают отверстия такого же диаметра, как и болт. Для совпадения отверстий при сборке конструкций сверлить отверстия следует одним проходом сверла через соединяемые элементы или в отдельных элементах по шаблонам. Болтовые соединения бывают со стяжными, растянутыми и изгибаемыми болтами.

Соединения со стяжными болтами служат для плотного соединения отдельных элементов при их поперечном сплачивании и в некоторых узлах конструкций. В них могут возникать лишь незначительные усилия, и расчет их не требуется. Сечения стяжных болтов устанавливаются по конструктивным соображениям. Диаметр болтов не должен быть меньше 12 мм и меньше 1/20 общей толщины соединяемых элементов.

Шайбы стяжных болтов должны иметь ширину не менее 3,5 и толщину не менее 0,25 размера их диаметра. В первые годы эксплуатации стяжные болты нередко ослабевают и нуждаются в подтяжке.

Соединения с растянутыми болтами применяются при анкерном креплении деревянных конструкций к опорам, при подвеске к конструкциям перекрытий и оборудования и в узловых соединениях. Они воспринимают действующие в соединениях растягивающие усилия N.

Болт работает и рассчитывается на растяжение по площади сечения, ослабленной нарезкой Fнт. Расчетное сопротивление тяжей из арматурной стали принимается уменьшенным на 20% с учетом концентрации растягивающих напряжений в зоне нарезки (расчетное сопротивление умножается на коэффициент mа = 0,8). Расчет тяжей из арматурной стали производят по формуле.

Соединения деревянных элементов.

.

где R — расчетное сопротивление стали.

Соединения деревянных элементов.

По этой же формуле, переписанной относительно требуемой площади сечения болта , с помощью табличных данных можно подобрать сечение тяжа.

Древесина под шайбами болта работает и рассчитывается на местное смятие. Расчетное сопротивление смятию под шайбами при углах смятия от 90° до 60° принимается с учетом малой площади смятия и значительного поддерживающего действия окружающих участков древесины, с повышенным коэффициентом условий работы и составляет.

Соединения деревянных элементов.

Расчетное сопротивление местному смятию под шайбами под углом к волокнам определяют по формуле (2) примечания 2 к таблице 3 СНиП II-25−80.

Расчет на смятие под шайбами производят по формуле.

Соединения деревянных элементов.

Шайбы болтов работают и рассчитываются на изгиб от реактивного давления сминаемой древесины как квадратные пластинки шириной b, опертые в центре на гайку болта. Наибольший изгибающий момент М в среднем сечении шайбы, ослабленном отверстием диаметром d, и требуемую толщину шайбы можно приближенно определить из выражений.

Соединения деревянных элементов.

.

Аналогично рассчитывают растянутые стержни сквозных конструкций круглого сечения с шайбами и гайками на концах (затяжки арок и др.). Их максимальная гибкость не должна превышать 400. Если в соединении применен ряд болтов, расчетное сопротивление снижается на 0,85, учитывая возможную неравномерность его распределения между болтами.

Соединения с изгибаемыми болтами (рисунок 3.5) относятся к нагельным, в которых связи, в данном случае болты, работают главным образом на изгиб без распора. Эти соединения широко применяются в стыках и узлах деревянных конструкций, препятствуя взаимным сдвигам соединяемых элементов, причем усилия в них могут быть знакопеременными.

Изгибаемые болты.

Рисунок 3.5 — Изгибаемые болты: a — схемы расстановки; б — расчетные схемы; в — схема работы; 1 — прямая расстановка; 2 — шахматная; 3 — в стальных накладках; 4 — в соединениях под углом; 5 — симметричная двухсрезная схема; 6 — несимметричная односрезная; 7 — двухсрезная со стальными накладками; 8 — условные эпюры напряжений смятия.

Шайбы этих болтов не воспринимают расчетных усилий и могут иметь те же размеры, что и у стяжных болтов. От продольных усилий, действующих в таком соединении, по площади контакта болта с отверстием в древесине соединяемых элементов возникают неравномерные по периметру и длине напряжения смятия, а также скалывания и растяжения поперек волокон между отверстиями. В результате реактивного давления древесины в болте возникают усилия изгиба и среза.

Расстановку болтов в соединении производят по правилам, исключающим опасность преждевременного разрушения древесины элементов от скалывания и растяжения поперек волокон. Так расстояние между осями стальных нагелей (в том числе болтов) вдоль волокон и до торцов элементов должно быть не меньше 7d, поперек волокон между осями — 3,5d и до кромок — 3d.

Болтовые соединения могут быть симметричными, когда продольные силы действуют вдоль одной оси, относительно которой симметрично расположены элементы, и несимметричными, когда оси элементов не совпадают и симметрия соединения отсутствует. Соединяемые элементы могут располагаться по одной оси вдоль волокон или под углом друг к другу.

Срезами в болтовых соединениях называются пересечения болтов с плоскостями сдвига между элементами, от числа которых прямо зависит несущая способность соединения. Однако напряжения среза в болтах незначительны и не определяют их несущей способности.

Например, наиболее распространенный болтовой стык растянутых стержней с двусторонними деревянными накладками является симметричным «двухсрезным» соединением, а стык элементов, расположенных в разных плоскостях, без накладок, — несимметричным «односрезным» соединением.

Расчет болтового соединения производят по несущей способности в одном срезе болта по изгибу и древесины соединяемых элементов по смятию. Несущая способность болтовых соединений была определена теоретически, причем болт считался балкой, лежащей на упругом основании — древесине соединяемых элементов.

Несущая способность одного среза нагеля (болта) (кН) зависит от размеров (все размеры в см): диаметра болта d, толщины среднего элемента симметричных и более толстого или равного элемента несимметричных соединений с, толщины крайнего элемента симметричных и более тонкого элемента несимметричных соединений а и угла наклона волокон соединяемых элементов и определяется по следующим формулам:

по смятию в средних элементах.

;

по смятию в крайних или более тонких элементах несимметричных соединений при а0,35с.

Соединения деревянных элементов.

;

по смятию во всех элементах равной толщины, а также в более толстых элементах односрезных соединений.

Соединения деревянных элементов.

;

по изгибу нагеля.

Соединения деревянных элементов.
Соединения деревянных элементов.

но не более .

Коэффициенты учитывают меньшую несущую способность болтовых соединений элементов под углом в результате большей податливости древесины при смятии. Они зависят от размеров угла, диаметра болта d и принимаются по таблице 1 для основных размеров диаметров, а для промежуточных — по интерполяции.

Таблица 1- Зависимость коэффициентов от угла б

Угол а, град.

Коэффициенты при диаметре d, мм.

  • 30
  • 60
  • 90
  • 0,95
  • 0,75
  • 0,70
  • 0,90
  • 0,70
  • 0,60
  • 0,90
  • 0,65
  • 0,55
  • 0,90
  • 0,60
  • 0,50

Расчетная несущая способность болта в одном срезе Т является наименьшей из величин, определенных по этим формулам. Несущая способность болтового соединения прямо пропорциональна количеству болтов n, количеству срезов nср и несущей способности одного среза болта. Количество болтов в соединении, где действует усилие N, определяют по формуле.

Соединения деревянных элементов.

.

Болтовые соединения со стальными накладками применяются в узлах конструкций. Накладки обычно делаются двусторонними из листовой стали. Расстояние от осей болтов до краев накладок должно быть не менее двух диаметров болтов вдоль и полутора — поперек усилия. Эти соединения на изгибаемых болтах являются симметричными и двухсрезными. Несущую способность одного среза болта по смятию древесины определяют по формуле, а по изгибу болта, учитывая его частичное защемление в накладках, — по формуле.

Соединения деревянных элементов.

.

Соединения с изгибаемыми стальными стержнями выполняются с применением арматурной стали класса A-I со снятыми фасками. Они тоже относятся к нагельным соединениям с цилиндрическими нагелями. Эти соединения работают и рассчитываются так же, как соединения с изгибаемыми болтами. Расставляются они по тем же правилам, что и болты. В болтовых соединениях с целью снижения их стоимости до 75% болтов может быть заменено стержнями. Короткие стержни в соединениях со стальными накладками вставляются в несквозные отверстия в древесине. Они работают и рассчитываются как односрезные, несимметричные изгибаемые соединения и называются глухими нагелями.

Подбор сечений болтов и стержней производят из условия, чтобы сумма минимальных расстояний между продольными осями и до кромок элемента, зависящих от их диаметра, не превышала высоты сечения элемента. Так, например, диаметр болтов d при расстановке в два продольных ряда в элементе высотой сечения h должен быть не более .

Гвоздевые соединения. Гвозди (рисунок 3.6) изготовляют из холоднотянутой проволоки в соответствии с ГОСТ 4028–63*. Острие гвоздя имеет четырехгранную форму и длину, равную полутора диаметрам. Круглая шляпка имеет диаметр, равный двум диаметрам гвоздя. Наибольшее применение в деревянных конструкциях находят гвозди диаметром 3, 4, 5 и 6 мм и длиной соответственно 80, 100, 150 и 200 мм. Гвозди забивают в цельную древесину ударами ручного или пневматического молотка. Гвоздевые соединения являются простыми и общедоступными, но трудоемкими и применяются главным образом при построечном изготовлении дощатых деревянных конструкций.

Гвоздь при забивке частично разрывает, а частично раздвигает волокна древесины, образуя в ней отверстие с уплотненными стенками. Благодаря этому он прочно зажимается в древесине и хорошо сопротивляется выдергиванию, однако по этой же причине в ней возникают дополнительные усилия растяжения поперек волокон. При этом возникает опасность раскалывания древесины. Уменьшить эту опасность можно более редкой расстановкой забиваемых гвоздей по сравнению с нагелями.

Гвозди образуют более плотные соединения, чем нагели. Для увеличения плотности соединений могут применяться гвозди с негладкой поверхностью. Такие гвозди чаще всего применяют для прикрепления к деревянным элементам стальных накладок. Забивают их в древесину пневматическими молотками.

Малая изгибная жесткость гвоздей приводит к повышенной ползучести гвоздевых соединений при длительно действующих нагрузках, что является их недостатком.

Выдергиваемые гвозди.

Рисунок 3.6 — Выдергиваемые гвозди: а — общий вид; б — схема работы; 1 — шляпка; 2 — стержень; 3 — острие; 4 — соединяемые элементы; 5 — эпюра напряжений трения.

Правила расстановки гвоздей в соединениях исключают опасность преждевременного скалывания и раскалывания соединяемых элементов, которая повышается по мере уменьшения их толщины. Поэтому диаметр гвоздей должен быть не более 1/4 толщины элементов.

Расстояния между гвоздями диаметром d вдоль волокон соединяемых элементов должны быть не менее: от торцов — 15d, между осями в элементах толщиной, равной и большей 10d, — 15d, между осями в элементах толщиной, равной 4d, — 25d, а в элементах промежуточной толщины принимают по интерполяции.

Расстояния между гвоздями поперек волокон и до кромок элементов должны быть при прямой расстановке не менее 4d, а при расстановках шахматной и косыми рядами — не менее 3d.

Соединения с конструктивными гвоздями применяются для крепления дощатых обшивок и настилов. Гвозди в них не несут существенных усилий и не рассчитываются.

Соединения с выдергиваемыми гвоздями (рисунок 3.6) относятся к соединениям с растянутыми связями. Они применяются для крепления досок подшивок потолков, щитов перекрытий и опалубки. От действия нагрузок в этих соединениях возникают растягивающие усилия N, стремящиеся выдернуть гвозди из древесины элемента, к которому прибиты доски. Этому усилию сопротивляются силы трения между поверхностью гвоздей и окружающей древесиной.

Расчетное сопротивление выдергиванию гвоздя, забитого в сухую древесину поперек волокон, составляет, а в сырую, учитывая опасность появления трещин усушки в зоне гвоздевого отверстия после высыхания древесины элементов. Несущую способность гвоздя диаметром d на выдергивание Тг определяют как произведение расчетного сопротивления на площадь поверхности трения. При этом рабочую длину гвоздя l1 находят по его общей длине, из которой исключается толщина прибиваемых досок, а также длина острия гвоздя, равная 1,5d, и возможная щель между элементами шириной 0,002 м, не участвующие в работе на трение. Формула определения несущей способности гвоздя на выдергивание имеет вид.

Соединения деревянных элементов.

Требуемое количество выдергиваемых гвоздей, необходимых для восприятия растягивающего усилия, находят из выражения.

Соединения деревянных элементов.

Размеры выдергиваемых гвоздей подбирают из условий, чтобы расчетная длина гвоздя l1 была не меньше 10d и не меньше двойной толщины прибиваемых досок.

Соединения с изгибаемыми гвоздями (рисунок 3.7) относятся к нагельным соединениям, что и изгибаемые болтовые соединения. Они применяются в стыках и узлах дощатых конструкций, препятствуя взаимным смещениям соединяемых элементов. Соединения с изгибаемыми гвоздями работают и рассчитываются аналогично соединениям с изгибаемыми болтами, — гвозди работают на изгиб, а окружающая древесина, — на смятие с некоторыми особенностями.

Гвозди имеют повышенное по сравнению с болтами сопротивление изгибу, поскольку их холоднотянутая проволока имеет более высокий предел текучести. Ввиду малой толщины и плотного защемления в древесине несущая способность гвоздевых соединений не зависит от угла действия усилий по отношению к направлениям волокон в соединениях под углом и коэффициент к при расчете не учитывается.

Если гвоздь пробивает все элементы соединения насквозь, расчетная толщина последнего элемента уменьшается на 1,5d, учитывая опасность отщепления крайних волокон при выходе острия. Если гвоздь не пробивает соединения насквозь, учитывается только глубина его защемления a1 в последнем элементе, определяемая так же, как и l1 у выдергиваемых гвоздей, при условии, что она не менее 4d. Если расчетная длина защемления конца гвоздя получается меньше 4d, то его работу в примыкающем шве учитывать не следует.

В соединениях сдвигаемых деревянных элементов возможна постановка гвоздей в предварительно просверленные отверстия (подобно постановке нагелей). Исследования показали повышенную несущую способность таких гвоздей по сравнению с забитыми гвоздями. В этом случае гвозди называют тонкими нагелями и их расчет одинаков с расчетом нагелей.

Изгибаемые гвозди.
Соединения деревянных элементов.

Рисунок 3.7 — Изгибаемые гвозди:

а — схемы расстановки; б — расчетные схемы; в — схема работы; 1 — прямая расстановка; 2 — шахматная; 3 — в стальных накладках; 4 — в соединениях под углом; 5 — симметричная двухсрезная схема; 6 — несимметричная односрезная; 7 — несимметричная со стальными накладками; 8 — условные эпюры напряжений смятия Несущую способность гвоздя (кН) в одном срезе по изгибу определяют по формуле.

Соединения деревянных элементов.

но не более 4 d2 .

Несущая способность одного среза гвоздя по смятию среднего с и крайнего a элемента определяют по тем же формулам, что и для нагелей, но с коэффициентом к = 1. За расчетную несущую способность гвоздя T в рассматриваемом шве принимается наименьшее из всех значений, вычисленных по вышеуказанным формулам.

Соединения с изгибаемыми гвоздями и стальными накладками применяют в узлах ограниченного вида конструкций. Гвозди здесь забивают через отверстия, просверленные в стальных листовых накладках. Это соединение является несимметричным и односрезным. Несущую способность одного среза гвоздя по смятию древесины определяют с учетом глубины его защемления c1, а по изгибу с учетом его частичного защемления — по формуле.

Соединения деревянных элементов.

.

Соединения с винтами. Винты представляют собой стандартизованные стальные изделия и состоят из головки, ненарезанной и нарезанной частей. Их диаметр d измеряют по ненарезанной части. Винты диаметром меньше 12 мм называют шурупами. Они имеют сферические или плоские головки с прорезями для завертывания их отверткой. Винты диаметром 12 мм и более, которые имеют шестигранные или квадратные головки для завертывания их ключом, называют глухарями.

Винты применяют для крепления стальных накладок и деталей к деревянным элементам в узлах конструкций. Они завертываются через отверстия в накладках в отверстия, просверленные в древесине. Диаметр отверстий в древесине должен быть равным 0,8d ненарезанной части винта, для того чтобы нарезка полностью врезалась в древесину.

Винты расставляют в соединениях на больших расстояниях, чем болты. Вдоль волокон между их осями должно быть не менее 10d,а поперек — 5d, поскольку уменьшенный диаметр отверстия вызывает дополнительные напряжения растяжения поперек волокон. Глубина защемления ненарезанной части винта в древесине должна быть не менее 4d.

Соединения деревянных элементов.

Соединения с выдергиваемыми винтами относятся к соединениям с растянутыми связями. Винты здесь сопротивляются отрыву от древесины накладок или деталей, в которых действуют растягивающие усилия. Выдергиванию винта сопротивляется главным образом древесина винтовых желобков нарезанной части длиной l1 работающая на смятие, благодаря чему расчетное сопротивление выдергиванию винтов выше, чем гвоздей, и составляет. Несущую способность винта на выдергивание определяют по формуле.

.

Соединения деревянных элементов.

Соединения с изгибаемыми винтами относятся к нагельным соединениям. Винты здесь сопротивляются смещению накладок по поверхности древесины от действия сдвигающих усилий. Винты работают на изгиб, а окружающая древесина — на смятие, как в несимметричных болтовых соединениях со стальными накладками.

Глухари и шурупы лучше всего использовать для крепления к деревянным элементам металлических накладок. При этом винты заменяют не только нагели, но и стяжные болты.

Винты и хомуты.

Рисунок 3.8 — Винты и хомуты: I — схема работы изгибаемого винта; II — схема работы выдергиваемого винта; а — винты; б — хомуты; 1 — глухарь; 2 — шуруп; 3 — прямой хомут; 4 — полугнутый хомут; 5 — гнутый хомут.

Соединения с хомутами относятся к соединениям с растянутыми связями. Они охватывают поверхности соединяемых элементов и применяются главным образом при построечном изготовлении деревянных конструкций. Хомуты бывают проволочными, полосовыми со стяжными болтами и болтовыми с подкладками из листовой или профильной стали. По форме хомуты бывают круговыми в бревенчатых конструкциях и прямоугольными в конструкциях из пиломатериалов. Хомуты работают и рассчитываются на растяжение, а древесина — на местное смятие.

Соединения со скобами относятся к классу конструктивных соединений. Скобы изготовляют из арматурной стали класса A-I диаметром 10−16 мм и имеют П-образную форму с заостренными и зазубренными концами. Они забиваются в цельную древесину и обеспечивают проектное положение соединяемых элементов при построечном изготовлении деревянных конструкций из бревен и брусьев.

Соединения с когтевыми шайбами относятся к соединениям на шайбах шпоночного типа. Они представляют собой стальные пластинки, в которых методом штамповки образованы многочисленные односторонние острия — когти. Шайбы забиваются или впрессовываются с двух сторон в древесину соединяемых элементов. Известны два основных типа когтевых шайб — Леннова и «Ганг-Нейл». Шайбы Леннова имеют круглую форму и центральное отверстие для болта. При сборке конструкций элементы соединяются стальными накладками, прикрепляемыми к гайкам болтами. Шайбы «Ганг-Нейл» имеют прямоугольную форму, впрессовываются одновременно в соединяемые элементы при сборке и не требуют стальных накладок и болтов. Острия шайб работают на изгиб, а окружающая древесина — на смятие.

Клеевые соединения

Клеевые, соединения являются наиболее прогрессивными видами соединений элементов деревянных конструкций заводского изготовления. Их основой являются конструкционные синтетические клеи. Эти соединения характеризуются рядом важных достоинств. Склеивание дает возможность из досок ограниченных сечений и длин изготовлять клееные элементы несущих конструкций любых размеров и форм. Они могут быть прямыми и изогнутыми, постоянного, переменного и профильного сечения, длиной, измеряемой десятками метров, и высотой, измеряемой метрами.

Клеевые соединения являются прочными, монолитными и имеют такую малую податливость, что ее можно не учитывать при расчетах и считать клееные элементы как цельные. Клеевые соединения являются водостойкими, стойкими против загнивания и воздействия ряда химически агрессивных сред, что обеспечивает долговечность клееных элементов. Эти соединения технологичны, и их осуществление без затруднений механизируется и автоматизируется, требуя ограниченных трудозатрат. Однако склеивание допускается только в специально оборудованных отапливаемых цехах с приточно-вытяжной вентиляцией для удаления вредностей и под строгим лабораторным контролем. При склеивании имеется возможность использовать древесину маломерную и пониженного качества путем удаления значительных пороков с последующим стыкованием. Клеевые соединения являются безметалльными. Это оправдывает экономическую целесообразность применения склеивания и является причиной быстрого роста объемов производства клееных деревянных конструкций.

Клеевые соединения применяют для склеивания досок из хвойной древесины толщиной не более 50 мм и влажностью не выше 12%. При нарушении этих ограничений клеевые соединения могут разрушиться от усилий, возникающих в результате коробления досок при высыхании. По качеству древесины доски должны относиться к сортам, соответствующим условиям их работы в клееных элементах и значениям действующих в них напряжений. Доски до склеивания должны быть остроганы по плоскостям склеивания, на толщину до 3 мм для обеспечения их плотного контакта и получения прочного клеевого шва минимальной толщины.

Клеевые стыки.

Рисунок 3.9 — Клеевые стыки: а — поперечные; б — продольные; в — фанеры; г — под углом; 1 — по пластям, 2 — по кромкам; 3 — по пласти и кромке; 4 и 5 — зубчатый с выходом зубьев на кромки и пласти; 6 — усовое соединение фанеры; 7 — клееный элемент.

Клееные элементы после склеивания должны быть остроганы по кромкам для получения гладкой поверхности.

Клеевые соединения применяют также для продольного склеивания цельных клееных элементов и для склеивания досок с фанерой и со стальными деталями.

Для клеевых соединений применяют конструктивные синтетические клеи на основе термореактивных смол. В настоящее время в отечественной практике для склеивания древесины и фанеры наибольшее применение находят резорциновые клеи РФ-12, фенольно-резорциновые ФРФ-50, фенольные.

СФЖ-3016 и др., а для склеивания древесины с металлом — эпоксидный клей ЭПЦ-1. Клеевые швы должны иметь минимальную толщину, измеряемую долями миллиметров, и высокую прочность, превосходящую прочность древесины на сжатие и скалывание вдоль волокон. Прочность швов на растяжение ввиду их хрупкости невелика и соответствует примерно прочности древесины на растяжение поперек волокон. Адгезионная и когезионная связи клеевых швов должны быть выше прочности древесины, и клеевые соединения должны разрушаться при нагружении выше предела прочности не по швам и граничным слоям, а по цельной древесине.

Клеевые стыки по их расположению и особенностям работы могут быть разделены на поперечные, продольные и угловые (рисунок 3.9).

Поперечные стыки досок служат для создания клееных элементов с поперечными сечениями требуемых размеров и форм и придания им изогнутой формы по длине. В их число входят стык по пластям, стык по кромкам и стык по пласти и кромке.

Стык по пластям представляет собой клеевое соединение досок пластями. Этот стык применяется для создания клееных элементов требуемой высоты сечения и для обеспечения их изогнутой формы по длине, поскольку он препятствует распрямлению изогнутых досок в клееном элементе. В изгибаемых и сжато-изгибаемых элементах стыки по пластям работают и рассчитываются на скалывание при изгибе по формуле.

Соединения деревянных элементов.

.

Стык по кромкам представляет собой клеевое соединение досок кромками. Его применяют для создания клееных элементов с шириной сечения, большей ширины отдельных досок. По высоте сечения эти стыки в соседних досках располагаются вразбежку в плоскости изгиба. В этих стыках обычно не возникают скалывающие напряжения, и они не требуют расчетных проверок.

Стык по пласти и кромке представляет собой клеевое соединение пласти одной доски с кромкой другой. Его применяют для создания клееных элементов тавровой, двутавровой и рельсовидной формы со стенками из досок на ребро. Работает и рассчитывается стык на скалывание при изгибе.

Продольные стыки служат для создания клееных элементов требуемой длины. В число продольных стыков входят зубчатое и усовое соединения.

Зубчатое соединение применяют для стыкования досок концами по длине вдоль волокон, оно является основным видом продольного стыка и представляет собой соединение концов досок клеевыми швами по зубчатой поверхности ряда острых клиньев, которые могут выходить на пласти или на кромки досок. Такая форма придается концам досок механически специальной зубчатой фрезой на станке. Зубчатое соединение характеризуется тремя параметрами — длиной зубьев l, шириной их у основания b и шириной у вершины t (затуплением). Длина зубьев обычно не превышает толщины досок, а параметры обеспечивают необходимый уклон плоскостей зубьев к оси доски — не больше 1:8 и затупление не больше 1 мм. Только такие параметры обеспечивают необходимую прочность стыка в элементах несущих конструкций, например l=32 мм, b=8 мм, t=1 мм. Зубчатое соединение экономично, поскольку имеет малую длину и дает возможность стыковать короткие доски, и технологично, так как изготавливается механически и не расходится при изготовлении до затвердевания клея.

От действия продольных усилий в клеевых швах зубчатого соединения возникают скалывающие и незначительные растягивающие напряжения. Ввиду значительной площади зубчатой поверхности они не превосходят несущей способности швов до разрушения доски от растяжения. Затупление зубьев меньше ослабляет сечение, чем пороки, допускаемые в элементах 1,2 и 3 сорта. Поэтому зубчатое соединение считается равнопрочным с цельной древесиной при всех видах напряженного состояния и расчета не требует. В некоторых случаях это соединение применяют и для продольного стыкования цельных клееных элементов.

Усовое соединение представляет собой клеевое соединение концов досок по поверхности, образованной их срезкой с уклоном к поверхности 1:10, и применяют его для продольного стыкования досок. Клеевой шов работает здесь аналогично швам зубчатого соединения, и усовое соединение считается тоже равнопрочным с древесиной элементов независимо от их сорта. Этот стык менее экономичен, поскольку имеет значительную длину и нерационален для стыкования коротких досок. Он менее технологичен, чем зубчатый, так как имеет тенденцию к сдвигам по клеевому шву при склеивании, и допускается только при отсутствии оборудования для зубчатого стыкования.

Угловые стыки представляют собой клеевые соединения досок и клееных элементов, расположенных друг к другу под углом.

Зубчатое соединение под углом применяют главным образом для соединения концов клееных элементов рам в жестких узлах, расположенных под углами более 104°. Зубья этого соединения должны выходить только на верхние и нижние кромки элементов в зоне упора их срезанных под углом концов. Это соединение работает на усилия сжатия с изгибом и рассчитывается как цельное наклонное сечение по прочности на нормальные напряжения с учетом того, что они действуют под углом к волокнам, и расчетные сопротивления древесины имеют соответствующие пониженные значения.

Соединение досок по пластям под углом представляет собой клеевое соединение досок пластями по площади их пересечения. Так могут соединяться доски шириной до 100 мм при угле 90° и шириной 150 мм при углах 30−45° между ними. От продольных усилий в клеевом шве возникают скалывающие и дополнительно поперечные растягивающие напряжения ввиду эксцентричного действия усилий. Они рассчитываются на скалывание под углом к волокнам, а растягивающие усилия рекомендуется воспринимать болтами или шурупами.

Стыки фанеры и фанеры с древесиной. Усовое соединение фанеры имеет ту же конструкцию, что и усовое соединение досок. Длину усового соединения следует принимать не менее 10 толщин стыкуемых элементов. Оно имеет пониженную прочность ввиду неполного совпадения соответствующих слоев листов фанеры при склеивании и, рассчитывается на растяжение по площади сечения, уменьшенной коэффициентом условий работы mф=0,6. В некоторых случаях применяют также соединение фанерных листов с фанерными накладками шириной не менее 30 толщин соединяемых листов.

Стык фанеры с досками по пласти и кромкам применяют в клеефанерных конструкциях. При расположении волокон досок под углом 90° к наружным волокнам фанеры ширина досок должна быть не более 100 мм. При большей ширине досок возникает опасность перенапряжения клеевых швов в результате коробления древесины.

Клееметаллические соединения представляют собой соединения деревянных клееных элементов при помощи вклеенных или наклеенных стальных деталей (рисунок 3.10).

Соединения с вклеенными стержнями.

Рисунок 3.10 — Соединения с вклеенными стержнями:

а — продольное; б — под углом; 1 — соединяемые элементы; 2 — стержни из стальной арматуры 3 — отверстия; 4 — пазы; 5 — рейка; 6 — клей Соединения на вклеенных стержнях состоят из коротких стержней из арматуры классов А-II и выше диаметром 12−25 мм, вклеенных в прямоугольные пазы или круглые отверстия клеем, обеспечивающим надежное соединение древесины с металлом, например, эпоксидно-цементным.

Глубина вклеивания l должна быть не менее 10 и не более 30 диаметров стержня, ширина паза или отверстия на 5 мм больше номинального диаметра стержня, расстояние между стержнями не менее 3d, а до наружных граней сечения — 2d. Вклеенные стержни применяют для продольного и углового соединения клееных элементов, работающих на продольные силы или изгибающие моменты. Они воспринимают продольные силы N при растяжении (выдергивание) или сжатии (вдавливание). Скрытые в толще древесины стержни защищены от химически агрессивной среды и быстрого нагрева при пожаре, что повышает стойкость против коррозии и огнестойкость конструкции. Клеевые соединения стержней работают на скалывание по площади, равной произведению глубины вклеивания l на периметр отверстия р (d+0,5).

Напряжения скалывания распределяются по длине вклеивания неравномерно, уменьшаясь к концам стержней.

Расчет соединения на скалывание, производят с учетом коэффициента неравномерности (концентрации) распределения скалывающих напряжений, kс определяемого в зависимости от диаметра стержня и глубины вклеивания.

Расчетная несущая способность стержня, МН, определяется по скалыванию клеевых соединений по формуле.

,.

,.

где ; — расчетное сопротивление древесины скалыванию, определяемое по пункту 5 г таблицы 3 СНиП II-25−80.

Соединения с клеестальными шайбами применяют для соединения в узлах стержней сборно-разборных ферм. Они состоят из стальных пластинок — стальных накладок, болтов, а также шайб, приклеенных к пластям элементов феноло-формальдегидным по слою БФ или эпоксидным клеем. Болты пропускаются при сборке соединения через отверстия соответствующего диаметра в накладках и шайбах и через отверстие большего диаметра в древесине элементов. Соединение воспринимает растягивающие и сжимающие усилия. Клеевые швы шайб работают и рассчитываются на скалывание. Болты рассчитываются на смятие и срез между шайбами и накладками, как в стальных соединениях, без учета древесины и имеют повышенную несущую способность. Стальные накладки рассчитываются на растяжение или сжатие. Для беспрепятственной сборки соединение должно быть изготовлено с высокой точностью.

Клеевые соединения арматуры клееных армированных балок с древесиной выполняются путем вклеивания ее в пазы в крайних зонах сечений эпоксидно-цементным клеем. Они работают на скалывание с избыточными запасами прочности.

Соединения с пластмассовыми связями имеют значительные перспективы применения в деревянных конструкциях, особенно предназначенных для эксплуатации в средах химически агрессивных по отношению к металлу. В настоящее время проводятся экспериментальные и теоретические исследования соединений в деревянных элементах с цилиндрическими нагелями из высокопрочного стеклопластика типа АГ-4с.

Тема 4. Дощатые и клеефанерные настилы покрытий

Различают сплошные и разреженные дощатые настилы.

При рулонной кровле в неутепленных покрытиях применяют сплошные дощатые настилы. В утепленных покрытиях поверх этих настилов укладывают твердый плитный утеплитель, непосредственно по которому или по выравнивающему слою наклеивают рулонный ковер. Возможен вариант, когда утеплитель укладывают между прогонами с подшивкой потолка из гипсокартона.

При чешуйчатой кровле из асбестоцементных или стеклопластиковых листов в неутепленных покрытиях применяют разреженные дощатые настилы (обрешетки).

Чешуйчатая кровля является проницаемой для воздуха благодаря неплотностям стыков, поэтому разреженный настил обеспечивает проветривание полостей под ней и высыхание древесины в процессе эксплуатации. Разреженный настил может служить так же основанием черепичной кровли и кровли из стальных листов.

Варианты деревянных настилов покрытий.

Рисунок 4.1 — Варианты деревянных настилов покрытий:

а — под холодную рулонную кровлю; б — под рулонную утепленную кровлю; в — под холодную асбестоцементную кровлю; 1- рулонная кровля; 2 — утеплитель; 3 — настил; 4 — асбестоцементная кровля; 5 — обрешетка Дощатые настилы изготавливают из досок на гвоздях и укладывают на прогоны или основные несущие конструкции покрытий при расстоянии между ними не более 3 м. Рабочие доски настилов должны иметь длину, достаточную для опирания их не менее чем на три опоры для увеличения изгибной жесткости по сравнению с однопролетным решением (при опирании только на две опоры).

Разреженный настил

Разреженный настил (обрешетка).

Рисунок 4.2 — Разреженный настил (обрешетка): 1 — доски; 2 — гвозди Разреженный настил, называемый так же обрешеткой, представляет собой несплошной ряд досок, уложенных с шагом, определяемым типом кровли и расчетом. Зазоры между кромками досок для их лучшего проветривания должны быть не менее 2 мм.

Для ускорения сборки этот настил целесообразно собирать из заранее изготовленных щитов, соединенных снизу поперечинами и раскосами.

Сплошные настилы

Из сплошных настилов наиболее распространенным является двойной перекрестный, который состоит из двух слоев — нижнего рабочего и верхнего защитного.

Рабочий настил представляет собой разреженный или сплошной ряд более толстых досок и несет на себе все нагрузки, действующие на покрытие.

Защитный настил представляет собой сплошной ряд досок минимальной толщиной 16 мм. Он укладывается на рабочий настил под углом 45о-60о и крепится к нему гвоздями.

Щит двойного перекрестного настила.

Рисунок 4.3 — Щит двойного перекрестного настила: 1 — косой защитный настил; 2 — рабочий настил; 3 — гвозди Двойной перекрестный настил имеет значительную жесткость в своей плоскости и служит надежной связью между прогонами и основными несущими конструкциями покрытия. В этом случае можно обходиться без устройства скатных связей по верхнему поясу стропильных конструкций. Двойной перекрестный настил целесообразно собирать из заранее изготовленных крупных щитов.

Щит сплошного однослойного настила.

Рисунок 4.4 — Щит сплошного однослойного настила:

1 — доски настила; 2 — раскосы; 3 — поперечины Применяют также настилы из сплошных однослойных щитов, соединенных внизу раскосами и поперечинами, имеющими меньшую жесткость, чем двойные.

Расчет дощатых настилов производят по прочности и прогибам при изгибе на действие расчетных и нормативных нагрузок:

  • — постоянные от собственного веса покрытия g, кН/м2;
  • 1. временные снеговые

р, кН/м2;

2. от веса человека с грузом Р, кН.

Нагрузки определяются с учетом формы покрытия и коэффициентов надежности по нагрузке, f.

Сосредоточенная нагрузка от веса человека с грузом равна:

нормативная Рн=1 кН, расчетная с учетом коэффициента f.: Р=1,2 кН.

Расчет настилов и обрешеток, работающих, как правило, на поперечный изгиб, производят по схеме двухпролетной балки при двух сочетания нагрузки:

  • 1) нагрузка от собственного веса покрытия и снеговая нагрузка (g+p)
  • — на прочность:

у=,.

Соединения деревянных элементов.

где ;

Расчетные схемы настилов.
Соединения деревянных элементов.

Рисунок 4.5 — Расчетные схемы настилов:

а — схема действия нагрузок; б — статические схемы; в — схемы действия сосредоточенных нагрузок; 1 — первое сочетание нагрузок; 2 — второе сочетание нагрузок.

— по прогибам:

Соединения деревянных элементов.

.

Где [f/l] - предельный прогиб, определяемый по таблице 19.

СНиП 2.01.07−85*.

2) нагрузка от собственного веса покрытия и сосредоточенная нагрузка в одном пролете от веса человека с грузом Р — только на прочность:

Максимальный момент находится под сосредоточенной нагрузкой:

Соединения деревянных элементов.

.

Расчет на прочность в этом случае производится по той же формуле, что и при первом сочетании нагрузок, только расчетное сопротивление умножается на коэффициент mн=0,8, учитывающий кратковременность действия монтажной нагрузки. Расчет удобно вести приняв ширину настила b=100 см.

При сплошном настиле или обрешетке при расстоянии между осями досок или брусков не более 15 см считают, что сосредоточенный груз передается двум доскам или брускам, а при расстоянии более 15 см — одной доске или бруску.

При двух настилах (рабочем и защитном, направленном под углом к рабочему) или при однослойном настиле с распределительными брусками, подшитыми снизу в середине пролета, а так же при укладке поверх настила плитного утеплителя, сосредоточенный груз Рн=1 кН считают распределенным на ширину 0,5 м рабочего настила.

Дощатые настилы перекрытий, подшивки и обшивки стен

Настилы перекрытий Представляют собой сплошные ряды досок, служащие основанием чистого пола или самим чистым полом. Их укладывают по промежуточным брускам — лагам или прямо по балкам и прибивают к ним гвоздями. Доски настила чистого пола соединяют кромками в шпунт. Настилы перекрытий работают и рассчитываются на изгиб от действия нагрузок от собственной массы, временных равномерно распределенных нагрузок, нормативное значение которых определяется по таблице 3 СНиП 2.01.07−85*и сосредоточенных грузов, равных 1 кН. Расчет настилов перекрытия аналогичен расчету настилов покрытия.

Подшивки потолков

Представляют собой сплошные ряды тонких досок прибитых к балкам снизу гвоздями. При отсутствии штукатурки доски соединяются кромками в шпунт для исключения сквозных щелей. Подшивки работают на изгиб, а гвозди — на выдергивание, как правило, с избыточным запасом прочности при нагрузке от собственной массы.

Обшивка стен

Представляет собой сплошные вертикальные ряды тонких досок, расположенных горизонтально и соединенных кромками в четверть или в шпунт. Обшивки стен работают на изгиб от давления и отсоса ветра, как правило, с избыточным запасом прочности.

Клеефанерные настилы

Клеефанерные настилы являются наиболее эффективным и перспективным видом ограждающих конструкций. Клеефанерные плиты покрытий и панели стен состоят из дощатого каркаса и фанерных обшивок, соединенных клеем. Они имеют длину l=3−6 м, ширину b=1−1,5 м, соответствующую размерам фанерного листа.

Каркас плит и панелей состоит из продольных и поперечных досок-ребер, которые могут быть цельными или клееными. Продольные рабочие ребра, сплошные по длине, ставятся на расстоянии не более 50 см друг от друга. Поперечные ребра жесткости ставятся на расстоянии не более 3 м, как правило, в местах расположения стыков фанеры, и прерываются в местах пересечения с продольными ребрами. Обшивки плит и панелей состоят из листов фанеры повышенной водостойкости марки ФСФ, толщиной не менее 8 мм, состыкованных по длине «на ус». Обшивки склеиваются с каркасом таким образом, чтобы направление наружных волокон фанеры совпадало с направлением древесины продольных ребер для того, чтобы фанера работала в направлении своей большей прочности и жесткости. Клеефанерные плиты одновременно выполняют функции настила, прогонов, водои пароизоляции. Они характеризуются малой массой при значительной несущей способности, имеют большую жесткость в своей плоскости. Поверхности плит, обращенные внутрь помещения, покрывают огнезащитными составами для повышения их огнестойкости.

Исходя из условий противопожарной безопасности, в качестве утеплителя рекомендуется использовать жесткие минераловатные плиты плотностью 100−150 кг/м3 на фенольном связующем.

По форме поперечного сечения клеефанерные плиты могут быть следующих видов:

  • 1) коробчатые;
  • 2) ребристые, обшивкой вверх;
  • 3) ребристые, обшивкой вниз.

Коробчатые клеефанерные плиты применяют в утепленных покрытиях с рулонной кровлей и гладким потолком Они имеют двухсторонние обшивки, образующие вместе с ребрами ряд полостей, в которые по слою пароизоляции укладывают утеплитель. Полости всех плит настила соединяются отверстиями в единую вентилируемую прослойку (осушающий продух), сообщающуюся с наружным воздухом, что обеспечивает осушающий режим работы настила.

Ребристые клеефанерные плиты обшивкой вверх применяют в холодных и утепленных покрытиях с рулонной кровлей без гладкого потолка. Они имеют только одну верхнюю обшивку, поверх которой укладывают утеплитель и рулонный ковер.

Ребристые клеефанерные плиты обшивкой вниз применяют в утепленных и холодных покрытиях с кровлей из волнистых асбестоцементных листов, ондулина, алюминиевых листов, металлочерепицы. Они имеют только одну нижнюю обшивку. Листы кровли укладываются по продольным ребрам, а утеплитель размещают по обшивке между ребрами.

Наиболее распространенными являются коробчатые клеефанерные плиты и панели.

Клеефанерные плиты опираются на основные несущие конструкции. Ширина опорных площадок в соответствии с пунктом 6.7 СНиП II-25−80 должна быть не менее 5,5 см. Плиты прикрепляют к несущим конструкциям шурупами или гвоздями.

Для обеспечения совместных прогибов всего настила плиты соединяют между собой по кромкам. Соединять можно глухими нагелями, которые ставят через 1,5−2 м или гвоздями с шагом 50 см, через соединительные бруски, прибиваемые к крайним ребрам панелей.

Соединения деревянных элементов.

.

Рисунок 4.6 — Клеефанерные плиты покрытия:

а — конструкция; б — расчетные схемы; 1 — коробчатая; 2 — ребристая обшивкой вверх; 3 — ребристая обшивкой вниз; 4 — клей; 5 — утеплитель; 6 — пароизоляция; 7 — осушающий продух; 8— фанерная обшивка; 9 — продольные ребра; 10 — поперечные ребра.

Расчет клеефанерных плит

Расчет производят по прочности и прогибам при изгибе по схеме однопролетной свободно опертой балки на нормальные составляющие нагрузок от собственного веса gx и снега px. От суммы этих двух нагрузок определяют расчетный изгибающий момент, поперечные силы и максимальные прогибы. Верхнюю обшивку дополнительно проверяют на местный изгиб от сосредоточенной силы Р=1· 1,2=1,2 кН, условно распределенной на ширине 1 м, как жестко заделанную в местах присоединения к ребрам.

Фанерные обшивки и продольные ребра работают совместно благодаря жесткости клеевых соединений.

Сечение коробчатой плиты считают условно двутавровым, а ребристых — тавровым полкой вверх или вниз.

При этом ширина стенки равна сумме ширин ребер (bст=Уbреб), а расчетная ширина обшивок с учетом неравномерности распределения напряжений по ширине плиты принимается равной:

bрасч=0,9b, при l?6a, bрасч=0,9, при l<6a,.

bрасч=0,9b, при l?6a, bрасч=0,9, при l<6a,.

где.

b — полная ширина сечения плиты;

l — пролет плиты;

a — расстояние между продольными ребрами по осям.

Геометрические характеристики сечений плиты определяют с учетом различных величин модулей упругости древесины Eд и фанеры Eф. В результате определяют приведенные геометрические характеристики сечения. Приведение выполняется к тому материалу, в котором определяется напряжение.

Так, площадь сечения, приведенного к фанере.

Соединения деревянных элементов.

Приведенный момент инерции.

Соединения деревянных элементов.

Приведенный к фанере момент сопротивления.

Соединения деревянных элементов.

.

где Zф — расстояние от нижней грани фанерной обшивки до центра тяжести расчетного сечения. Для коробчатых плит с одинаковыми верхней и нижней обшивками:

Соединения деревянных элементов.

.

Соединения деревянных элементов.

В общем случае .

Сечения клеефанерных плит подбирают методом попыток, при котором предварительно задаются сечениями, а затем производят все необходимые расчеты и выполняют проверки по прочности и прогибам.

При расчете клеефанерной плиты производят следующие проверки:

1) растянутой обшивки на прочность:

у=,.

у=,.

где М — расчетный изгибающий момент;

Wпр. ф. — момент сопротивления, приведенный к фанере;

Rф.р — расчетное сопротивление фанеры растяжению;

mф=0,6 для фанеры марки ФСФ (0,8 — для бакелизированной фанеры) — коэффициент, учитывающий ослабление сечения стыком «на ус».

2) сжатой обшивки на устойчивость:

Соединения деревянных элементов.

.

где цф — коэффициент продольного изгиба.

при а/д?50,.

Соединения деревянных элементов.
Соединения деревянных элементов.

при а/д<50,.

где а — расстояние между ребрами в свету,.

д — толщина фанеры.

3) верхней обшивки на местный изгиб от расчетной сосредоточенной силы Р=1,2 кН:

Соединения деревянных элементов.

.

Соединения деревянных элементов.

где .

mн=1,2 — коэффициент условия работы для конструкций, рассчитываемых с учетом воздействия кратковременной монтажной нагрузки.

4) на скалывание по клеевому шву (в местах приклейки ребер к обшивкам):

Соединения деревянных элементов.

где.

bсум — суммарная ширина ребер каркаса;

Rфск — расчетное сопротивление фанеры скалыванию вдоль волокон наружных слоев.

5) на скалывание ребер каркаса плит:

Соединения деревянных элементов.

где.

bсум — суммарная ширина ребер каркаса;

Rск — расчетное сопротивление древесины скалыванию вдоль волокон.

5) по прогибам:

Соединения деревянных элементов.

.

Клеефанерные панели стен рассчитывают на изгиб от ветровой нагрузки.

Плиты с деревянным каркасом и плоскими асбестоцементными обшивками имеют такую же конструкцию и размеры, что и клеефанерные плиты. Их применяют в холодных и утепленных покрытиях и помещениях с асбестоцементной и рулонной кровлей, потолок которых должен быть несгораемым.

Обшивки соединяются с каркасом шурупами. При проектировании таких плит возможны два расчетно-конструктивных варианта:

  • 1. Шурупы ставятся в отверстия большего диаметра (на 2 мм), обшивки в этом случае в работе плиты на изгиб не участвуют, несущими элементами являются только продольные ребра.
  • 2. Длина листов обшивки равна длине плиты, диаметр отверстия в обшивке равен диаметру шурупа. В этом случае обшивка в работе плиты на изгиб участвуют, геометрические характеристики поперечного сечения находятся по методу приведенного сечения, конструкция рассчитывается как составная на податливых связях (об этом будет говориться позже).
Плиты покрытия с деревянным каркасом и плоскими асбестоцементными обшивками [6].

Рисунок 4.7 — Плиты покрытия с деревянным каркасом и плоскими асбестоцементными обшивками [6].

Клеефанерные плиты покрытия [6].

Рисунок 4.8 — Клеефанерные плиты покрытия [6].

Показать весь текст
Заполнить форму текущей работой