Помощь в написании студенческих работ
Антистрессовый сервис

Механические и волновые процессы

РефератПомощь в написанииУзнать стоимостьмоей работы

Ухо человека имеет сложное устройство. Звуковые волны попадают в ухо, которое направляет их к окончаниям чувствительных нервов. Ухо млекопитающих состоит из трех основных частей: наружного уха, среднего уха, внутреннего уха. Наружное и среднее уши наполнены воздухом. Их основным назначением, по-видимому, является проведение звука во внутреннее ухо. Аппарат слуха содержит звукопроводящую… Читать ещё >

Механические и волновые процессы (реферат, курсовая, диплом, контрольная)

Механические и волновые процессы. Акустика

  • Содержание
  • 1. Механические и волновые процессы. Акустика
  • 1.1 Акустика. Природа звука. Физические характеристики звука
  • 1.2 Характеристики слухового ощущения и их связь с физическими характеристиками звука
  • 1.3 Уровни интенсивности и уровни громкости звука. Единицы их измерения. Закон Вебера-Фехнера
  • 1.4 Физика слуха. Понятие о звукопроводящей и звуковоспринимающей системах аппарата слуха человека
  • 1.5 Поглощение и отражение звуковых волн. Акустический импеданс. Реверберация
  • 1.6 Физические основы звуковых методов исследования в клинике
  • Список использованных источников
  • звук слух человек реверберация

1. Механические и волновые процессы. Акустика

1.1 Акустика. Природа звука. Физические характеристики звука. Тоны и шумы

Акустика — раздел физики, изучающий звуковые явления. Акустика подразделяется на общую, физиологическую, архитектурную, музыкальную и другие.

Общая акустика изучает преимущественно явления, касающиеся генерации, распространения (отражение, преломление, поглощение и т. д.) и использования звуковых волн для тех или иных целей. Физиологическая акустика изучает физические основы устройства органов речи и слуха, систему звуковых измерений (связь между характеристиками слухового ощущения и звуковой волны) и т. д. Прочие разделы акустики касаются использования звука в различных прикладных областях.

Звуковыми колебаниями или просто звуком называют колебания частиц в упругих средах, распространяющиеся в форме продольных волн, частота которых лежит в пределах, воспринимаемых человеческим ухом, т. е. в среднем от 16 до 20 000 Гц.

В акустике рассматриваются и пограничные со звуком области: ниже 16 Гц — инфразвук и выше 20 000 Гц — ультразвук.

Источником звука является тело любой природы, находящееся в колебательном движении обычно в результате каких-либо механических воздействий, т. е. для возбуждения звука всегда требуется энергия. При колебаниях тело образует в окружающей среде (например, в воздухе) упругую продольную волну, которая достигая уха, вызывает слуховое ощущение.

Звук распространяется в любых упругих средах. Скорость его распространения не зависит от частоты колебаний, она зависит от упругих свойств и плотности среды, а также от температуры. Скорость звука в воздухе (00 С) составляет 331,5 м/сек. При повышении температуры на 10 С она увеличивается примерно на 0,5 м/сек. В твердых и жидких средах скорость звука значительно выше, в воде, например, около 1500 м/сек. Эта скорость звука может быть принята как средняя и для мягких тканей тела человека.

Физические характеристики звука. Тоны и шумы.

Звуковая волна описывается уравнением механической волны

где р и р0— звуковое давление в конкретной точке пространства и максимальное звуковое давление соответственно; - круговая частота, t — время, xкоордината точки среды (одномерный случай), v — скорость звуковой волны.

Таким образом, физическими характеристиками звука являются: звуковое давление, интенсивность, частота, период, скорость звуковой волны и т. п. Эти характеристики могут быть измерены физическими приборами.

Дадим определения некоторым физическим характеристикам звука.

Интенсивностью, или силой звука, называют плотность потока энергии звуковой волны; единицы измерения: Вт/м2.

Звуковая волна оказывает на тело, помещенное на пути ее распространения, некоторое давление, называемое давлением звука.

Звуковым, или акустическим, давлением p называют добавочное давление (избыточное над средним давлением окружающей среды), образующееся в участках сгущения частиц в звуковой волне. Оно измеряется в Н/м2.

Для плоской гармонической волны звуковое давление p связано с интенсивностью звука (I) соотношением или

(2)

где p0 — амплитудное, а pэф — эффективное (среднеквадратичное, которое обычно используется на практике) значения акустического давления.

Произведение скорости звука c в данной среде на плотность среды называется удельным акустическим сопротивлением среды (волновым сопротивлением среды).

Удельный акустический импеданс Z: , где p — звуковое давление, V — колебательная скорость частицы среды.

Удельный акустический импеданс аналогичен электрическому импедансу, где Uнапряжение, Iсила тока.

Интенсивность звука:, (3)

интенсивность плоской волны:, (4)

где V — средняя скорость смещения частиц в волне.

Сравнение формул 3 и 4 дает нам зависимость скорости смещения частиц в среде от давления .

Величину (5)

называют акустическим импедансом.

Акустический импеданс является основной характеристикой акустических свойств среды, определяющей условия отражения и преломления звука на границе сред. Для воздуха (при нормальных условиях) Z = 430 кг/м2сек, для воды примерно 14 5104 кг/м2сек, для железа 4 107 кг/м2сек .

Звуки разделяют на тоны и шумы.

Тоном называется звук, который представляет колебание с постоянной или закономерно изменяющейся по времени частотой. В зависимости от формы колебания частиц среды тоны разделяются на простые (гармонические) и сложные. Сложный тон может быть разложен на простые, получающийся набор частот с амплитудами называется акустическим спектром (рис. 1.). Спектр сложного тона линейчатый.

Рис. 1. Спектр сложного тона. 0 — основной тон, 20, 30 и т. д. — обертоны.

Простой тон может быть получен с помощью камертона или звукового генератора. К сложным относятся звуки музыкальных инструментов, гласные звуки речи человека и др.

Звуковой тон характеризуется частотой (или периодом), амплитудой и формой колебания или его гармоническим спектром, а также величинами, относящимися к звуковой волне: интенсивностью, или силой звука, и звуковым давлением.

Шумом называют звук, отличающийся сложной, неповторяющейся временной зависимостью (рис. 2.). К шуму относятся звуки от вибрации машин, аплодисменты, шум пламени горелки, шорох, скрип, согласные звуки речи и т. п. Шум можно рассматривать как сочетание беспорядочно меняющихся сложных тонов. Спектр шума — сплошной.

Шумом называют самые различные звуки, представляющие сочетание множества различных тонов, частота, форма, интенсивность и продолжительность которых беспорядочно меняются.

Рис. 2. Спектр шума.

Шум является вредным явлением. Длительное действие шума на орган слуха вызывает ослабление чувствительности уха, может привести к частичной или полной потере слуха. Действуя на нервную систему, шум вызывает повышенную утомляемость, снижение работоспособности, различные нервные заболевания.

Вредность шума зависит от его громкости и спектрального состава. Нормально допустимым уровнем шума считается 40 — 50 дБ.

Для объективного измерения громкости шума применяются приборы, называемые шумомерами. Шумомер содержит микрофон, который преобразует звуковые колебания в электрические. Эти колебания затем усиливаются и средняя мощность их измеряется при помощи микроамперметра со шкалой, градуированной в децибелах громкости.

1.2 Характеристики слухового ощущения и их связь с физическими характеристиками звука

В слуховом ощущении различают высоту, громкость и тембр звука. Эти характеристики слухового ощущения связаны с частотой, интенсивностью и гармоническим спектром — объективными характеристиками звуковой волны. Задачей системы звуковых измерений является установить эту связь и таким образом дать возможность при исследовании слуха у различных людей единообразно сопоставлять субъективную оценку слухового ощущения с данными объективных измерений.

Высота звука — субъективная характеристика, определяемая частотой его основного тона: чем больше частота, тем выше звук.

В значительно меньшей степени высота зависит от интенсивности волны: на одной и той же частоте более сильный звук воспринимается более низким.

Тембр звука почти исключительно определяется спектральным составом. Например, ухо различает одну и ту же ноту, воспроизведенную на разных музыкальных инструментах. Одинаковые по основным частотам звуки речи у различных людей также отличаются по тембру. Итак, тембр — это качественная характеристика слухового ощущения, в основном обусловленная гармоническим спектром звука.

Громкость звука Е — это уровень слухового ощущения над его порогом. Она зависит, прежде всего, от интенсивности I звука. Несмотря на субъективность, громкость может быть оценена количественно путем сравнения слухового ощущения от двух источников.

1.3 Уровни интенсивности и уровни громкости звука. Единицы измерения. Закон Вебера-Фехнера

Для того чтобы звуковая волна создала ощущение звука, необходимо, чтобы сила звука превышала некоторую минимальную величину, называемую порогом слышимости. Звук, сила которого лежит ниже порога слышимости, ухом не воспринимается: он слишком слаб для этого. Порог слышимости различен для различных частот (Рис. 3). Наиболее чувствительно человеческое ухо к колебаниям с частотами в области 1000 — 3000 Гц; для этой области порог слышимости достигает величины порядка I0 = 10−12 вт/м2. К более низким и к более высоким частотам ухо значительно менее чувствительно.

Колебания очень большой силы, порядка нескольких десятков Вт/м2, перестают восприниматься как звуковые: они вызывают в ухе осязательное чувство давления, переходящее дальше в болевое ощущение. Максимальная величина силы звука, при превышении которой возникает упомянутое осязательное (болевое) ощущение, называется порогом осязания или порогом болевого ощущения (Рис. 3). На частоте 1 кГц она равна Im = 10 вт/м2.

Порог болевого ощущения различен для различных частот. Между порогом слышимости и болевым порогом лежит область слышимости, изображенная на рисунке 3.

Отношение интенсивностей звука для этих порогов равно 1013. Если какая-либо величина изменяется в очень широком интервале значений, то удобно использовать логарифмическую шкалу и сравнить не сами величины, а их логарифмы. Поэтому и создали шкалу уровней интенсивности звука. Значение I0 принимают за начальный уровень шкалы, любую другую интенсивность I выражают через десятичный логарифм ее отношения к I0 :

LБ =. (6)

Логарифм отношения двух интенсивностей измеряется в белах (Б).

Бел (Б) — единица шкалы уровней интенсивности звука, соответствующая изменению уровня интенсивности в 10 раз. Наряду с белами широко применяются децибелы (дБ), в этом случае формулу (6) следует записать так:

L =. (7)

В основе создания шкалы уровней громкости лежит важный психофизический закон Вебера-Фехнера. Если, согласно этому закону, увеличивать раздражение в геометрической прогрессии (то есть в одинаковое число раз), то ощущение этого раздражения будет возрастать в арифметической прогрессии (то есть на одинаковую величину).

Элементарное приращение dE громкости звука прямо пропорционально отношению приращения dI интенсивности к самой интенсивности I звука:

(8)

где k — коэффициент пропорциональности, зависящий от частоты и интенсивности.

Тогда уровень громкости E данного звука определяется путем интегрирования выражения 1.18 в пределах от некоторого нулевого уровня I0 до заданного уровня I интенсивности.

. (9)

Таким образом, закон Вебера-Фехнера формулируется следующим образом:

Уровень громкости данного звука (при определенной частоте колебаний) прямо пропорционален логарифму отношения его интенсивности I к значению I0, соответствующему порогу слышимости:

. (20)

Сравнительную шкалу, равно как единицу бел и децибел, применяют также для характеристики уровней звукового давления.

Единицы измерения уровней громкости имеют такие же названия: бел и децибел, но для отличия от шкалы уровней интенсивности звука в шкале уровней громкости децибелы называют фонами (Ф).

Бел — изменение уровня громкости тона частотой 1000 Гц при изменении уровня интенсивности звука в 10 раз. Таким образом, для тона 1000 Гц численные значения в белах уровня громкости и уровня интенсивности совпадают.

Если построить кривые для различных уровней громкости, например, ступенями через каждые 10 фонов, то получится система графиков (рис. 1.5), которая дает возможность найти зависимость уровня интенсивности звука от частоты при любом уровне громкости.

В целом система кривых равной громкости отражает зависимость между частотой, уровнем интенсивности и уровнем громкости звука и дает возможность по двум известным из этих величин находить третью — неизвестную.

Исследование остроты слуха, т. е. чувствительность слухового органа к звукам разной высоты, называется аудиометрией. Обычно при исследовании находят точки кривой порога слышимости при частотах, пограничных между октавами. Октава — это интервал высот тона, в котором отношение крайних частот равно двум. Существует три основных метода аудиометрии: исследование слуха речью, камертонами и аудиометром.

График зависимости порога слышимости от звуковой частоты называется аудиограммой. Потеря слуха определяется путем сравнения аудиограммы больного с нормальной кривой. Используемый при этом аппарат — аудиометр — представляет собой звуковой генератор с независимой и тонкой регулировкой частоты и уровня интенсивности звука. Аппарат оборудован телефонами для воздушной и костной проводимости и сигнальной кнопкой, с помощью которой исследуемый отмечает наличие слухового ощущения.

Если бы коэффициент k был постоянным, то из LБ и E следовало бы, что логарифмическая шкала интенсивностей звука соответствует шкале громкостей. В этом случае громкость звука так же, как и интенсивность измерялась бы в белах или децибелах. Однако сильная зависимость k от частоты и интенсивности звука не позволяет измерение громкости свести к простому использованию формулы 16.

Условно считают, что на частоте 1 кГц шкалы громкости и интенсивности звука полностью совпадают, т. е. k = 1 и

ЕБ =или, по аналогии Еф = .

Громкость на других частотах можно измерять, сравнивая исследуемый звук со звуком частотой 1 кГц. Для этого при помощи звукового генератора создают звук частотой 1 кГц. Меняют интенсивность этого звука до тех пор, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука. Интенсивность звука частотой 1 кГц в децибелах, измеренная по прибору, будет равна громкости этого звука в фонах.

Нижняя кривая соответствует интенсивностям самых слабых слышимых звуков — порогу слышимости; для всех частот Eф = 0 Ф, для 1 кГц интенсивность звука I0 = 10-12 Вт/м2 (рис. 1.5.). Из приведенных кривых видно, что среднее человеческое ухо наиболее чувствительно к частотам 2500 — 3000 Гц. Верхняя кривая соответствует порогу болевого ощущения; для всех частот Еф 130 Ф, для 1 кГц I = 10 Вт/м2 .

Каждая промежуточная кривая отвечает одинаковой громкости, но разной интенсивности звука для разных частот. Как было отмечено, только для частоты 1 кГц громкость звука в фонах равна интенсивности звука в децибелах.

По кривой равной громкости можно найти интенсивности, которые при определенных частотах вызывают ощущение этой громкости.

Например, пусть интенсивность звука частотой 200 Гц равна 80 дБ.

Какова громкость этого звука? На рисунке находим точку с координатами: 200 Гц, 80 дБ. Она лежит на кривой, соответствующей уровню громкости 60 Ф, что и является ответом.

Энергии, соответствующие обычным звукам, весьма невелики.

Для иллюстрации этого можно привести следующий курьезный пример.

Если бы 2000 человек вели непрерывно разговор в течение 1Ѕ часов, то энергии их голосов хватило бы лишь на то, чтобы вскипятить один стакан воды.

1.4 Физика слуха. Понятие о звукопроводящей и звуковоспринимающей системах уха человека

Ухо человека имеет сложное устройство. Звуковые волны попадают в ухо, которое направляет их к окончаниям чувствительных нервов. Ухо млекопитающих состоит из трех основных частей: наружного уха, среднего уха, внутреннего уха. Наружное и среднее уши наполнены воздухом. Их основным назначением, по-видимому, является проведение звука во внутреннее ухо. Аппарат слуха содержит звукопроводящую и звуковоспринимающую системы (см. рис. 6.). Первая состоит из ушной раковины, наружного слухового прохода, оканчивающегося барабанной перепонкой, с которой связаны три сочлененных слуховых косточки: молоточек, наковальня и стремечко, расположенные в полости, называемой средним ухом. Эта полость граничит с полостью внутреннего уха, с которой сообщается двумя отверстиями, затянутыми упругими мембранами: овальным и круглым окнами. К мембране, закрывающей овальное окно, плоским основанием прикреплено стремечко.

Ушные раковины у человека являются почти рудиментарными образованиями и играют чрезвычайно малую роль для слуха. У людей наружный слуховой проход представляет собой прямую трубку и на поперечном срезе имеет приблизительно округлые очертания. В среднем возрасте объем канала составляет приблизительно 1,04 мл, а длина — около 2,7 см. Слуховой проход заканчивается толстой фиброзной мембраной (барабанной перепонкой). По краям мембраны находятся железы, которые секретируют воскоподобное вещество, называемое ушной серой. Это вещество создает защитное покрытие. Наружный слуховой проход можно сравнить с закрытой с одного конца органной трубой. Перепонка на конце прохода натянута сравнительно туго. Здесь скорость колеблющихся частиц должна быть минимальной, а акустическое давление — максимальным. У конца трубки давление должно иметь узел, а скорость частиц— пучность

У человека барабанная перепонка имеет овальную форму площадью около 66 мм2 и толщиной около 0,1 мм. Эта перепонка передает колебания молекул воздуха в наружном ухе маленьким косточкам среднего уха. У человека движения перепонки похожи на работу поршня.

Барабанная перепонка образует внешнюю границу среднего уха. Последнее представляет собой наполненное воздухом пространство, лежащее в височной кости; это пространство называется барабанной полостью. Ее объем составляет около 1 мл, форма полости неправильная. В барабанной полости находятся три маленькие косточки, которые называются в соответствии с их формой молоточком, наковальней и стремечком. Общее назначение этих косточек, по-видимому, — обеспечение акустической связью элементов внутреннего уха с воздушной средой. Косточки действуют как механический преобразователь и увеличивают долю падающей звуковой энергии, которая возбуждает механизмы внутреннего уха. Косточки среднего уха могут сами так вращаться, что оказываются практически не чувствительными к движениям головы и проводимым костями звуковым волнам. Одной из функций косточек является усиление акустического давления колебаний, передаваемых из воздуха через барабанную перепонку, причем одновременно устраняются вибрации, идущие через череп. Кроме обеспечения акустической связи, косточки, по-видимому, имеют дополнительную функцию — уменьшение величины энергии, поступающей во внутреннее ухо при слишком больших уровнях силы звука. Полагают, что это достигается за счет изменений в напряжении мышцы, напрягающей барабанную перепонку, и мышцы стремени, удерживающей косточки на месте.

Самая дальняя от центра косточка (молоточек) прижимается к барабанной перепонке. Самая внутренняя (стремечко) прижимается к мембране, называемой овальным окном, которое отделяет наполненное воздухом среднее ухо от наполненных жидкостью каналов внутреннего уха. Овальное окно образует один конец одного из этих каналов — вестибулярной лестницы. Другой канал — барабанный канал или барабанная лестница, также оканчивается мембраной, отделяющей его от среднего уха. Эта вторая мембрана называется круглым окном.

Так как среднее ухо наполнено воздухом, то любое различие в давлении по обеим сторонам барабанной перепонки ведет к смещению мембраны. Малые различия в давлении на частотах, на которые отвечает улитка, вызывают колебания барабанной перепонки во время нормального восприятия звуков. Наоборот, большие медленные изменения давления, вызванные атмосферными изменениями или поднятием на большие высоты, могут исказить форму и положение барабанной перепонки. Чтобы избежать этого искажения необходима связь между средним ухом и окружающим воздухом, но эта связь не должна передавать изменения, совершающиеся за время меньше 0,1 сек. Таким условиям удовлетворяют маленькие узкие трубки, такая трубка связывает среднее ухо с глоткой и называется евстахиевой трубой.

При чрезмерном внешнем давлении нежные стенки евстахиевой трубы легко спадаются. Это вызывает очень неприятное ощущение, часто испытываемое человеком в самолете. Против этого существуют такие методы как глотательное движение, жевание резинки или попытка надуться, плотно закрыв нос и рот. Это открывает евстахиеву трубу и позволяет уравнивать давление вне и внутри среднего уха.

Наружное и внутреннее ухо совместно обеспечивают максимальное усиление звука, примерно до 35 дБ. С их помощью слышимость звуков, передаваемых по костям, уменьшается и человек становится менее чувствительным к собственному голосу нежели к звукам воспринимаемым извне. Кроме того, они выполняют роль автоматического регулятора громкости.

Внутреннее ухо состоит из нескольких частей, они заполнены жидкостями двух сортов и связаны с восьмой парой черепномозговых нервов. Для слуха важна только улитковая часть внутреннего уха.

Улитка имеет форму спирали; человеческое ухо имеет два с половиной витка такой спирали, длина улитки — 0,5 см, ширина — 1 см. Улитка является звуковоспринимающим аппаратом. Легче рассмотреть этот механизм, если мы развернем улитку (что можно сделать лишь мысленно, но физически неосуществимо), чтобы увидеть, что у нее внутри: две мембраны, идущие по всей длине улитки, делят ее на три узких хода, каждый из которых заполнен жидкостью (см. рис. 6, блок II). Жидкость, наполняющая канал преддверия и барабанный канал, называется перилимфой. Эти два хода соединены на верхушке спирали посредством маленького отверстия, называемого завитком. Пространство между этими двумя ходами называется улитковым ходом. Он заполнен жидкостью, называемой эндолимфой. Эндолимфа и перилимфа структурно и электрически отличаются друг от друга. Между улитковым ходом и каналом преддверия находится очень тонкая фиброзная мембрана, называемая вестибулярной. Между улитковым и барабанным каналами лежит более толстая мембрана, называемая основной мембраной. По мере того, как она подходит к вершине улитки, основная мембрана становится постепенно шире и толще, длина основной мембраны в растянутом виде около 3,5 см. Давление, оказываемое на овальное окно извне, создает давление на жидкость, находящуюся над основной мембраной, так что оно немедленно распространяется по всей длине мембраны. Волна давления распространяется по всей длине улитки всего лишь за 20 миллионных долей секунды.

На основной мембране расположен кортиев орган (см. рис. 6, блок II). Этот орган содержит нервные окончания. В состав кортиева органа входят наружные и внутренние волосковые клетки (25 000). Основания клеток фиксированы на основной мембране, концы волосков — на вестибулярной мембране. При колебаниях вестибулярной мембраны волосковые клетки перемещаются, и волоски (стрептоцилии) изгибаются. Считается, что изгиб волосков приводит к деполяризации мембраны, вызывающей изменение состояния многичисленных ионных каналов мембраны. Таким образом, давление и напряжение, передаваемые на волосковые клетки, вызывают активность в соединяющихся с ними нервных волокнах, генерируя электрические импульсы, которые распространяются по слуховому нерву. Поэтому кортиев орган является нейромеханическим преобразователем (т.е. механизмом, преобразующим одну форму энергии в другую). Микроскопия кортиева органа показывает, что волокна основной мембраны имеет разную длину в разных участках завитков улитки. Благодаря явлению резонанса высокои низкочастотные колебания вызывают раздражения разных волосковых клеток и, следовательно, воспринимаются разными участками улитки (см. рис. 6).

1.5 Поглощение и отражение звуковых волн. Реверберация

Звуковая волна, встречая на своем пути тела, приводит их в колебание, затрачивая на это часть своей энергии. Остальная энергия отражается телом. Таким образом, условно энергию волны можно разделить на поглощенную и отраженную телами, с которыми взаимодействует волна.

Отношение поглощенной энергии звука к падающей () зависит от ряда факторов, в том числе и от частоты колебаний звуковой волны. Так при = 512 Гц значения этого отношения для разных материалов равны:

Вид материала

отн. ед.

окно открытое

мрамор стена кирпичная пробка толщиной 2,5 см войлок волосяной толщиной 2,5

стекло обычной толщины

0.01

0.032

0.16

0.55

0.027

Мягкие ткани обладают большим поглощением, поэтому их применяют в тех случаях, когда желательно уменьшить отражение звука от стен.

Основной особенностью акустических процессов в замкнутых помещениях является наличие многократных отражений звука от ограничивающих поверхностей (стен, потолка). В помещении средних размеров звуковая волна претерпевает несколько сот отражений, прежде чем энергия ее уменьшится до порога слышимости. В больших помещениях звук достаточной силы может быть слышен после включения источника в течение нескольких десятков секунд за счет существования отраженных волн, движущихся во всевозможных направлениях. Совершенно очевидно, что такое постепенное замирание звука, с одной стороны, выгодно, так как звук усиливается за счет энергии отраженных волн; однако, с другой стороны, чрезмерно медленное замирание может существенно ухудшить восприятие связного звучания (речи, музыки) вследствие того, что каждая новая часть связного контекста (например, каждый новый слог речи) перекрывается еще не отзвучавшими предыдущими. Понятно, что для создания хорошей слышимости время отзвука в аудитории должно иметь некоторую оптимальную величину.

Чем больше коэффициент поглощения звука, характерный для стен какого-либо помещения, и чем меньше размеры этого помещения, тем короче время отзвука.

Время отзвука, в течение которого интенсивность звука убывает до порога слышимости, зависит не только от свойств помещения, но и от начальной силы звука. Чтобы внести определенность в расчет акустических свойств аудиторий, принято (совершенно условно) рассчитывать время, в течение которого амплитуда звуковой волны уменьшается до одной миллионной доли начального значения.

E = 10-6E0

Это время называют временем стандартной реверберации или просто реверберацией. Оптимальное значение реверберации, при котором слышимость может считаться наилучшей, многократно определялось экспериментально. В малых помещениях (объемом не свыше 350 м3) оптимальной является реверберация 1,06 сек. При дальнейшем увеличении объема оптимальная реверберация растет пропорционально .

1.6 Физические основы звуковых методов исследования в клинике

Звук является источником информации. Звуки природы, речь окружающих нас людей, шум работающих машин и др. несут много информации.

Ряд процессов, происходящих в организме (дыхание, работа сердца и т. п.) сопровождается звуковыми явлениями. Непосредственное выслушивание звуков, самостоятельно возникающих внутри организма, называется аускультацией (выслушиванием). Этот метод известен еще со II века до нашей эры. Для аускультации используют стетоскоп или фонендоскоп. Стетоскоп — прямая деревянная или пластмассовая трубка с плоским раструбом на одном конце, которым она прикладывается к уху. Пользуются также бинауральным стетоскопом, который облегчает выслушивание, так как в нем участвуют оба уха. Он состоит из воронки, прикладываемой к телу исследуемого, и двух мягких трубок, наконечники которых врач вставляет в свои наружные слуховые проходы.

Фонендоскоп состоит из полой капсулы с передающей звук мембраной (для выслушивания легких), прикладываемой к телу больного, от нее идут резиновые трубки к уху врача. В полой капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается аускультация.

При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболевания. По изменению тонов сердца и появлению шумов можно судить о состоянии сердечной деятельности. Используя аускультацию, можно установить наличие перистальтики желудка или кишечника, прослушивать сердцебиение плода.

Для одновременного выслушивания больного несколькими исследователями, с учебной целью или при консилиуме используют установки, в которых выслушиваемые звуки при помощи микрофона, прикладываемого к исследуемому месту, преобразуются в электрические колебания, которые затем усиливаются и воспроизводятся динамиком или системой телефонов.

Широко применяется также запись звуков с помощью магнитофона на магнитную пленку, что дает возможность воспроизведения их в любое время, в любом месте.

При записи электрокардиограммы часто производится одновременная запись (также с помощью микрофона, усилителя и регистрирующего устройства) звуков, сопровождающих работу сердца. Такая кривая называется фонокардиограммой (ФКГ).

Принципиально отличным от изложенных выше звуковых методов является перкуссия, или метод исследования внутренних органов посредством постукивания по поверхности тела и анализа возникающих при этом звуков. Характер этих звуков зависит от способа постукивания, а главным образом от свойств (упругость, плотность и др.) тканей организма, находящихся вблизи от места, по которому производится постукивание.

Постукивание производится с помощью специального молоточка с резиновой головкой и пластинки из упругого материала, называемой плессиметром, которую при ударе накладывают на поверхность тела. Пользуются также просто постукиванием кончиком согнутого пальца руки по фаланге пальца другой руки, наложенного на тело больного.

Принцип перкуссии заключается в следующем: при ударе молоточком по плессиметру, возникает звук, называемый перкуторным звуком, по характеру более близкий к шуму, чем к тону. Если плессиметр расположен на мягких пластичных тканях (кожа, жир, мышцы), то звук быстро затухает. Если под ним находятся достаточно упругие ткани (или какой-либо полый орган), то вследствие резонанса в перкуторном звуке усиливается тон, соответствующий собственной частоте колебаний этих тканей. Последняя в свою очередь зависит от упругости, объема и формы тканей или органа. Хороший резонанс дают, например, полости тела, наполненные воздухом, кости и эластичные перепонки. Перкуторный звук характеризуется высотой, громкостью, а также длительностью, которая зависит от степени затухания звука. Врачебной практикой выработаны для этой цели специальные термины. Опытный врач по тону перкуторных звуков точно определяет топографию внутренних органов.

Список использованных источников

1. Ремизов А. Н. Медицинская и биологическая физика: Учеб. для мед. спец. Вузов. — М.: Высшая школа, 1999. — 616 с.

2. Ливенцев Н. М. Курс физики: Учеб. для вузов. В 2-х т. — М.: Высшая школа, 1978. — т. 1. — 336 с., т. 2. — 333 с.

3. Волькенштейн М. В. Общая биофизика: Монография — М.: Наука, 1978. — 599 с.

4. Биофизика: Учебник / Тарусов Б. Н., Антонов В. Ф., Бурлакова Е. В. и др. — М.: Высшая школа, 1968. — 464 с.

5. Аккерман Ю. Биофизика: Учебник. — М.: Мир, 1964. — 684 с.

Показать весь текст
Заполнить форму текущей работой