Помощь в написании студенческих работ
Антистрессовый сервис

Одно-и многоатомные спирты

РефератПомощь в написанииУзнать стоимостьмоей работы

Окисление первичного спирта начинается с образования эфира хромовой кислоты RCH2-O-Cr (O)2-OH. На следующей стадии эфир претерпевает реакцию отщепления, в результате которой образуется двойная связь С=О. Синтез гликолей осуществляется в основном теми же способами, что одноатомных спиртов, кроме того, окислением соответствующих алкенов перманганатом калия в щелочной среде (реакция Вагнера… Читать ещё >

Одно-и многоатомные спирты (реферат, курсовая, диплом, контрольная)

Однои многоатомные спирты.

Алифатические спирты — это соединения, содержащие гидроксильную группу (-ОН), связанную с sp3-гибридизованным атомом углерода. Спирты можно разделить на три большие группы: простые спирты, стерины и углеводы. Рассмотрим простые спирты, с общей формулой CnH2n+1OH.

методы получения спиртов

Гидролиз галогеналканов в водных растворах щелочей

Реакция замещения галогена на ОН-группу протекает по механизму нуклеофильного замещения SN. В зависимости от строения субстрата замещение протекает по SN1 (мономолекулярное замещение):

или SN2 (бимолекулярное):

Атакующий агент — анионы (SH -, OН -, I -, Br -, С l -, F -, RO -, CH3COO -, ONO2-) или молекула (ROH, HOH, NH3, RNH2). По увеличению реакционной способности анионы располагаются в следующий ряд:

HS -, RS - > I - > Br - > RO - > Cl - > CH3COO - > ONO2-

Анионы более сильные нуклеофилы, чем сопряженные кислоты:

OH - > HOH, RS - > RSH, RO - > ROH, Cl - >HCl

Нуклеофил — атом (или частица), который может отдать пару электронов любому элементу, кроме водорода. Механизм бимолекулярного нуклеофильного замещения (SN2) включает образование промежуточного комплекса.

Представленная реакция является реакцией замещения, так как нуклеофил (ОН -) вытесняет уходящую группу (I-).

Механизм мономолекулярного нуклеофильного замещения (SN1) состоит из двух стадий:

Реакции замещения по механизму SN1 в тех случаях, когда образуется стабильный катион. Первичные галогеналканы реагируют по механизму SN2, а третичные — по механизму SN1.

Гидратация алкенов.

Присоединение воды к алкену протекает в присутствии кислотных катализаторов (H2SO4, H3PO4, оксид алюминия и другие носители, обработанные кислотами).

Реакция протекает по карбоний-ионному механизму:

Восстановление карбонильных соединений (кетонов и альдегидов)

Альдегиды и кетоны легко восстанавливаются водородом в присутствии катализаторов (например, Ni, Pd, Pt) в соответствующие первичные и вторичные спирты:

CH3-CH2-COH + H2 CH3-CH2-CH2-OH

пропионовый альдегид пропанол-1

циклогексанон циклогексанол Для восстановления карбонильной группы используются комплексные гидриды металлов — борогидрид натрия NaBH4 (растворитель — вода, этанол) или алюмогидрид лития LiAlH4 (растворитель — абсолютный эфир):

CH3COCH3 + LiAlH4 (CH3)2-CHOH

CH3-CHO + NaBH4 CH3-CH2-OH

Сложные эфиры также восстанавливаются алюмогидридом лития, причем оба фрагмента эфира превращаются в спирты:

Синтезы спиртов с использованием реактивов Гриньяра.

RMgHal + H2C=O (формальдегид) RCH2O -Mg+Hal + H2O R-CH2-OH

RMgHal + R’HC=O (альдегид) R (R')CHO -Mg+Hal + H2O R (R')CH-OH

RMgHal + (R')2C=O (кетон) R (R')2CO -Mg+Hal + H2O R (R')2C-OH

По механизму это реакция нуклеофильного присоединения к карбонильной группе.

Промышленные методы получения спиртов.

Окисление алканов (синтез спиртов С1020).

3 RCH2-OH + B (OH)3 B (OHC2R)3 + 3 H2O

Гидратация алкенов.

R-CH=CH2 + H2O R-CH (OH)-CH3

CH2=CH2 + H2O CH3CH2OH

из пропилена и н-бутилена — изопропиловый и н-бутиловый спирты:

CH3-CH=CH2 + H2O CH3-CH (OH)-CH3

CH3-CH2-CH=CH2 + H2O CH3-CH2-CH (OH)-CH3

а из изобутилена — трет-бутиловый спирт:

(CH3)2C=CH2 + H2O (CH3)3C-OH

Электрофильный механизм гидратации определяет уже отмеченное выше направление присоединения (правило марковникова), а также изменение реакционной способности алкенов в ряду, определяемом сравнительной стабильностью образующихся карбокатионов:

(CH3)2CH=CH2 >> CH3-CH2-CH=CH2 > CH3-CH=CH2 >> CH2=CH2

Синтез спиртов по методу Фишера-Тропша.

СО + 2Н2 СН3ОН

Процесс оксосинтеза.

CH2=CH2 + CO + H2 CH3-CH2-CHO

Химические свойства спиртов Обусловлены способностью гидроксильной группы образовывать межмолекулярные водородные связи.

Кислотные и основные свойства спиртов.

CH3-OH + HNO3 CH3-ONO2 + H2O

CH3CH2OH + H2SO4 CH3CH2OSO3H + H2O

CH3CH2OH + (CH3CO)2O CH3COOC2H5 + CH3COOH

Это — реакции замещения водорода на кислотный остаток.

Замещение гидроксильной группы на галоген.

CH3CH2OH + HBr CH3CH2Br + H2O

Реакция протекает по механизму нуклеофильного замещения.

CH3CH2-OH + SOCl2 CH3CH2-Cl + SO2+ HCl

3CH3CH2-OH + PCl3 3CH3CH2-Cl + H3PO4

Ниже приводится механизм взаимодействия спирта с тионилхлоридом:

Этот механизм обозначается символом Sni (замещение нуклеофильное внутримолекулярное).

Реакции отщепления

CH3CH2OH CH2=CH2

В качестве катализаторов используют минеральные кислоты (серная, фосфорная), кислые соли (KHSO4), ангидриды кислот (Р2О5), оксид алюминия и т. д.

R-OH + R'-OH ROR (ROR', R’OR') + H2O

Порядок отщепления воды в большинстве случаев определяется

правилом зайцева: при отщеплении воды наиболее легко отщепляет водород от соседнего наименее гидрированного атома углерода.

Реакция отщепления воды от спиртов протекает через стадию образования карбкатиона:

В зависимости от строения спирта образуются первичные, вторичные и третичные карбкатионы:

По увеличению стабильности катионы располагаются в следующий ряд: CH3CH2+ < CH3CH+CH3 < (CH3)3C+

Любое влияние, делокализующее положительный заряд карбкатиона, ведет к его стабилизации. Мы имеем дело в данном ряду с индукционной стабилизацией:

Образующиеся катионы в зависимости от их строения способны к перегруппировкам:

3-Метил-2-бутанол — в 2-метил-2-бутильный катион, склонный к перегруппировке в более стабильный:

Образование последнего 2-метил-2-бутильного катиона связано с гидридным перемещением (Н-) из положения 3 в положение 2.

В перегруппировке может участвовать и алкильная группа:

Основное различие между тремя типами реакционных интермедиатов (карбкатионы, карбанионы и свободные радикалы) состоит в том, что карбкатионы имеют тенденцию изомеризоваться в более устойчивые частицы.

Окисление. Первичные и вторичные спирты могут быть окислены соответственно до альдегидов и кетонов. Третичные спирты устойчивы к окислению в мягких условиях.

Первичные спирты окисляются до альдегидов под действием окислителей, содержащих Cr (VI). Это обычно хромовая кислота H2CrO4:

R-CH2-OH + H2CrO4 R-CHO + H2CrO3 (неустойчива) + H20

Окисление первичного спирта начинается с образования эфира хромовой кислоты RCH2-O-Cr (O)2-OH. На следующей стадии эфир претерпевает реакцию отщепления, в результате которой образуется двойная связь С=О.

Альдегиды можно также получить окислением первичных спиртов реагентом Саретта (комплекс CrO3 с пиридином).

В относительно мягких условиях происходит окисление спирта разбавленным раствором оксида хрома (VI) в разбавленной серной кислоте (окисление по Джонсу).

Вторичные спирты легко окисляются до кетонов под действием K2Cr2O7+H2SO4+H20, CrO3+CH3COOH+H2O и KMnO4 в кислой среде:

(R)2CH-OH + [O] R-CO-R + H2O

Механизм окисления вторичных спиртов подобен окислению первичных спиртов в альдегиды, поэтому для получения кетонов пригодны методы, описанные выше.

Дегидрирование спиртов. Этим способом получают многие альдегиды и кетоны:

2R-CH2-OH R-COH + H2

2-CH-OH ®2-CO + H2

В качестве катализатора используются металлическая медь и серебро. В промышленности этот процесс реализован для получения формальдегида из метанола.

Многоатомные спирты

Обычно названия двухатомных спиртов производятся от названия двухатомного радикала с прибавлением слова гликоль, например этиленгликоль, пропиленгликоль. По Женевской номенклатуре пользуются окончаниемол, но указывают число гидроксильных групп — диол, -триол, -тетрол и т. д.

В двухатомных спиртах гидроксилы могут быть соединены с первичными, вторичными и третичными атомами углерода, поэтому различают гликоли двупервичные, первично-вторичные и т. д.

Синтез гликолей осуществляется в основном теми же способами, что одноатомных спиртов, кроме того, окислением соответствующих алкенов перманганатом калия в щелочной среде (реакция Вагнера)

R-CH=CH2 + [O] R-CH (OH)CH2-OH

Для окисления используют разбавленные водные растворы перманганата калия.

Практически наиболее важным промышленным методом получения гликолей является гидратация соответствующихоксидов:

Из этиленоксида получают три важных класса соединений: целлозольвы, карбитолы и карбоваксы.

Целлозольвы (соединения типа ROCH2CH2OH) образуются в результате реакции алкоголята и этиленоксида. Название «целлозольв» относится к 2-этоксиэтанолу. Бутилцеллозольв — хороший растворитель; он используется в гидравлических тормозных жидкостях и добавляется к авиационному топливу в качестве антифриза:

CH3CH2CH2CH2ONa + (CH2)2O + H2O CH3CH2CH2CH2-O-CH2CH2OH

Карбитолы, являющиеся моноалкиловыми эфирами диэтиленгликоля, применяются в качестве растворителей, а также при изготовлении лаков. Их получают реакцией целлозольва с эквивалентным количеством этиленоксида.

Этиленгликоль и пропиленгликоль широко используют в производстве антифризов:

C3H5(OCOR)3 + 3 NaOH HOCH2-CHOH-CH2OH + 3 RCOONa

Синтетический глицерин получают исходя из пропилена:

CH3-CH=CH2 + Cl2 Cl-CH2-CH=CH2 OHCH2-CH=CH2

OHCH2-CH (Cl)-CH2OH OHCH2-CH (OH)-CH2OH;

CH3-CH=CH2 CH2=CH-COH + H2O2 OH-CH2-CH (OH)-COH

OHCH2-CH (OH)-CH2OH.

Показать весь текст
Заполнить форму текущей работой