Помощь в написании студенческих работ
Антистрессовый сервис

Адаптация к физическим нагрузкам и резервные возможности организма

ДипломнаяПомощь в написанииУзнать стоимостьмоей работы

В отличие от работы максимальной мощности, при этой, более длительной нагрузке, происходит резкое усиление кровообращения и дыхания. Это обеспечивает доставку к мышцам значительного количества кислорода в момент выполнения физической работы. Потребление кислорода достигает к концу 3−5 минут работы предельных или близких к ним величин. (5−6 литров в минуту). Минутный объём крови возрастает… Читать ещё >

Адаптация к физическим нагрузкам и резервные возможности организма (реферат, курсовая, диплом, контрольная)

Современные условия жизни предъявляют высокие требования к уровню физического развития, работоспособности и защитным силам организма человека. Физическое воспитание детей школьного возраста эффективно стимулирует положительные функциональные и морфологические изменения в формирующемся организме, активно влияет на развитие двигательных способностей (Н.А. Фомин, В. П. Филин, 1982; Н. А. Фомин, А. Г. Хрипкова, М. В. Антронова, Д. А. Фарбер, 1990; Ю. Н. Вавилов, 1991).

Физическое воспитание школьников должно обеспечить каждому ученику, участвующему в образовательном процессе, достаточный и необходимый минимум теоретической, технической и физической подготовленности, которые направлены на обеспечение базы в освоении физической культуры для жизнедеятельности, для развития личности, для формирования здоровья и здорового образа жизни. Анализ состояния физической подготовленности детей и учащейся молодежи показывает, что за последнее десятилетие количество учащихся, имеющих низкую оценку физической подготовленности, увеличилось в три раза и достигло у юношей 50,8%, у девушек — 58,8%. Лишь 7% учащейся молодежи вовлечены в занятия физической культурой и спортом, вместе с тем, недостаточная двигательная активность является причиной высокой заболеваемости детей и учащейся молодежи (Ю.В. Вавилов, Л. Лубышева, Е. Ярыш, 1998).

В Казахстане существует классификация, согласно которой все виды спорта, связанные с проявлением двигательной активности, подразделяются на пять основных групп: скоростно-силовые, циклические, со сложной координацией, спортивные игры и единоборства. В основе такого подразделения лежит общность характера деятельности, а следовательно, и общность требований к видам спорта, входящим в ту или иную группу.

Циклические виды спорта — это виды спорта с преимущественным проявлением выносливости (легкая атлетика, плавание, лыжные гонки, конькобежный спорт, все виды гребли, велосипедный спорт и другие), отличаются повторяемостью фаз движений, лежащих в основе каждого цикла, и тесной связанностью каждого цикла с последующим и предыдущим. В основе циклических упражнений лежит ритмический двигательный рефлекс, проявляющийся автоматически. Цикличное повторение движений для перемещения собственного тела в пространстве — суть циклических видов спорта. Таким образом, общими признаками циклических упражнений являются:

1. Многократность повторения одного и того же цикла, состоящего из нескольких фаз;

2, Все фазы движения одного цикла последовательно повторяются в другом цикле;

3. Последняя фаза одного цикла является началом первой фазы движения последующего цикла;

Во время занятий циклическими видами спорта расходуется большое количество энергии, а сама работа выполняется, с высокой интенсивностью.

Занятия циклическими видами спорта оказывают весьма разностороннее влияние на организм человека. Способствуют равномерному развитию мышц, тренируют и укрепляют сердечно-сосудистую, дыхательную и нервную системы, опорно-двигательный аппарат, повышают обмен веществ. Также легкоатлетические упражнения развивают силу, быстроту, выносливость, улучшают подвижность в суставах, способствуют закаливанию организма. Основой легкой атлетики являются естественные движения человека. Популярность и массовость легкой атлетики объясняются общедоступностью и большим разнообразием легкоатлетических упражнений, простотой техники выполнения, возможностью варьировать нагрузку и проводить занятия в любое время года не только на спортивных площадках, но и в естественных условиях. Оздоровительное значение занятий легкой атлетикой усиливается тем, что они большей частью проводятся на открытом воздухе.

Научная новизна. На примере легкой атлетики выявить влияние занятий циклическими видами спорта на адаптацию организма к нагрузкам.

Практическая значимость. Использование полученных данных в создании программ для оздоровления занимающихся и повышения функциональных возможностей при подготовке спортсменов.

Гипотеза. Занятия легкой атлетикой благоприятно влияют на адаптацию организма к физическим нагрузкам и увеличивают резервные возможности человека.

Объект исследования изменения, происходящие в организме под влиянием занятиями циклическими видами спорта.

Цель работы: Раскрыть изменения, происходящие в организме человека под влиянием занятий циклическими видами спорта. При использовании различных по величине нагрузок.

Задачи исследования

1. Изучение научной литературы по проблеме исследования

2. Изучить влияние двигательной активности на органы и системы организма.

3. Изменения работоспособности организма под воздействием систематических тренировок.

1. Обзор литературы по теме исследования

1.1 Особенности физического развития детей старшего школьного возраста и влияние занятий физическими упражнениями на организм занимающихся

Организм подростков имеет свои анатомические, физиологические и психологические особенности. Их необходимо знать и учитывать в процессе занятий физическими упражнениями.

Старший школьный возраст характеризуется продолжением процесса роста и развития, что выражается в относительно спокойном и равномерном его протекании в отдельных органах и системах. Одновременно завершается половое созревание. В этой связи четко проявляются половые и индивидуальные различия, как в строении, так и в функциях организма. В этом возрасте замедляется рост тела в длину и увеличение его размеров в ширину, а также прирост в массе. Различия между юношами и девушками в размерах и формах тела достигают максимума. Юноши перегоняют девушек в росте и массе тела. Юноши в среднем выше девушек на 10−12см. и тяжелее на 5−8 кг. Масса их мышц по отношению к массе всего тела больше на 13%, а масса подкожной жировой ткани меньше на 10%, чем у девушек. Туловище юношей немного короче, а руки и ноги длиннее, чем у девушек.

У старших школьников почти заканчивается процесс окостенения большей части скелета. Рост трубчатых костей в ширину усиливается, а в длину замедляется. Интенсивно развивается грудная клетка, особенно у юношей. Скелет способен выдерживать значительные нагрузки. Развитие костного аппарата сопровождается формированием мышц, сухожилий, связок. Мышцы развиваются равномерно и быстро, в связи с чем увеличивается мышечная масса и растет сила. В этом возрасте отмечается асимметрия в увеличении силы мышц правой и левой половины тела. Это предполагает целенаправленное воздействие (с большим уклоном на левую сторону) с целью симметричного развития мышц правой и левой сторон туловища. В этом возрасте появляются благоприятные возможности для воспитания силы и выносливости мышц. [1]

У девушек в отличие от юношей наблюдается значительно меньший прирост мышечной массы, заметно отстает в развитии плечевой пояс, но зато интенсивно развиваются тазовый пояс и мышцы тазового дна. Грудная клетка, сердце, легкие, жизненная емкость легких, сила дыхательных мышц, максимальная легочная вентиляция и объем потребления кислорода также менее развиты, чем у юношей. В силу этого функциональные возможности органов кровообращения и дыхания у них оказываются гораздо ниже.

Сердце юношей на 10−15% больше по объему и массе, чем у девушек; пульс реже на 6−8 уд./мин., сердечные сокращения сильнее, что обусловливает больший выброс крови в сосуды и более высокое кровяное давление. Девушки дышат чаще и не так глубоко, как юноши; жизненная емкость их легких примерно на 100 см3 меньше.

В 15−17 лет у школьников заканчивается формирование познавательной сферы. Наибольшие изменения происходят в мыслительной деятельности. У детей старшего школьного возраста повышается способность понимать структуру движений, точно воспроизводить и дифференцировать отдельные (силовые, временные и пространственные) движения, осуществлять двигательные действия в целом.

Старшеклассники могут проявлять достаточно высокую волевую активность, например, настойчивость в достижении поставленной цели, способность к терпению на фоне усталости и утомления. Однако у девушек снижается смелость, что создает определенные трудности в физическом воспитании.

В старшем школьном возрасте по сравнению с предыдущими возрастными группами наблюдается снижение прироста в развитии кондиционных и координационных способностей. Тем не менее, в этом возрастном периоде сохраняются еще немалые резервы для улучшения двигательных способностей, особенно если делать это систематически и направленно (Ж.К. Холодов, С. В. Кузнецов, 2000).

Между развитием двигательных качеств и формированием двигательных навыков существует тесная связь. Освоение новых движений сопровождается совершенствованием двигательных качеств. Различные движения избирательно воздействуют на двигательный аппарат человека, поэтому отдельные мышцы и мышечные группы развиваются неравномерно.

Занятия физическими упражнениями ускоряет развитие двигательных качеств, но прирост их в различные возрастные периоды неодинаков. [2]

Систематические занятия физическими упражнениями повышают приспособительные реакции организма, обуславливают его правильное функционирование. Реакции на физические нагрузки не проходят бесследно: они сопровождаются специфическими следовыми сдвигами (трофические процессы), на базе которых происходит увеличение структурных, энергетических, следовательно, и функциональных ресурсов организма. Это является важным фактором повышения надежного функционирования физиологических систем организма, что, естественно, приобретает особенно большое значение в ходе развития возрастных изменений. Обеспечивается структурно — функциональное совершенствование кровообращения и усиление трофических функций нервной системы, создание достаточного запаса энергии, увеличение капилляризации скелетной и сердечной мускулатуры. Увеличивается функциональный резерв, приспособление к нагрузкам, ускоряется восстановление. Чем быстрее восстановление, тем больше у организма сил для выполнения последующей работы, следовательно, тем выше его функциональные возможности и работоспособность, т. е. увеличивается время работы и сокращается время врабатывания. При занятиях физическими упражнениями положительные эмоции влияют на нервно-психический тонус, что, в свою очередь, влияет на ЧСС. У подростков, занимающихся физическими упражнениями, наблюдается урежение пульса в покое, т.к. в результате тренировок идет привыкание, адаптация организма к физическим нагрузкам, соответственно и глубина дыхания в покое будет больше, а её частота реже, что говорит об увеличении ЖЕЛ. Развивается психомоторная функция (быстрота и точность движения). Как правило, занимающиеся спортом, опережают своих ровесников в физическом развитии.

Физиологические изменения в организме под влиянием физических нагрузок

Физические нагрузки могут вызывать в организме значительные изменения, в крайних случаях даже несовместимы с жизнью (то есть приводить к смерти), а могут весьма слабо влиять на протекающие в нем процессы.

Это зависит от интенсивности и длительности физических нагрузок. Чем более интенсивна и длительна нагрузка, чем, соответственно, большие изменения она вызывает в организме.

Длительность нагрузки измеряется в единицах времени (минутах, например). Интенсивность нагрузки измеряется в единицах, оценивающих работу — ваттах, джоулях, калориях и других, сугубо физиологических единицах. Понять, что такое интенсивность работы, удобно на примере: в течение одной минуты можно идти спокойным шагом или бежать. Во втором случае интенсивность нагрузки будет выше, а длительность в обоих случаях одинакова.

Интенсивность нагрузки зависит и от того, какое количество мышечной массы включается в работу. Чем больше это количество, тем интенсивнее работа.

Если нагрузка предельно интенсивна или длительна, то все структуры организма начинают работать на обеспечение такого высокого уровня жизнедеятельности. В этих условиях не остается ни одной системы, ни одного органа, которые были бы индифферентны по отношению к физической нагрузке. Одни системы увеличивают свою деятельность, обеспечивая мышечное сокращение, а другие — затормаживают, освобождая резервы организма.

Даже малоинтенсивная мышечная работа никогда не является работой только одних мышц, это деятельность всего организма.

Физиологические системы, увеличивающие свою деятельность во время мышечной работы и помогающие ее осуществлению, называют системами обеспечения мышечной деятельности. 2]

Физиологические изменения в сердечнососудистой системе. К сердечнососудистой системе относятся сердце, кровеносные сосуды и лимфатическая система.

Основной функцией сердечнососудистой системы является обеспечение тока физиологических жидкостей — крови и лимфы.

Движение крови и лимфы — обязательное условие для жизни высших организмов. Движение крови обеспечивается работой сердца (сокращением сердечной мышцы). Движение лимфы обеспечивается иными механизмами, о которых речь пойдет ниже.

Часто сердечно сосудистую систему называют системой кровообращения.

Из основной функции вытекают другие функции сердечно-сосудистой системы:

Обеспечение клеток питательными веществами и кислородом удаление из клеток продуктов жизнедеятельности, обеспечение переноса гормонов и, соответственно, участие в гормональной регуляции функций организма Участие в процессах терморегуляции (за счет расширения или сужения кровеносных сосудов кожи) и обеспечение равномерного распределения температуры тела. Обеспечение перераспределения крови между работающими и неработающими органами. Выработка и передача в кровоток клеток иммунитета и иммунных тел (эту функцию выполняет лимфатическая система — часть сердечнососудистой системы). Другие функции, описание которых достаточно сложно, поэтому не приводится.

Деятельность сердечнососудистой системы регулируется собственными регуляторными механизмами сердца и сосудов, а также нервной системой и системой желез внутренней секреции.

1.2 Биологические изменения происходящие в организме под воздействием активной двигательной деятельности

Влияние двигательной активности на органы и системы организма

Двигательная деятельность, занятия физическими упражнениями, спортом оказывают многостороннее влияние на организм, которое проявляется как на конкретном занятии и после его окончания (срочный эффект), так и в виде суммарного результата воздействий многочисленных тренировок (кумулятивный эффект).

Срочный эффект, складывается из целого ряда изменений в работе органов и систем (возрастает частота пульса, дыхания, активизируются обменные процесс), степень выраженности которых зависит от сложности, продолжительности, интенсивности мышечной деятельности. Возникшие по ходу тренировки изменения сглаживаются в ближайший период восстановления.

Кумулятивный эффект характеризуется более значительными, широко выраженными, стойкими функциональными и структурными изменениями в организме. По ним различают тренированного человека от нетренированного. [3]

Костная система

Костная система состоит из более 200 костей, соединенных с помощью суставов в подвижные сочленения, образуя скелет. Скелет служит опорой для тела, защищает внутренние органы от внешних воздействий, выполняет двигательную функцию. Вес скелета человека составляет 18% общей массы тела.

Костная ткань представляет собой сложный орган, пронизанный нервными волокнами, кровеносными и лимфатическими сосудами. В ее состав входят неорганические вещества -50%, придающие костям прочность и твердость; органические вещества — 25%, делающие кости упругими и эластичными; вода — 25%. Установлено, что ежедневно в организме обновляется от 10 до 20% минеральных веществ костной ткани.

За весь период роста человека масса костного скелета возрастает почти в 24 раза. Кости увеличиваются в длину и толщину. На обоих концах костей есть прослойка хряща, по мере окостенения которого, они становятся длиннее. Толщина костей увеличивается за счет новых слоев костной ткани, образуемых надкостницей.

Кости развиваются активнее, чем интенсивнее деятельность окружающих их мышц, поскольку питание костной ткани зависит от полноценности кровоснабжения работающих мышц. При выполнении различных двигательных действий кости подвергаются скручиванию, сдавливанию, растягиванию, в результате чего в них увеличивается поступление органических веществ. Под влиянием тренировочных занятий в костной ткани происходят структурные изменения, благодаря которым кости приобретают более высокую механическую прочность.

В местах прикрепления мышц (сухожилий) на поверхности костей имеются гребни, бугры, шероховатости. Они выражены тем больше, чем сильнее развиты мышцы. Например, под воздействием тренировочных нагрузок у штангистов изменяется форма лопатки и утолщается ключица, у бегунов происходит утолщение большой берцовой кости и т. д. Такие изменения носят адаптационный характер и протекают как благоприятные, прогрессивные, связанные с рабочей гипертрофией. Общие адаптационные изменения имеют место во всех костях скелета, а локальные — в наиболее нагружаемых его отделах (у метателей — правая рука, у прыгунов — толчковая нога и др.)

Кости соединяются с помощью суставов, главная функция которых состоит в осуществлении движений. Каждый сустав заключен в суставную сумку, имеющую два слоя, внутренний и наружный. Внутренний слой вырабатывает синовиальную жидкость, которая служит питательной средой для сустава, увлажняет и смазывает суставные поверхности. Полость сустава герметически замкнута. В наружном слое имеются связки, укрепляющие сустав. Связки отличаются механической крепостью, обладают растяжимостью. Наиболее мощные связки расположены в области тазобедренного, коленного и локтевого суставов. [4

Мышечная система

Мышечная система включает около 600 различных мышц, составляющих 40−50% массы тела у мужчин и 30−35% - у женщин. Различают мышцы: гладкие, выстилающие стенки сосудов и входящие в состав внутренних органов; сердечную мышцу (миокард; скелетные или поперечнополосатые мышцы.

Функция скелетных мышц состоит в обеспечении передвижений человека в пространстве, перемещении частей тела относительно друг друга и поддержании позы. Скелетная мышца состоит из совокупности мышечных пучков, каждый из которых заключает в себе множество мышечных клеток вытянутой формы, благодаря чему получивших название мышечных волокон. Диаметр мышечных волокон колеблется от 0,1 до 0,01 мм, а длина в отдельных случаях достигает 10−12 см. Пучок мышечных волокон окружен оболочкой из соединительной ткани, которая переходит в сухожилие и с его помощью мышца с обоих концов прикрепляется к скелету. В состав разных мышц входит неодинаковое количество волокон, оно колеблется от сотен до многих тысяч. Количество волокон в мышце устанавливается через 4−5 месяцев после рождения и затем практически не изменяется. Увеличиваются только их размеры.

Основным сократительным аппаратом мышечного волокна являются миофибриллы, которые в виде тонких нитей вытянуты от одного конца клетки к другому. В каждом волокне содержится до 1000 и более миофибрилл. В свою очередь миофибриллы состоят из пучка параллельно расположенных нитей двух типов — толстых и тонких, представляющих собой разнородные белковые соединения темного и светлого оттенков. Толстые темные нити состоят из миозина, тонкие, светлые — из актина. Чередование в поперечном направлении актиновых и миозиновых нитей придает поперечную исчерченность скелетной мышце. Сокращение мышц происходит благодаря скольжению актиновых нитей вдоль нитей миозина.

Скелетные мышцы сокращаются в ответ на нервные импульсы, идущие от нервных клеток — мотонейронов. Сами мотонейроны расположены в спинном мозгу, а их связь с мышцами осуществляется через аксоны, длинные отростки, отходящие от тел мотонейронов и достигающие мышц. Внутри мышцы аксон разветвляется, образуя концевые веточки, каждая из которых через синапс соединяется с одним мышечным волокном. Синапс (от греч. «синапсис» — соединение, связь) — обеспечивает передачу возбуждения с одной нервной клетки на другую или с нервного волокна на мышечную, железистую клетку и др. Мотонейрон регулирует работу такого количества мышечных волокон, сколько концевых веточек имеет его аксон. При возбуждении мотонейрона возбуждаются управляемые им мышечные волокна, а вся их совокупность работает как единое целое. Поэтому мотонейрон, его аксон и иннервируемые их мышечные волокна, получили название двигательной единицы. 5]

В разных мышцах человека количество двигательных единиц и их состав неодинаковы. Мышцы, способные выполнять тонко дифференцированные движения (мышцы лица, пальцев, глаза) включают от 1500 до 3000 двигательных единиц, каждая из которых отличается тонким аксоном, иннервирующим от 3−6 до 25−30 мышечных волокон. Крупные мышцы туловища, конечностей, выполняющие менее точные, но требующие большой силы движения, содержат меньшее количество двигательных единиц, но включающих более толстый аксон и от 600 до 2000 мышечных волокон.

В скелетных мышцах различают быстрые и медленные двигательные единицы, соответственно состоящие из быстрых и медленных мышечных волокон.

Быстрые (белые) мышечные волокна отличаются способностью к быстрым и сильным, но непродолжительным мышечным сокращениям, обеспечивающим выполнение кратковременной физической работы высокой мощности (прыжки, спринт, ударные движения, поднятие тяжести). В быстрых мышечных волокнах преобладают анаэробные механизмы энергообеспечения.

Медленные (красные) мышечные волокна приспособлены для работы на выносливость. Благодаря широко разветвленной сети капилляров в медленные волокна поступает большое количество кислорода крови. В них содержится много миоглобина (мышечного гемоглобина), что придает им красный цвет. Энергообеспечение работы медленных волокон осуществляется в аэробном режиме.

Соотношение быстрых и медленных двигательных единиц в мышцах человека обусловлено генетически, оно не изменяется в течение жизни. Это обстоятельство обязательно учитывается при выборе спортивной специализации. Так, у бегунов на длинные дистанции мышцы нижних конечностей на 70% состоят из медленных волокон и только на 20−30% -из быстрых. У бегунов — спринтеров, прыгунов, метателей соотношений мышечных волокон противоположное.

Работы мышц осуществляется в результате их напряжения или сокращения. Когда при возбуждении мышца не может сократиться по причине непреодолимости сопротивления, ее длина не изменяется и работа выполняется в изометрическом режиме («изос» — равный, «метр» — длина). При этом в мышечной деятельности преобладают статические усилия за счет развития напряжения. Если в ответ на раздражение мышца, напрягаясь, преодолевает сопротивления, равное тяжести хотя бы какой-либо части тела, она изменяет длину, сокращается и работает в изотонической режиме («изос» — равный, «тонус» — напряжение). Такой режим характерен для динамической формы двигательной деятельности. Но чаще всего деятельность мышц в организме осуществляется в смешанном ауксотонической режиме, при котором изменяется и длина, и напряжение мышцы.

Мышцы представляют собой систему, способную к сложной организованной деятельности и активность которой в организме находится под постоянным контролем со стороны нервной системы.

Величина сокращения мышцы меняется в зависимости от количества включающихся в работу двигательных единиц, мотонейроны которых посылают импульсы к соответствующим мышечным волокнам, активизируя их. В движения, не требующие значительных напряжений, вовлекаются далеко не все двигательные единицы, поскольку возбуждается только часть мотонейронов мышцы. Большое напряжение мышцы связано с повышением возбуждающих влияний до максимально возможного количества участвующих в работе двигательных единиц, входящих в состав этой мышцы. Таким образом, количество участвующих в работе двигательных единиц определяется ее характером и продолжительностью.

В осуществлении того или иного движения участвуют, как правило, не одна, а множество мышц, объединенных в сложные сочетания для достижения необходимого результата. При этом в ЦНС формируется координационная структура, обеспечивающая целесообразную работу каждой мышцы и их совокупности в конкретном двигательном действии. Она задает строгое чередование быстро сменяющихся во времени и по интенсивности нервных импульсов, отделяющих необходимый порядок синхронного включения в работу различных мышц. Роль мышцы определяется не только по силе и скорости сокращения, но и по месту прикрепления ее к кости, что влияет на механический эффект. В многочисленных суставах разные части одной мышцы могут обуславливать несколько различное направление движения. Требования к режиму работы мышцы могут меняться на разных этапах двигательного действия.

По ходу движения зачастую сокращение одних мышц совпадает с расслаблением других. Помимо выбора нужных мышц и моментов их включения в работу ЦНС регулирует и степень напряжения каждой мышцы, в результате чего все движения человека носят строго координированный характер.

Энергия для мышечной работы образуется в результате сложных химических превращений содержащихся в мышцах питательных веществ и кислорода в механическую энергию. Схематично процесс выработки энергии в мышце выглядит следующим образом.

Основным источником энергии для мышечного сокращения является аденозинтрифосфат (АТФ). Его запас в мышце ограничен и хватает только на 2−3 с работы. При более длительной работе происходит постоянное восстановление (ресинтез) АТФ, энергия для которого образуется за счет распада другого высокоэнергетического вещества — креатинфосфата (КрФ). Его запасы также невелики, поэтому параллельно с распадом КрФ происходит его ресинтез, а энергия для этого освобождается при расщеплении углеводов, а в некоторых случаях, жиров и белков.

Ресинтез АТФ осуществляется двояко: за счет расщепления энергосодержащих веществ без участия кислорода (анаэробные процессы) и с участием кислорода (аэробные процессы). Ресинтез АТФ анаэробным путем происходит главным образом за счет содержания в мышце КрФ и углеводов, расщепляющихся до молочной кислоты. Анаэробное энергообеспечение преобладает при работе максимальной интенсивности, продолжительностью не более 2,5−3 мин. Аэробный механизм ресинтеза АТФ осуществляется за счет окислительного распада углеводов, жиров и некоторых белков до молочной кислоты и других продуктов распада. Аэробное образование энергии характерно при работе оптимальной интенсивности продолжительностью более 3−5 мин. [5]

В процессе движения мышцы развивают определенную силу, которую можно измерить. Силой мышцы принято считать то максимальное напряжение, которое она в состоянии развивать без изменения своей длины, т. е. в изометрическом режиме. Сила мышцы зависит от количества и толщины составляющих ее волокон, в совокупности определяющих толщину мышцы в целом. Увеличение толщины (анатомического поперечника) мышцы сопровождается ростом ее силы.

Высота мышечной активности, тренировки способствуют увеличению анатомического поперечника и определяют развитие так называемой «рабочей гипертрофии» мышцы. В ее основе лежит интенсивный синтез мышечных белков, благодаря которому происходит утолщение мышечных волокон.

Выносливость мышцы определяется ее способностью выполнять интенсивную работу предельно долго. Выносливость во многом зависит от интенсивности кровоснабжения мышцы во время работы, определяющего поступление к мышечным клеткам достаточного количества кислорода и других необходимых энергетических веществ. Число действующих капилляров в усиленно работающей мышце возрастает по сравнению с покоем в 40−50 раз. Под воздействием регулярных физических нагрузок, связанных с проявлением выносливости, капиллярная сеть в мышцах может увеличиваться за счет образования новых сосудов.

Максимальное напряжение мышцы характеризует ее максимальная силу. Такое напряжение мышцы, как правило длится не более 1 с. Чем меньше величина напряжения мышцы, тем дольше оно может поддерживаться. Длительное напряжение, которое может поддерживаться непроизвольно характеризует тонус мышц.

Мышечный тонус — это постоянное напряжение мышц, осуществляемое без участия сознания и воли человека. Это нормальное состояние здоровья мышцы, благодаря чему человек может ходить, стоять, нормально двигаться. Даже во время сна мышцы находятся в состоянии некоторого напряжения.

Мышечный тонус способствует удержанию внутренних органов в их нормальном положении. От рельефа и тонуса мышц зависит внешняя форма тела и осанка.

Биологический смысл тонуса состоит в поддержании постоянно готовности мышц к активным двигательным действиям.

Сердечнососудистая система

Сердечнососудистая система (ССС) обеспечивает циркуляцию крови в организме и состоит из сердца и кровеносных сосудов. [5]

Кровь состоит на 55% из жидкой части — плазмы и на 45% из находящихся в плазме форменных элементов (клеток) — эритроцитов, лейкоцитов, тромбоцитов. Общее количество крови у взрослого человека составляет 4−5 литров или 5−7% массы тела. В состоянии покоя в организме циркулирует только 60−65% всей крови, остальная депонируется в селезенке, печени, подкожной сосудистой сети, мышцах.

Выход крови из депо и включение ее в общий кровоток обуславливается рядом причин наиболее важной из которых является недостаток кислорода, возникающий в связи с мышечной работой, кровопотерей, понижением атмосферного давления и др. Кровь транспортирует по организму питательные вещества к клеткам, а конечные продукты обмена веществ от них и выполняет регуляторную функцию, перенося гормоны, и другие физиологически активные вещества, воздействующие на различные органы и ткани. Способствует поддержанию температуры тела, охлаждая перегретые функциональной активностью мышцы и другие органы и принося тепло к тканям с недостаточной теплоотдачей. Защищает организм от отрицательных влияний на него инородных тел, ядовитых веществ. Доставляет кислород тканям и уносит от них углекислый газ, обеспечивая дыхательную функцию.

Живой организм функционирует благодаря непрекращающейся активности его клеток и тканей, поддерживаемой непрерывным кровообращением.

Движение крови в организме происходит по замкнутым кругам — большому и малому.

Большой круг кровообращения начинается из левого желудочка сердца и включает аорту, артерии, капилляры, вены. Заканчивается большой круг полыми венами, впадающими в правое предсердие. Через стенки капилляров происходит обмен веществ между кровью и тканями — артериальная кровь отдает кислород и, насыщаясь углекислым газом, превращается в венозную.

Малый круг кровообращения начинается из правого желудочка сердца, включает легочную артерию, артериолы, капилляры, вены и заканчивается легочной веной, впадающей в левое предсердие. В капиллярах венозная кровь, освобождаясь от углекислого газа и насыщаясь кислородом, превращается в артериальную.

Крупные кровеносные сосуды (аорта, легочная артерия) по мере удаления от сердца ветвятся на более мелкие и оканчиваются капиллярами, пронизывающими весь организм. Диаметр аорты равен 25−30 мм, диаметр капилляра в 10−15 раз тоньше человеческого волоса. Стенки капилляров образованы лишь одним слоем клеток, через которые из крови просачиваются питательные вещества и кислород ко всем тканям организма, а из них в кровь поступают продукты распада веществ и углекислый газ.

Основным органом кровеносной системы является сердце. Это полый орган, разделенный внутри продольной перегородкой на изолированные правую и левую половины, каждая из которых состоит из сообщающихся между собой предсердия и желудочка. Стенки сердца имеют три слоя: внутренний эндокард, средний (мышечный) — миокард, наружный — эпикард. Сердце заключено в сумку (перикард), предохраняющего его от чрезмерного растяжения. [6]

Величина сердца зависит от размеров тела, возраста, образа жизни человека. Вес сердца составляет 250−350 г. или 0,5% массы тела. У женщин оно на 10−15% меньше, чем у мужчин. Объем сердца у мужчин равен 700−800 см3, у женщин — 500−600 см3. При относительно небольшом размере сердце работает очень эффективно, перекачивая за сутки от 5000 до 8000 литров крови.

Для сердечной деятельности характерна определенная цикличность деятельности, связанная с поочередным сокращением и расслаблением миокарда предсердий и желудочков. Каждый цикл имеет три фазы: первая фаза продолжительностью 0,1 с считается началом цикла и выражается в сокращении (систола) предсердий, из которых кровь выталкивается в желудочки; вторая фаза (0,33 с) — систола желудочков, когда кровь выталкивается в аорту и легочную артерию; третья фаза (0,47 с) — предсердия и желудочки расслаблены (диастола), общая сердечная пауза. Продолжительность всего цикла составляет 0,8 с.

Ритм работы сердца составляет в среднем 70 сокращений (ударов) за минуту в покое. У спортсменов и хорошо тренированных людей ЧСС в покое снижается (брадикардия). При физической работе частота и сила сердечных сокращений (ЧСС) может возрастать до 200−220 ударов в минуту.

При каждом сердечном сокращении желудочка в покое в аорту выталкивается 60−80 мл крови. Это называется систолическим объемом крови. При мышечной деятельности этот объем может увеличиться в 2−3 раза, что в условиях возросшей ЧСС является одним из важнейших факторов усиления кровообращения.

Количество крови, выбрасываемое сердцем за 1 мин. называется минутным объемом крови. Он является важнейшим показателем производительности работы сердца. В покое у взрослых людей минутный объем крови составляет 5−6 литров. При физической работе он может достигнуть 15−30 литров и более. Это приблизительно столько, сколько вытечет воды через полностью открытый водопроводный кран за минуту.

При каждом сокращении сердца в артерии под большим давлением выбрасывается кровь. Давление крови на стенки сосудов называется кровяным давлением. Оно не везде одинаково: в аорте и крупных артериях — наибольшее, в мелких артериях и капиллярах — снижается, а в полых венах становится далее ниже атмосферного.

Только в аорте и крупных артериях происходит колебание кровяного давления на протяжении сердечного цикла: оно больше в момент систолы и меньше при диастоле. Артериальное давление (АД) в момент систолы называется систолическим или максимальным, в момент диастолы — диастолическим или минимальным. Измеряется АД в миллиметрах ртутного столба. Средние показатели максимального давления 110−140 мм. рт. ст., минимального 70−90 мм. рт. ст. Разница между величинами максимального и минимального давления называется пульсовым давлением, средние показатели которого колеблются в пределах 40−50 мм. [6]

Мышечная деятельность стимулирует рост максимального кровяного давления до 170−200 мм. рт. ст., минимально давление при этом изменяется не значительно.

В момент выталкивания крови из сердца, когда давление в аорте повышается и стенки ее растягиваются, в ней возникает пульсовая волна. От аорты эта волна распространяется по артериям. По частоте таких волн (пульсу) определяется часто сердцебиений.

Сердечная мышца непрерывно снабжается кровью через коронарные (венечные) сосуды. В сутки через миокард протекает до 300 литров крови. На 1 мм2 сердечной мышцы капилляров в два раза больше, чем на такой же площади скелетной мышцы. Перебои в снабжении сердечной мышцы кровью уменьшают выработку в ней энергии и немедленно отрицательно сказывается на работе сердца. Многочисленные, нередко дублирующие друг друга механизмы регуляции обеспечивают приспособление уровня коронарного кровотока к энергетическим потребностям сердечной мышцы в покое, при физических нагрузках, эмоциональных и психических напряжениях.

Во время интенсивной физической нагрузки усиливается деятельность сердечной мышцы, и чтобы удовлетворить ее потребности в кислороде и других необходимых веществах возрастает величина кровотока в сосудах миокарда. При этом возрастающее расширение коронарных сосудов ведет к значительному увеличению количества крови, протекающей через миокард. Систематические физические нагрузки постоянно тренируют механизмы, обеспечивающие усиленную доставку крови к сердечной мышце и тем самым повышают устойчивость сердца к действию на организм неприятных факторов. Под влиянием физической тренировки возрастают объем и масса сердца.

Таблица 1

Параметры изменения объема и массы сердца

параметры

Нетренированные

Тренированные

Объем

700−800 см3

900−1400 см3

Масса

250−330 г

400−500 г

Увеличение (гипертрофия) сердца — это результат нормальной физиологической приспособительной реакции организма на физические нагрузки.

Работа сердца регулируется нервной и гуморальной системами и реализуется при их взаимодействии. Предельно схематично это можно представить следующим образом.

Сердце усиливает и учащает свои сокращения при возбуждении симпатического нерва, замедляет и снижает силу сокращений при возбуждении блуждающего нерва. Взаимодействие этих нервов — антагонистов, динамическое равновесие процессов их возбуждения и торможения, главным образом, определяет нормальную работу сердца, регулирует тонус коронарных сосудов. В гуморальном механизме регулирования преобладает взаимовлияние таких гормонов, как адреналин, воздействующий аналогично симпатическому нерву и вазопрессин, действующий аналогично блуждающему нерву. Кроме того, в самом сердце имеются собственные механизмы нервной регуляции, автономное функционирование которых оказывает управляющее воздействие на миокард и мышцы коронарных сосудов. [7]

Деятельность ССС тесно связана с состоянием центральной нервной системы, определяющей поведение человека, его эмоции и др. Например, во время футбольного матча у болельщиков очень часто ЧСС бывает выше, чем у играющих футболистов. При этом в крови увеличивается содержание адреналина и близких к нему веществ, на которые сердечная мышца отвечает повышением частоты сокращений, возросшая энергоемкость работы увеличивает потребность миокарда в кислороде. Если сердечная мышца и коронарные сосуды недостаточно тренированы, они не могут в полной мере обеспечить кровоснабжение сердца. В этом случае могут возникнуть явления кислородного голодания миокарда — коронарная недостаточность.

Тренировка, предъявление повышенных требований к организму во время физических нагрузок — единственный путь к укрепления механизмов, регулирующих кровяное давление, работу сердца, коронарный кровоток.

Дыхательная система

Дыхательная система включает воздухоносные пути, легкие, и другие органы, а также комплексы физиологических процессов, обеспечивающих потребление кислорода и выведение углекислого газа из организма.

Процесс дыхания имеет три основных этапа:

внешнее или легочное дыхание;

перенос кровью кислорода и углекислого газа;

внутреннее или тканевое дыхание.

На этапе внешнего дыхания происходит газообмен между атмосферой и легкими. Во вдыхаемом воздухе содержится 21% кислорода, 0,03% углекислого газа, 78% азота, остальное — другие газы. В выдыхаемом воздухе кислорода становится 16%, углекислого газа 4%, количество остальных газов не изменяется. По воздухоносным путям (нос, гортань, трахея, бронхи) воздух, очищаясь от пыли и согреваясь поступает в легкие, где между альвеолами и капиллярами происходит газообмен: выделяясь из крови углекислый газ поступает в альвеолы, а те отдают в кровь кислород. В крови кислород соединяется с гемоглобином в эритроцитах и переносится ко всем клеткам и тканям организма. По ходу транспортирования, особенно по крупным сосудам, кислород полностью сохраняется в крови. В капиллярах кровь освобождается от кислорода, захватывает углекислый газ и устремляется обратно в легкие. В клетках и тканях кислород вступает в сложнейшие окислительно-восстановительные реакции, в результате которых освобождается энергия, необходимая для жизнедеятельности организма. Процесс перехода кислорода из крови в ткани и углекислого газа из тканей в кровь носит название обмена газов в тканях. [8]

Регулирование дыхания осуществляется посредством сложной системы нервно-гуморальных воздействий на дыхательный центр, расположенный в продолговатом мозгу. В его состав входят нервные клетки, регулирующие вдох и выдох, и координирующие работу дыхательных мышц. Кора головного мозга осуществляет тонкое приспособление дыхания к потребности организма. Одним из проявлений этого является способность человека произвольно управлять частотой и глубиной своего дыхания. В гуморальной регуляции дыхания основная роль принадлежит углекислому газу и кислороду. Недостаток кислорода в крови приводит преимущественно к учащению дыхания, а избыток углекислого газа вызывает в основном его углубление. При физической работе эти два фактора действуют одновременно, вследствие чего происходит и учащение, и углубление дыхания.

В состоянии покоя объем вдоха и выдоха равен в среднем 500 мл. Это дыхательный объем. Если после нормального вдоха сделать максимальный выдох, то из легких выйдет еще около 1500 мл воздуха (резервный объем). Количество воздуха, который можно вдохнуть сверх дыхательного объема (около 1500 мл), составляет дополнительный объем вдоха. Сумма трех объемов — дыхательного, дополнительного и резервного — составляет жизненную емкость легких (ЖЕЛ). ЖЕЛ — это количество воздуха, которое может выдохнуть человек после максимально глубокого вдоха. В приведенном примере она составит 500 мл+1500 мл +1500 мл = 3500 мл. ЖЕЛ величина непостоянная и зависит от возраста, пола, роста, состояния здоровья, физического развития, тренированности человека. Средние показатели ЖЕЛ у нетренированных мужчин — 3500−4500 мл, у женщин — 3000−3500 мл; у тренированных мужчин — от 5000 до 7000 мл и более, у женщин — 5000 мл и более.

В состоянии покоя человек в течение минуты производит 16−20 дыхания при этом дышит не всеми легкими, а только шестой или седьмой их частью. В результате занятий физическими упражнениями, спортом частота дыхания может снизиться до 12−14 в минуту за счет увеличения их глубины.

Количество воздуха, которое человек вдыхает и выдыхает за одну минуту называется легочной вентиляцией или минутным объемом дыхания. В покое легочная вентиляция равна 5−8 л/мин. При физической работе она может достигать 150−180 л/мин с увеличением частоты дыхания до 25−35 в минуту.

Поступающий из атмосферного воздуха кислород усваивается организмом в процессе согласованного взаимодействия различных его систем. Помимо дыхательного аппарата, обеспечивающего в основном вентиляцию легких, в процессе дыхания участвует ССС, которая обеспечивает процесс кислорода кровью из легких к тканям, а также тканевые реакции, от которых во многом зависит степень использования кислорода в различных условиях жизнедеятельности.

Для окислительных процессов в состоянии покоя организму требуется 250−200 мл кислорода в минуту. При мышечной работе потребность в кислороде возрастает. Чем большее количество мышц участвует в ней, тем больше потребляется кислорода, но не беспредельно.

Для каждого человека существует свой кислородный «потолок», выше которого потребление кислорода увеличиваться не может, этот предел выражается в следующем: наибольшее количество кислорода, которое организм может поглотить и усвоить за одну минуту и усвоить за одну минуту при предельно тяжелой физической работе, называется максимальным потреблением кислорода (МПК), чем выше МПК, тем выше уровень физической работоспособности человека. У не занимающихся спортом МПК составляет в среднем — 2−3,5 литра, у спортсменов — 5−6 литров и более. [9]

МПК является показателем аэробной производительности организма, т. е. его способности обеспечивать энергией организм за счет кислорода, поглощаемого непосредственно во время тяжелой работы.

Общее количество кислорода, необходимое для окислительных процессов, обеспечивающих ту или иную мышечную работы, называется кислородным запросом. Различают суммарный или общий кислородный запрос, т. е. количество кислорода, необходимое для всей работы, и минутный кислородный запрос, т. е. кислорода, требуемое для выполнения конкретной работы в течение одной минуты. Например, в беге на 800 м минутный запрос составляет — 12−15 л, а суммарный — 25−30 л; в марафонском беге соответственно — 3−4 л и 450−500 л.

При работе большой мощности кислородный запрос может достигать 15−20 л/мин, а МПК не превышает 6−7 л. Разница между кислородным запросом и тем количеством кислорода, который потребляется во время работы называется кислородным долгом. Максимальный кислородный долг у людей, не занимающихся спортом, не превышает 4−7 л, у спортсменов он может достигать 20−22 л.

Если в ткани поступает меньше кислорода, чем необходимо для полного обеспечения его потребности, наступает кислородное голодание, или гипоксия. Напряженная мышечная работа всегда сопровождается возникновением дефицита кислорода в организме. Чтобы полнее обеспечить себя кислородам в условиях гипоксии, организм мобилизует свои мощные компенсаторные механизмы. Известно, что мышцы при напряженной работе увеличивают скорость утилизации кислорода в 100 и более раз. Под влиянием тренировочных воздействий повышается способность мышц усваивать кислород. В основе выносливости лежит функциональная устойчивость организма к недостатку кислорода.

При выполнении физических упражнений согласование дыхания с движениями происходит благодаря сложной системе приспособительных изменений в организме. Чем прочнее взаимосвязь дыхания и движений, тем легче при прочих равных условиях выполняются движения. В умениях и навыках дыхательные циклы становятся как бы компонентами освоенных двигательных действий.

Обмен веществ

Сущность обмена веществ состоит в том, что из внешней среды в организм поступают богатые потенциальной энергией вещества, где они распадаются на более простые, а освобождающаяся при этом энергия обеспечивает протекание физиологических процессов и выполнение физической работы. В различных сочетаниях с пищей в организм поступают белки, жиры, углеводы и обеспечивающие активность обменных процессов, витамины, минеральные соли, вода. Образование и расход энергии в организме принято выражать в единицах тепловой энергии — в калориях и килокалориях. Например, при окислении одного грамма белков освобождается 4,1 ккал, жиров — 9,3 ккал, углеводов — 4,1 ккал.

Соотношение количества энергии, поступающей с пищей и энергии, расходуемой организмом называется энергетическим балансом. [10]

Кроме энергетического обеспечения, поступающие в организм питательные вещества, используется для восстановления изнашиваемых и построения новых клеток и тканей, образования гормонов и ферментов (биологические катализаторы). Например, за пять лет учебы у студентов роговица глаза сменяется 250 раз, слизистая оболочка желудка — 500 раз и т. д.

Обмен веществ в организме (метаболизм) заключается в осуществлении двух взаимно противоположных, но неразрывно связанных процессов: ассимиляции и диссимиляции. Ассимиляция (анаболизм) включает так называемые пластические процессы, в результате которых происходит образование новых белковых и клеточных форм, ферментов и др. Расходуемая при этом энергия превращается в потенциальную химическую энергию сложных молекул. Совокупность процессов диссимиляции (катаболизма) связана с разрушением, расщеплением веществ, входящих в состав клеток, благодаря чему происходит освобождение потенциальной химической энергии, которая превращается в другие виды энергии.

Например, химическая энергия превращается в тепловую, в механическую, электрическую и обеспечивает работу внутренних органов, мышц, поддержание оптимальной температуры тела и т. д.

Израсходованная энергия восполняется затем путем поступления в организм новых питательных веществ. Некоторые вещества при избыточном поступлении могут откладываться в организме в виде запасов. Образующиеся в процессе обмена продукты распада удаляются из организма во внешнюю среду органами выделения.

Пищеварение является начальным этапом обмена веществ, в процессе которого происходит физическая и химическая обработка пищи, в результате чего она превращается в такие вещества, которые могут всасываться в кровь и усваиваться. Переваривание пищи в желудке продолжается 6−8 часов, а жирная пища — до 10 и более часов.

Работа органов пищеварения регулируется нервными и гуморальными механизмами.

Мышечная деятельность активизирует обменные процессы, ведет к увеличению потребности организма в питательных веществах и тем самым стимулирует работу пищеварительных органов, желудочную и кишечную секреции. Однако, физическая работа, выполняемая сразу после приема пищи, не усиливает, а тормозит пищеварительные процессы. При этом возбуждение центров регуляции пищеварения и перераспределение крови от мышц к работающим органам брюшной полости снижает эффективность работы мышц. Наполненный желудок приподнимает диафрагму, затрудняя работу органов дыхания и кровообращения. Если мышечная работа начинается через 2−2,5 часа после приема пищи, то она может даже усиливать функцию пищеварения. [11]

Обмен веществ в живом организме происходит постоянно. Однако уровень его интенсивности может быть различным (например, во время сна, при физической работе). Минимальный уровень обмена веществ называется основным обменом.

Основной обмен имеет место в состоянии полного мышечного покоя, натощак при температуре окружающей среды 20−22°. При таких условиях расход энергии взрослого человека в среднем составляет 1 ккал на 1 кг массы тела за один час. Так при весе равном 70 кг основной обмен человека в сутки составит 1680 ккал, из которых 25% связано с обеспечением работы сердца, почек, дыхательных мышц и др., а 75% - с функционированием клеток и тканей организма.

При мышечной работе расход энергии увеличивается по мере нарастания ее интенсивности, например, при ходьбе энергии расходуется на 10−12% больше, чем в покое, а при беге — на 40−50% и более.

По энерготратам трудовая деятельность людей условно подразделяется на четыре группы:

умственный труд, суточный расход энергии, который составляет 2300−3000 ккал;

механизированная работа с суточным расходом энергии 2500−3200 ккал;

частично механизированная работа с суточным расходом энергии 2600−3400 ккал;

тяжелая физическая работа с суточным расходом энергии 3500−4300 ккал и более.

У студентов в дни занятий по физическому воспитанию энерготраты увеличиваются с 2500−300 ккал до 3500−4000 ккал.

Современный человек получает с пищей в сутки 4000 ккал и более. У многих людей, особенно занимающихся умственным трудом, остается неизрасходованной 20−25% этой энергии. Избыточные калории откладываются в организме в виде запасов. Возникает так называемый «порочный круг»: при излишнем весе пропадает желание двигаться, что в свою очередь способствует еще большему увеличению веса.

Повышение двигательной активности ведет к стабилизации энергетического баланса. Для нормальной жизнедеятельности организма ежесуточный расход энергии на двигательную активность должен составлять 1200−1300 ккал.

Спортивная деятельность сопровождается значительными суточными затратами энергии до 6000−7000 ккал и более. Например, в день соревнований участник 100-киломитровой велогонки имел суточный расход энергии 10 000 ккал.

На величину расхода энергии при мышечной работе влияет состояние тренированности организма.

Нетренированный человек тратит на работу больше энергии, чем тренированный. [12]

Еcли работа несложная (например, вращение педалей велотренажера), то различие в энерготратах тренированного и нетренированного человека составят около 10%. Если же работа требует точной координации движений и усилий (передвижение на лыжах, плавание), то при одной и той же скорости движений разница в расходе энергии тренированного и нетренированного человека может достигнуть 25−30%.

Нервная система

Нервная система человека условно делится на соматическую, регулирующую деятельность органов чувств и скелетных мышц, и вегетативную, которая иннервирует внутренние органы. Кроме того, нервную систему подразделяют на центральную и периферическую.

Периферическая нервная система состоит из огромного числа нервных волокон, пронизывающих все органы и ткани человеческого тела. Около половины всех нервных волокон — чувствительные нервы (афферентные или приносящие), которые оканчиваются специальными разветвлениями — рецепторами, расположенными в большинстве клеток организма. От рецепторов (от лат. «ресептор» — воспринимающее образование) информация обо всем, что происходит в организме доставляется в центральную нервную систему. Другая половина нервных волокон — двигательные нервы, идущие от центральной нервной системы к тканям и органам (эфферентные или выносящие) и передающие «инструкции», «приказы», определяющие их деятельность в тех или иных ситуациях.

Центральную нервную систему (ЦНС) составляют головной и спинной мозг. Спинной мозг — это главный кабель, соединяющий периферическую нервную систему с головным мозгом. В своих верхних отделах спинной мозг переходит в головной.

Основным структурным элементом нервной системы является нервная клетка или нейрон. Через нейроны передается информация от одного участка нервной системы к другому, происходит обмен информацией между нервной системой и различными участками тела. Максимальная скорость нервных импульсов от нейрона к нейрону составляет 400 км/час. В нейронах происходят сложнейшие процессы обработки информации, формируются ответные реакции (рефлексы) на внешние и внутренние раздражения.

Деятельность нервной системы основана на двух взаимодействующих физиологических процессах — возбуждении и торможении.

Регулирующая функция нервной системы осуществляется на основе учета постоянно меняющихся внутреннего состояния и внешних условий функционирования организма. Воздействия из внешней среды и внутренней нервная система воспринимает через сложные физиологические образования — анализаторы (И.П. Павлов) или сенсорные системы (от лат. «сенсус» — чувства, ощущения). Структурно каждое образование включает воспринимающий компонент — рецептор и нервные клетки, передающие возникающие в нем возбуждение к соответствующим участкам мозга. Функции сенсорных систем строго специализированы: одни воспринимают и обрабатывают оптические раздражения, другие — звуковые, тактильные, вкусовые и др. Поступающая от анализаторов в ЦНС информация отражает состояние органов и тканей, а так же характер процессов, происходящих внутри и вне организма. [13]

В двигательной деятельности ЦНС играет особенно важную роль.

При выполнении движений возрастает потребность мышц в энергетических веществах, кислороде. Для удовлетворения этой потребности повышается уровень активности систем дыхания, кровообращения, обменных процессов, других органов и тканей. Кроме того, по ходу того или иного движения, состав участвующих в нем мышц меняется в зависимости от изменения скорости движения, степени развиваемого усилия, утомления и ряда других факторов. Целенаправленное выполнение движения, работу обеспечивающих его органов и систем организма координирует ЦНС.

При освоении новых движений ведущим фактором выступает также ЦНС.

У родившегося ребенка имеется небольшой двигательный багаж: сосательные движения, глотание, мигание, сгибание и разгибание конечностей. С развитием организма и совершенствованием нервной системы двигательный багаж человека увеличивается за счет овладения новыми движениями. Постепенно социальные условия жизни человека усложняют его двигательную деятельность, благодаря чему вырабатываются сугубо человеческие формы движения: бытовые, трудовые, спортивные.

Двигательные действия — это действия произвольные, которые выполняются сознательно и в волевом режиме управляются человеком. В свою очередь двигательное действие — это система отдельных движений, процессов, объединенных смысловой задачей и направленных на достижение конкретного результата.

В механизмах управления двигательными действиями выделяется три уровня: одни компоненты действия управляются при активном участии сознания, другие — автоматизировано, третьи — не осознаются вообще. Соответственно в физиологии, психологии различаются умения, навыки и безусловно-рефлекторные реакции. Умение — это действие, основу которого составляет практическое применение полученных знаний, приводящее к успеху конкретной деятельности. Навык — то же действие, доведенное путем повторения до такой степени совершенства, при которой оно выполняется правильно, быстро и экономно (легко) с высоким количественным и качественным результатом.

Современные представления об организации и осуществлении сложных двигательный действий, целостных поведенческих актов отражены в теории функциональных систем П. К. Анохина. Суть ее в том, что полезный результат является решающим фактором (смыслом) поведения животных и человека, для достижения которого в нервной системе формируется группа взаимосвязанных нейронов, так называемая функциональная система. Сколько нервных клеток будет включено в эту систему, какой уровень их активности необходим, какие взаимоотношения должны быть между ними установлены, а какие исключены — все это определяется намечаемым результатом. С возникновением цели, вошедшие в функциональную систему элементы из самостоятельных и независимых превращаются во взаимосвязанные и подчиненные единому процессу достижения результата. [14]

Деятельность функциональной системы можно условно разделить на четыре последовательных этапа:

обработка сигналов из внешней и внутренней среды об условиях предстоящего действия;

принятие решения о начале действия;

формирование программы действия;

анализ полученного результата, коррекция программы с учетом содержания обратных связей.

Универсальное значение теории функциональных систем состоит в том, что она помогает увидеть различные аспекты достижения организмом любой двигательной задачи: оптимальный момент начала движения, наиболее выгодную его структуру (сочетание мышц, степень и скорость их напряжения, порядок включения в работу и т. д.), целесообразный уровень функционирования вегетативных систем, постоянную и эффективную коррекцию по ходу выполнения и др.

1.3 Классификация мышечной деятельности

Легкая атлетика — циклический вид спорта, объединяющий упражнения в ходьбе, беге, прыжках, метаниях и составленных из этих видов многоборьях.

Древнегреческое слово «атлетика» в переводе на русский язык — борьба, упражнение. В Древней Греции атлетами называли тех, кто соревновался в силе и ловкости. В настоящее время атлетами называют физически хорошо развитых, сильных людей.

В циклических видах спорта может осуществляться любая мышечная деятельность, и в ней задействованы практически все группы мышц. Существует большое количество классификаций видов мышечной деятельности. Например, мышечную работу разделяют на статическую, при которой происходит мышечное сокращение, но не происходит движение, и динамическую, при которой происходит как сокращение мышцы, так и перемещение частей тела относительно друг друга. Статическая работа более утомительна для организма и для мышц по сравнению с динамической той же интенсивности и длительности, так как при статической работе отсутствует фаза расслабления мышц, во время которой могут пополниться запасы веществ, израсходованные на мышечное сокращение.

По числу групп мышц, включенных в работу, двигательную деятельность делят на работу локального, регионального и глобального характера. При работе локального характера в деятельности участвует менее одной трети мышечной массы (обычно мелкие мышечные группы). Это, например, работа одной рукой или кистями. При работе регионального характера в деятельность включаются одна крупная или несколько мелких мышечных групп. Это, например, работа только руками или только ногами (в легкой атлетике это могут быть различные упражнения на технику). При работе глобального характера в деятельности принимают участие более двух третьих мышц от общей мышечной массы. К работе глобального характера относятся все виды спорта циклического характера — ходьба, бег, плавание (при этих видах двигательной деятельности работают практические все мышцы). [15]

Чем больший процент мышечной массы участвует в работе, тем большие изменения такая работа вызывает в организме, и тем, соответственно, выше тренировочный эффект. Поэтому силовые упражнения на отдельные мышечные группы, разумеется, будут способствовать увеличению силы этих мышц, но практически не отразятся на деятельности других органов (сердца, легких, сосудов, органов иммунной системы).

Все нижеприведенные классификации физических упражнений подразумевают, что организм осуществляет работу глобального характера.

Эти виды спорта требуют поддержки метаболизма, специализированного питания, особенно при марафонских дистанциях, когда происходит переключение энергетических источников с углеводных (макроэргических фосфатов, гликогена, глюкозы) на жировые. Контроль гормональной системы этих видов обмена веществ имеет существенное значение, как в прогнозировании, так и в коррекции работоспособности фармакологическими препаратами. Высокий результат в этих видах спорта в первую очередь зависит от функциональных возможностей сердечно — сосудистой и дыхательной систем, устойчивости организма к гипоксимическим сдвигам, волевой способности спортсмена противостоять утомлению.

Одной из наиболее известных классификаций физических упражнений является разделение их по преобладающему источнику энергии для мышечного сокращения. В организме человека распад веществ с образованием энергии может проходить с участием кислорода (аэробно) и без участия кислорода (анаэробно).

В действительности же во время мышечной работы наблюдаются оба варианта распада веществ, однако, один из них, как правило, преобладает.

По преобладанию того или иного способа распада веществ, различают: аэробную работу, энергообеспечение которой происходит преимущественно за счет кислородного распада веществ, анаэробную работу, энергообеспечение которой происходит преимущественно за счет без кислородного распада веществ и смешанную работу, при которой сложно выделить преобладающий способ распада веществ.

Примером аэробной работы может служить любая малоинтенсивная деятельность, которая может продолжаться длительное время. В том числе и наши повседневные движения. Общепринято аэробной нагрузкой считать ту, которая осуществляется в пульсовых пределах 140−160 ударов в минуту. Тренировка в данном режиме полностью обеспечивается необходимым количеством кислорода, другими словами, спортсмен может обеспечить свой организм тем, количеством кислорода, которое необходимо для выполнения конкретного упражнения. Выполнение упражнений в зоне аэробной нагрузки не приводит накоплению кислородной задолженности и появлению молочной кислоты (лактата) в мышцах спортсмена. В циклических видах спорта примеры такой работы — длительная ходьба, длительный непрерывный бег (например, трусцой), длительная езда на велосипеде, длительная гребля, длительное передвижение на лыжах, коньках и так далее. [5]

Примером анаэробной работы может служить деятельность, которая может продолжаться только кратковременно (от 10−20 секунд до 3−5 минут). Анаэробная нагрузка — упражнения, выполняемые при пульсе 180 уд/мин. и выше. При этом каждый легкоатлет, знает, что такое забитость мышц, но не каждый понимает, чем это объясняется. А на деле это и есть анаэробная лактатная нагрузка, то есть выполнение тренировочной программы с накоплением молочной кислоты в мышцах. Подобную «забитость» мышц дает молочная кислота, скопившаяся во время выполнения упражнений анаэробного характера. А сама причина появления лактата очень проста. При работе с околомаксимальными и предельными нагрузками, организм не может быть полностью обеспечен всем ему необходимым кислородом, поэтому расщепление белков и углеводов (жиры задействованы по минимуму) происходит в безкислородном режиме, что и приводит к образованию молочной кислоты и некоторых других продуктов распада. Это, например, бег на короткие дистанции с максимальной скоростью, плавание на короткие дистанции с максимальной скоростью, езда на велосипеде или гребля на короткие дистанции с максимальной скоростью.

Промежуточные виды деятельности, которые могут продолжаться более 5, но менее 30 минут непрерывной деятельности, являются примером работы со смешанным (без кислородно-кислородным) типом энергообеспечения.

Когда произносят термин «аэробная» или «анаэробная работа», подразумевают, что так воспринимает эту работу весь организм, а не отдельные мышцы. Отдельные же мышцы при этом могут работать как в режиме кислородного энергообеспечения (неработающие или принимающие незначительное участие в деятельности, например, мышцы лица), так и в режиме без кислородного энергообеспечения (выполняющие наибольшую нагрузку при данном виде деятельности).

Еще одной из распространенных классификаций физических упражнений является разделение мышечной работы по зонам мощности

1.4 Мощность выполняемой работы и энергообеспечение мышечного сокращения

Физические упражнения выполняются с различной скоростью и величиной внешнего отягощения. Напряжённость физиологических функций (интенсивность функционирования), оцениваемая по величине сдвигов от исходного уровня, при этом меняется. Следовательно, но относительной мощности работы циклического характера (измеряется в Вт или кдж/мин) можно судить и о реальной физиологической нагрузке на организм спортсмена.

Разумеется, степень физиологической нагрузки связана не только с измеряемыми, поддающимися точному учёту показателями физической нагрузки. Она зависит и от исходного функционального состояния организма спортсмена, от уровня его тренированности и от условий среды. Например, одна и та же физическая нагрузка на уровне моря и в условиях высокогорья вызовет разные физиологические сдвиги. Иначе говоря, если мощность работы измеряется достаточно точно и хорошо дозируется, то величина вызываемых её физиологических сдвигов не поддастся точному количественному учёту. Затруднено и прогнозирование физиологической нагрузки без учёта текущего функционального состояния организма спортсмена.

Физиологическая оценка адаптивных изменений в организме спортсмена невозможна без соотнесения их с тяжестью (напряжённостью) мышечной работы. Эти показатели учитываются при классификации физических упражнений по физиологической нагрузке на отдельные системы и организм в целом, а также по относительной мощности работы, выполняемой спортсменом.

Циклические упражнения отличаются друг от друга по мощности выполняемой спортсменами работы. По классификации, разработанной В. С. Фарфелем, следует различать циклические упражнения: максимальной мощности, в которых длительность работы не превышают 20−30 секунд (спринтерский бег до 200 м, гит на велотреке до 200 м, плавание до 50 м и др.); субмаксимальной мощности, длящиеся 3−5 минут (бег на 1500 м, плавание на 400 м, гит на треке до 1000 м, бег на коньках до 3000 м, гребля до 5 минут и др.); большой мощности, возможное время выполнения которых ограничивается 30−40 минутами (бег до 10 000 м, велотрек, велогонки до 50 км, плавание 800 м — женщин, 1500 м — мужчин, спортивная ходьба до 5 км и др.), и умеренной мощности которую спортсмен может удерживать от 30−40 минут до нескольких часов (шоссейные велогонки, марафонские и сверхмарафонские пробеги, др.).

Критерий мощности, положенный в основу классификации циклических упражнений, предложенной В. С. Фарфелем (1949), является весьма относительным, на что указывает и сам автор. Действительно, мастер спорта проплывает 400метров быстрее четырёх минут, что соответствует зоне субмаксимальной мощности, новичок же проплывает эту дистанцию за 6 минут и более, т. е. фактически совершает работу, относящуюся к зоне большой мощности.

Несмотря на определённую схематичность разделения циклической работы на 4 зоны мощности, оно вполне оправдано, поскольку каждая из зон определённое воздействие на организм и имеет свои отличительные физиологические проявления. Вместе с тем, для каждой зоны мощности характерны общие закономерности функциональных изменений, мало связанные со спецификой различных циклических упражнений. Это даёт возможность по оценке мощности работы создать общее представление о влиянии соответствующих нагрузок на организм спортсмена. [16]

Многие функциональные изменения, характерные для различных зон мощности работы, в значительной степени связаны с ходом энергетических превращений в работающих мышцах.

Энергообеспечение мышечного сокращения Итак, любой вид физической активности требует затрат определенного количества энергии.

Единственным прямым источником энергии для мышечного сокращения служит аденозинтрифосфат (АТФ). Запасы АТФ в мышце незначительны и их хватает на обеспечение нескольких мышечных сокращений только в течение 0,5 секунд. При расщеплении АТФ образуется аденозиндифосфат (АДФ). Для того чтобы мышечное сокращение могло продолжаться дальше, необходимо постоянное восстановление АТФ с такой же скоростью, с какой она расщепляется.

Восстановление АТФ при мышечном сокращении может осуществляться за счет реакций, проходящих без кислорода (анаэробных), а также за счет окислительных процессов в клетках, связанных с потреблением кислорода (аэробных). Как только уровень АТФ в мышце начинает снижаться, а АДФ — повышаться, сразу же подключается креатинфосфатный источник восстановления АТФ.

Креатинфосфатный источник является самым быстрым путем восстановления АТФ, который происходит без доступа кислорода (анаэробным путем). Он обеспечивает мгновенное восстановление АТФ за счет другого высокоэнергетического соединения — креатинфосфата (КрФ). Содержание КрФ в мышцах в 3−4 раза выше, чем концентрация АТФ. По сравнению с другими источниками восстановления АТФ, КрФ источник обладает наибольшей мощностью, поэтому он играет решающую роль в энергообеспечении кратковременных мышечных сокращений взрывного характера. Такая работа продолжается до тех пор, пока не будут значительно исчерпаны запасы КрФ в мышцах. На это уходит примерно 6−10 секунд. Скорость расщепления КрФ в работающих мышцах находится в прямой зависимости от интенсивности выполняемого упражнения или величины мышечного напряжения.

Только после того, как запасы КрФ в мышцах будут исчерпаны примерно на 1/3 (на это уходит примерно 5−6 секунд), скорость восстановления АТФ за счет КрФ начинает уменьшаться, и к процессу восстановления АТФ начинает подключаться следующий источник — гликолиз. Это происходит с увеличением длительности работы: к 30 секунде скорость реакции уменьшается наполовину, а к 3-й минуте она составляет лишь около 1,5% от начального значения.

Гликолитический источник обеспечивает восстановление АТФ и КрФ за счет анаэробного расщепления углеводов — гликогена и глюкозы. В процессе гликолиза внутримышечные запасы гликогена и глюкоза, поступающая в клетки из крови, расщепляются до молочной кислоты. Образование молочной кислоты — конечного продукта гликолиза — происходит только в анаэробных условиях, но гликолиз может осуществляться и в присутствии кислорода, однако в этом случае он заканчивается на стадии образования пировиноградной кислоты. Гликолиз обеспечивает поддержание заданной мощности упражнения от 30 секунд до 2,5 минут.

Продолжительность периода восстановления АТФ за счет гликолиза ограничивается не запасами гликогена и глюкозы, а концентрацией молочной кислоты и волевыми усилиями спортсмена. Накопление молочной кислоты при анаэробной работе находится в прямой зависимости от мощности и продолжительности упражнения. [5]

Окислительный (оксидативный) источник обеспечивает восстановление АТФ в условиях непрерывного поступления кислорода в митохондрии клеток и использует долговременные источники энергии. Такие как углеводы (гликоген и глюкоза), аминокислоты, жиры, доставляемые в мышечную клетку через капиллярную сеть. Максимальная мощность аэробного процесса зависит от скорости усвоения кислорода в клетках и от скорости поставки кислорода в ткани.

Наибольшее количество митохондрий (центров «усвоения» кислорода) отмечается в медленно сокращающихся мышечных волокнах. Чем выше процент содержания таких волоком в мышцах, несущих нагрузку при выполнении упражнения, тем больше максимальная аэробная мощность у спортсменов и тем выше уровень их достижений в продолжительных упражнениях. Преимущественное восстановление АТФ за счет окислительного источника начинается при выполнении упражнений, длительность которых превышает 6−7 минут Энергообеспечение мышечного сокращения является определяющим фактором для выделения 4 зон мощности.

биологический физиологический двигательный физический Таблица 2

Зона относительной мощности работы

Показатель

Зона относительной мощности работы

максимальная

Суб. максимальная

большая

умеренная

Предельная длительность

От 20 до 25 с

От 25с 3−5 минут

От 3−5мин до 30 минут

Св. 30мин

Потребление кислорода

незначительная

Возрастает к максимальной

максимальная

Пропорциональна мощности

Кислородный долг

Почти субмаксимальная

субмаксимальная

максимальная

Пропорциональна мощности

Вентиляция легких и кровообращение

незначительная

субмаксимальная

максимальная

Пропорциональна мощности

Биохимические сдвиги

субмаксимальная

максимальные

максимальные

незначительные

Зона максимальной мощности работы

Данная мощность работы характеризуется достижением предельной физической возможности спортсмена. Для её осуществления необходима максимальная мобилизация энергетического обеспечения в скелетной мускулатуре, что связано исключительно с анаэробными процессами. Практически вся работа осуществляется за счёт распада макроэргов и только частично — гликогенолиза, поскольку известно, что уже первые сокращения мышц сопровождаются образованием в них молочной кислоты.

Длительность работы, например, в беге на 100 м меньше времени кругооборота крови. Уже это свидетельствует о невозможности достаточного обеспечения кислородом работающих мышц. [17]

Из-за кратковременности работы врабатывание вегетативных систем практически не успевает завершиться. Можно говорить только о полном врабатывании мышечной системы по локомоторным показателям (нарастание скорости, темпа и длинны шага после старта).

В связи с малым временем работы функциональные сдвиги в организме невелики, причём некоторые из них увеличиваются после финиша.

Работа максимальной мощности вызывает незначительные изменения в составе крови и мочи. Наблюдается кратковременное повышение в крови содержания молочной кислоты (до 70−100 мг %), небольшое повышение процента гемоглобина за счёт выхода в общую циркуляцию депонированной крови, некоторое увеличение содержания сахара. Последнее обусловлено больше эмоциональным фоном (предстартовое состояние), нежели самой физической нагрузкой. В моче могут быть обнаружены следы белка. Частота сердечных сокращений после финиша доходит до 150−170 и более ударов в минуту, артериальное давление повышается до 150−180 мм. рт. ст.

Дыхание при работе максимальной мощности увеличивается незначительно, но существенно возрастает после завершения нагрузки в результате большой кислородной задолженности. Так, лёгочная вентиляция после финиша может возрастать до 40 и более литров в минуту.

Величина кислородного запроса достигает предельных величин, доходя до 40 литров. Однако это не абсолютная его величина, а рассчитанная на минуту, т. е. на время, превышающее возможность организма выполнять работу этой мощности. По окончании работы, в связи с возникшей большой кислородной задолженностью, функции сердечно-сосудистой и дыхательной систем некоторое время остаются усиленными. Например, газообмен после пробегания спринтерских дистанций приходит к норме спустя 30−40 минут. За это время завершается в основном восстановление многих других функций и процессов.

Зона субмаксимальной мощности работы

В отличие от работы максимальной мощности, при этой, более длительной нагрузке, происходит резкое усиление кровообращения и дыхания. Это обеспечивает доставку к мышцам значительного количества кислорода в момент выполнения физической работы. Потребление кислорода достигает к концу 3−5 минут работы предельных или близких к ним величин. (5−6 литров в минуту). Минутный объём крови возрастает до 25−30 литров. Однако, несмотря на это, кислородный запрос в этой зоне мощности оказывается намного больше фактического потребления кислорода. Он доходит до 25−26 л/мин. Следовательно, абсолютная величина кислородного долга достигает 20 и более литров, т. е. максимально возможных значений. Эти цифры свидетельствуют, что при работе субмаксимальной мощности в организме, хотя и в меньшей степени, чем при спринтерских дистанциях, анаэробные процессы в освобождение энергии преобладают над аэробными. В результате интенсивного гликогенолиза в мышцах, в крови накапливается большое количество молочной кислоты. В крови её содержание доходит до 250 и более мг %, что вызывает резкий сдвиг рН крови в кислую сторону (до 7,0−6,9). [5]

К резким сдвигам кислотно-щелочного равновесия в крови присоединяется повышение в ней осмотического давления, в результате перехода воды из плазмы в мышцы и потери её при пототделение. Всё это создаёт во время работы неблагоприятные условия для деятельности центральной нервной системы и мышц, вызывая снижение их работоспособности.

Характерным для этой зоны мощности является то, что некоторые функциональные сдвиги нарастают на протяжении всего периода работы, достигая предельных величин (содержание молочной кислоты в крови, снижение щелочного резерва крови, кислородная задолженность и др.).

Содержание молочной кислоты в крови после бега на короткие и средние дистанции (по Н.И. Волкову) Таблица 3

Скорость и содержание молочной кислоты после бега на короткие и средние дистанции

Показатели

Дистанция (м)

100 м

200 м

400 м

800 м

1500 м

Скорость (м/с)

8,92

8,47

7,72

6,89

6,29

Молочная кислота (мг %)

Частота сердечных сокращений достигает 190−220 мм рт. ст., лёгочная вентиляция возрастает до 140−160 л/мин. После работы субмаксимальной мощности функциональные сдвиги в организме ликвидируются в течение 2−3 часов. Быстрее восстанавливается артериальное давление. Частота сердечных сокращений и показатели газообмена нормализуются позже.

Зона большой мощности работы

В этой зоне мощности работы, длящейся 30−40 минут, во всех случаях период врабатывания полностью завершается и многие функциональные показатели затем стабилизируются на достигнутом уровне, удерживаясь на нём до финиша. [18]

Частота сердечных сокращений после врабатывания составляет 170−190 ударов в минуту, минутный объём крови находится в пределах 30−35 литров, лёгочная вентиляция устанавливается на уровне 140−180 литров в минуту. Таким образом, сердечно — сосудистая и дыхательная системы работают на пределе (или почти на пределе) своих возможностей. Однако мощность работы в этой зоне несколько превышает уровень аэробного энергообеспечения. И хотя потребление кислорода может увеличиваться при выполнении данной работы до 5−6 литров в минуту, всё же кислородный запас превышает эти цифры, вследствие чего происходит постепенное нарастание кислородного долга, особенно ощутимое к концу дистанции. Стабилизация показателей сердечно — сосудистой и дыхательной систем при сравнительно небольшой кислородной задолженности (10−15% от кислородного запроса) обозначается как кажущееся (ложное) устойчивое состояние. В связи с увеличением удельного веса аэробных процессов во время работы большой мощности, в крови спортсменов наблюдается несколько меньшие изменения, чем при работе субмаксимальной мощности. Так, содержание молочной кислоты достигает 200−220 мг %, рН сдвигается до 7,1−7,0. Несколько меньшее содержание молочной кислоты в крови при работе большой мощности связано и с её выведением органами выделения (почками и потовыми железами). Деятельность органов кровообращения и дыхания оказывается продолжительное время повышенной по окончание работы большой мощности. Требуется не менее 5−6 часов, чтобы были ликвидированы кислородный долг и восстановлен гомеостаз.

Зона умеренной мощности работы

Характерной особенностью динамической работы умеренной мощности является наступление истинного устойчивого состояния. Под ним понимается равное соотношение между кислородным запросом и кислородным потреблением. Следовательно, освобождение энергии идёт здесь преимущественно за счёт окисления в мышцах гликогена. Кроме того, только в этой зоне мощности работы, в связи с её длительностью, источником энергии являются липиды. Не исключается также окисление белков в энергообеспечение мышечной деятельности. Поэтому дыхательный коэффициент у марофонцев сразу после финиша (или в конце дистанции) обычно меньше единицы.

Величины потребления кислорода на сверхдлинных дистанциях всегда устанавливаются ниже их максимального значения (на уровне 70−80%). Функциональные сдвиги в кардиореспираторной системе заметно меньше тех, которые наблюдаются при работе большой мощности. Частота сердечных сокращений, обычно, не превышает 150−170 ударов в минуту, минутный объём крови равен 15−20литров, лёгочная вентиляция 50−60 л/минуту. Содержание в крови молочной кислоты в начале работы заметно повышается, достигая 80−100 мг %, а затем приближается к норме. Характерным для этой зоны мощности является наступление гипогликемии, обычно развивающийся спустя 30−40- минут от начала работы, при которой содержание сахара в крови к концу дистанции может уменьшаться до 50−60 мг %. Наблюдается также выраженный лейкоцитоз с появлением незрелых форм лейкоцитов в 1 куб. мм может доходить до 25−30 тысяч.

Существенное значение для высокой работоспособности спортсменов имеет функция коркового слоя надпочечников. Недлительные интенсивные физические нагрузки вызывают повышенное образование глюкокортикоидов. При работе же умеренной мощности, по-видимому, в связи с её большой длительностью, после первоначального усиления происходит угнетение продукции этих гормонов (А. Виру). Причём, у менее подготовленных спортсменов эта реакция особенно выражена. [19]

Необходимо заметить, что при нарушениях равномерности пробегания марафонских дистанций или во время работы преодоления подъёмов кислородное потребление несколько отстаёт от увеличившего кислородного запроса и возникает небольшой кислородный долг, который погашается при переходе на постоянную мощность работы. Кислородный долг у марафонцев также, обычно, возникает в конце дистанции, в связи с финишным ускорением. При работе умеренной мощности, вследствие обильного потоотделения, организмом теряется много воды и солей, что может привести к нарушениям водно-солевого равновесия и снижению работоспособности. Повышенный газообмен после этой работы наблюдается в течение многих часов. Восстановление же нормальной лейкоцитарной формулы и работоспособности продолжается несколько дней.

2. Физиологические изменения в организме под влиянием циклических видов спорта

2.1 Физиологические изменения в сердечно сосудистой системе

Сердце — главный центр кровеносной системы. В результате физической тренировки размеры и масса сердца увеличивается в связи с утолщением стенок сердечной мышцы и увеличением его объема, что повышает мощность и работоспособность сердечной мышцы.

При регулярных занятиях физическими упражнениями или спортом:

увеличивается количество эритроцитов и количество гемоглобина в них, в результате чего повышается кислородная емкость крови;

повышается сопротивляемость организма к простудным и инфекционным заболеваниям, благодаря повышению активности лейкоцитов;

ускоряются процессы восстановления после значительной потери крови.

Показатели работоспособности сердца.

Важным показателем работоспособности сердца является систолический объем крови (СО) — количество крови, выталкиваемое одним желудочком сердца в сосудистое русло при одном сокращении.

Другими информативными показателем работоспособности сердца является число сердечных сокращений (ЧСС) (артериальный пульс).

В процессе спортивной тренировки ЧСС в покое со временем становится реже за счет увеличения мощности каждого сердечного сокращения. В таблице 4 приведены показатели ЧСС тренированного и нетренированного человека.

Таблица 4

Показатели числа сердечных сокращений (уд/ мин)

Тренированный организм

Нетренированный организм

Мужчины

Женщины

Мужчины

Женщины

50−60

60−70

70−80

75−85

Сердце нетренированного человека для обеспечения необходимого минутного объема крови (количество крови, выбрасываемое одним желудочком сердца в течение минуты) вынуждено сокращаться с большей частотой, так как у него меньше систолический объем. [19]

Сердце тренированного человека более часто пронизано кровеносными сосудами, в таком сердце лучше осуществляется питание мышечной ткани, и работоспособность сердца успевает восстановиться в паузах сердечного цикла. Схематично сердечный цикл можно разделить на 3 фазы: систола предсердий (0.1 с), систола желудочков (0.3 с) и общая пауза (0.4 с). Даже если условно принять, что эти части равны по времени, то пауза отдыха у нетренированного человека при ЧСС 80 уд./мин будет равна 0,25 с, а у тренированного при ЧСС 60 уд./мин пауза отдыха увеличивается до 0,33 с. Значит, сердце тренированного человека в каждом цикле своей работы имеет большее времени для отдыха и восстановления.

Кровяное давлениедавление крови внутри кровеносных сосудов на их стенки. Измеряют кровяное давление в плечевой артерии, поэтому его называют артериальное давление (АД), которое является весьма информативным показателем состояния сердечно — сосудистой системы и всего организма.

Различают максимальное (систолическое) АД, которое создается при систоле (сокращении) левого желудочка сердца, и минимальное (диастолиеское) АД, которое отмечается в момент его диастолы (расслабления). Пульсовое давление (пульсовая амплитуда) — разница между максимальным и минимальным АД. Давление измеряется в миллиметрах ртутного столба (мм рт. ст.).

В норме для студенческого возраста в покое максимальное АД находится в пределах 100−130; минимальное — 65−85, пульсовое давление — 40−45 мм рт. ст.

Пульсовое давление при физической работе увеличивается, его уменьшение является неблагоприятным показателем (наблюдается у нетренированных людей). Снижение давления может быть следствием ослабления деятельности сердца или чрезмерного сужения периферических кровеносных сосудов.

Таблица 5

Состояние артериального давления под воздействием нагрузок

Состояние АД у людей

Во время работы

тренированных

нетренированных

Интенсивная физическая работа

Максимальное АД повышается до 200 мл рт. ст. и более, может долго держаться.

Максимальное АД сначала повышается до200 мл рт. ст., затем снижается в результате утомления сердечной мышцы. Может настать обморок.

После работы

тренированных

нетренированных

Максимальное и минимальное АД быстро приходит в норму.

Максимальное и минимальное АД долго остаются повышенными.

Полный круговорот крови по сосудистой системе в покое осуществляется за 21−22 секунды, при физической работе — 8 секунд и меньше, что ведет к повышению снабжения тканей тела питательными веществами и кислородом. [20]

Физическая работа способствует общему расширению кровеносных сосудов, нормализации тонуса их мышечных стенок, улучшению питания и повышению обмена веществ, в стенках кровеносных сосудов. При работе окружающих сосуды мышц происходит массаж стенок сосудов. Кровеносные сосуды, проходящие через мышцы (головного мозга, внутренних органов, кожи), массируются за счет гидродинамической волны от учащения пульса и за счет ускоренного тока крови. Все это способствуют сохранению эластичности стенок кровеносных сосудов и нормальному функционированию сердечно-сосудистой системы без патологических отклонений.

Особенно полезное влияние на кровеносные сосуды оказывают занятия циклическими видами упражнений: бег, плавание, бег на лыжах, на коньках, езда на велосипеде.

2.2 Физиологические изменения в дыхательной системе

При физической нагрузке потребление О2 и продукция СО2 возрастают в среднем в 15—20 раз. Одновременно усиливается вентиляция и ткани организма получают необходимое количество О2, а из организма выводится CO2.

Показателями работоспособности органов дыхания являются дыхательный объем, частота дыхания, жизненная емкость легких, легочная вентиляция, кислородный запрос, потребление кислорода, кислородный долг и др.

Дыхательный объем — количество воздуха, проходящее через легкие при одном дыхательном цикле (вдох, выдох, дыхательная пауза). Величина дыхательного объема находится в прямой зависимости от степени тренированности к физическим нагрузкам и колеблется в состоянии покоя от 350 до 800 мл. В покое у нетренированных людей дыхательный объем находится на уровне 350−500 мл, у тренированных — 800 мл и более. При интенсивной физической работе дыхательный объем может увеличиваться до 2500 мл.

Частота дыхания это, количество дыхательных циклов в 1 мин. Средняя частота дыхания у нетренированных людей в покое — 16−20 циклов в 1 мин, у тренированных за счет увеличения дыхательного объема частота дыхания снижается до 8−12 циклов в 1 мифн. У женщин частота дыхания на 1−2 цикла больше. При спортивной деятельности частота дыхания у лыжников и бегунов увеличивается до 20−28 циклов в 1 мин., у пловцов — 36−45; наблюдались случаи увеличения частоты дыхания до 75 циклов в 1 мин. 21]

Жизненная емкость легких — максимальное количество воздyхa, которое может выдохнуть человек после полного вдоха (измеряется методом спирометрии). Средние величины жизненной емкости легких: у нетренированных мужчин — 3500 мл, у женщин — 3000; у тренированных мужчин — 4700 мл, у женщин — 3500. При занятиях циклическими видами спорта на выносливость (гребля, плавание, лыжные гонки и т. п.) жизненная емкость легких может достигать у мужчин — 7000 мл и более, у женщин — 5000 мл и более.

Легочная вентиляция — объем воздуха, который проходит через легкие за 1 мин. Легочная вентиляция определяется путем умножения величины дыхательного объема на частоту дыхания. Легочная вентиляция в покое находится на уровне 5000−9000 мл (5−9л). При физической работе этот объем достигает 50л. Максимальный показатель может достигать 187,5л при дыхательном объеме 2,5л и частоте дыхания 75 дыхательных циклов в 1 мин.

Кислородный запрос — количество кислорода, необходимого организму для обеспечения процессов жизнедеятельности в различных условиях покоя или работы в 1 мин. В покое в среднем кислородный запрос равен 200−300 мл. При беге на 5 км, например, он увеличивается в 20 раз и становится равным 5000−6000 мл. При беге на 100 м за 12 секунд, при пересчете на 1 мин кислородный запрос увеличивается дo — 7000 мл.

Суммарный, или общий, кислородный запрос — это количество кислорода, необходимое для выполнения всей работы. В состоянии покоя человек потребляет 250−300 мл кислорода в 1 мин. При мышечной работе эта величина возрастает.

Наибольшее количество кислорода, которое организм может потребить в минуту при определенно-интенсивной мышечной работе, называется максимальным потреблением кислорода (МПК). МПК зависит от состояния сердечнососудистой и дыхательной систем, кислородной емкости крови, активности протекания процессов обмена веществ и других факторов.

Для каждого человека существует индивидуальный предел МПК, выше которого потребление кислорода невозможно. У людей, не занимающихся спортом, МПК равно 2,0−3,5 л/мин, у спортсменов-мужчин может достигать 6 л/мин и более, у женщин — 4 л/мин и более. Величина МПК характеризует функциональное состояние дыхательной и сердечнососудистой систем, степень тренированности организма к длительным физическим нагрузкам. Абсолютная величина МПК зависит также от размеров тела, поэтому для ее более точного определения рассчитывают относительное МПК на 1 кг массы тела. Для оптимального уровня здоровья необходимо обладать способностью потреблять кислород на 1 кг массы тела: женщинам не менее 42, мужчинам — не менее 50 мл.

Кислородный долг — разница между кислородным запросом и количеством кислорода, которое потребляется во время работы за 1 мин. Например, при беге на 5000 м за 14 мин кислородный запрос равен 7 л/мин, а предел (потолок) МПК у данного спортсмена — 5,3 л/мин; следовательно, в организме каждую минуту возникает кислородный долг, равный 1,7 л кислорода, т. е. такое количество кислорода, которое необходимо для окисления продуктов обмена веществ, накопившихся при физической работе.

При длительной интенсивной работе возникает суммарный кислородный долг, который ликвидируется после окончания работы. Величина максимально возможного суммарного долга имеет предел (потолок). У нетренированных людей он находится на уровне 4−7л кислорода, у тренированных — может достигать 20−22 л.

Физическая тренировка способствует адаптации тканей к гипоксии (недостатку кислорода), повышает способность клеток тела к интенсивной работе при недостатке кислорода. [22]

Рекомендации по дыханию при занятиях физическими упражнениями и спортом Дыхательная система — единственная внутренняя система, которой человек может управлять произвольно. Поэтому можно дать следующие рекомендации:

а) дыхание необходимо осуществлять через нос, и только в случаях интенсивной физической работы допускается дыхание одновременно через нос и узкую щель рта, образованную языком и нёбом. При таком дыхании воздух очищается от пыли, увлажняется и согревается, прежде поступить в полость легких, что способствует повышению эффективности дыхания и сохранению дыхательных путей здоровыми;

б) при выполнении физических упражнений необходимо регулировать дыхание:

во всех случаях выпрямления тела делать вдох;

при сгибании тела делать выдох;

при циклических движениях ритм дыхания приспосабливать к ритму движения с акцентом на выдохе. Например, при беге делать на 4 шага вдох, на 5−6 шагов — выдох или на 3 шага — вдох и на 4−5 шагов — выдох и т. д.

избегать частых задержек дыхания и натуживания, что приводит к застою венозной крови в периферических сосудах.

Наиболее эффективно функцию дыхания развивают физические циклические упражнения с включением в работу большого количества мышечных групп в условиях чистого воздуха (плавание, гребля, лыжный спорт, бег и др.).

2.3 Физиологические изменения в опорно-двигательном аппарате

Скелетная мускулатура — главный аппарат, при помощи которого совершаются физические упражнения. Хорошо развитая мускулатура является надежной опорой для скелета. Например, при патологических искривлениях позвоночника, деформациях грудной клетки (а причиной тому бывает слабость мышц спины и плечевого пояса) затрудняется работа легких и сердца, ухудшается кровоснабжение мозга и т. д. Тренированные мышцы спины укрепляют позвоночный стол, разгружают его, беря часть нагрузки на себя, предотвращают «выпадение» межпозвоночных дисков, соскальзывание позвонков.

Упражнения в циклических видах спорта действуют на организм всесторонне. Так, под их влиянием происходят значительные изменения в мышцах. [5]

Если мышцы обречены на длительный покой, они начинают слабеть, становятся дряблыми, уменьшаются в объеме. Систематические же занятия легкой атлетикой способствуют их укреплению. При этом рост мышц происходит не за счет увеличения их длины, а за счет утолщения мышечных волокон. Сила мышц зависит не только от их объема, но и от силы нервных импульсов, поступающих в мышцы из центральной нервной системы. У тренированного, постоянно занимающегося физическими упражнениями человека, эти импульсы заставляют сокращаться мышцы с большей силой, чем у нетренированного.

Под влиянием физической нагрузки мышцы не только лучше растягиваются, но и становятся более твердыми. Твердость мышц объясняется, с одной стороны, разрастанием протоплазмы мышечных клеток и межклеточной соединительной ткани, а с другой стороны — состоянием тонуса мышц.

Занятия легкой атлетикой способствуют лучшему питанию и кровоснабжению мышц. Известно, что при физическом напряжении не только расширяется просвет бесчисленных мельчайших сосудов (капилляров), пронизывающих мышцы, но и увеличивается их количество. Так, в мышцах людей, занимающихся легкой атлетикой, количество капилляров значительно больше, чем у нетренированных, а следовательно, у них кровообращение в тканях и головном мозге лучше. Еще И. М. Сеченов — известный русский физиолог — указывал на значение мышечных движений для развития деятельности мозга.

Как говорилось выше, под воздействием физических нагрузок развиваются такие качества как сила, быстрота, выносливость.

Лучше и быстрее других качеств растет сила. При этом мышечные волокна увеличиваются в поперечнике, в них в большом количестве накапливаются энергетические вещества и белки, мышечная масса растет.

Регулярные физические упражнения с отягощением (занятия с гантелями, штангой, физический труд, связанный с подъемом тяжестей) достаточно быстро увеличивает динамическую силу. Причем сила хорошо развивается не только в молодом возрасте, и пожилые люди имеют большую способность к ее развитию.

Циклические тренировки также способствуют развитию и укреплению костей, сухожилий и связок. Кости становятся более прочными и массивными, сухожилия и связки крепкими и эластичными. Толщина трубчатых костей возрастает за счет новых наслоений костной ткани, вырабатываемой надкостницей, продукция которой увеличивается с ростом физической нагрузки. В костях накапливается больше солей кальция, фосфора, питательных веществ. А ведь чем более прочность скелета, тем надежнее защищены внутренние органы от внешних повреждений. [5]

Увеличивающаяся способность мышц к растяжению и возросшая эластичность связок совершенствуют движения, увеличивают их амплитуду, расширяют возможности адаптации человека к различной физической работе.

2.4 Физиологические изменения в нервной системе

Нервную систему принято подразделять на центральную и периферическую.

К центральной нервной системе относятся головной и спинной мозг.

К периферической нервной системе относятся отходящие от головного и спинного мозга нервы.

В головном и спинном мозге расположено большое количество нервных клеток, тогда как периферические нервы — это отростки этих нервных клеток. Таким образом, очень упрощенно можно сказать, что центральная нервная система — это тела клеток, а периферическая — их отростки.

Существует еще одна классификация нервной системы, независимая от первой. По этой классификации нервную систему подразделяют на соматическую и вегетативную.

К соматической нервной системе (от латинского слова «сома» — тело) относится часть нервной системы (и тела клеток, и их отростки), которая управляет деятельностью скелетных мышц (тела) и органов чувств. Эта часть нервной системы в большой степени контролируется нашим сознанием. То есть мы способны по своему желанию согнуть или разогнуть руку, ногу и так далее.

Однако мы неспособны сознательно прекратить восприятие, например, звуковых сигналов.

Вегетативная нервная система (в переводе с латинского «вегетативный» — растительный) — это часть нервной системы (и тела клеток, и их отростки), которая управляет процессами обмена веществ, роста и размножения клеток, то есть функциями — общими и для животных, и для растительных организмов. В ведении вегетативной нервной системы находится, например, деятельность внутренних органов и сосудов.

Вегетативная нервная система практически не контролируется сознанием, то есть мы не способны по своему желанию снять спазм желчного пузыря, остановить деление клетки, прекратить деятельность кишечника, расширить или сузить сосуды.

Основные процессы, происходящие в нервной системе во время интенсивной физической нагрузки Формирование в головном мозге модели конечного результата деятельности. Формирование в головном мозге программы предстоящего поведения. Генерация в головном мозге нервных импульсов, запускающих мышечное сокращение, и передача их мышцам. Управление изменениями в системах, обеспечивающих мышечную деятельность и не принимающих участие в мышечной работе. Восприятие информации о том, каким образом происходит сокращение мышц, работа других органов, как изменяется окружающая обстановка. Анализ информации, поступающей от структур организма и окружающей обстановки. Внесение при необходимости коррекций в программу поведения, генерация и посылка новых исполнительных команд мышцам.

Железы внутренней секреции Изменения активности желез внутренней секреции во время мышечной деятельности зависят от характера выполняемой работы, ее длительности и интенсивности. В любом случае эти изменения направлены на обеспечение максимальной работоспособности организма. [5]

Даже если организм еще не начал выполнять мышечную работу, но готовится к ее осуществлению (состояние спортсмена перед стартом), в организме наблюдаются изменения в деятельности желез внутренней секреции, характерные для начала работы.

Изменения при истощающей физической нагрузке.

Если мышечная работа чрезмерно длительна или интенсивна, возможности практически всех желез внутренней секреции выделять свои гормоны истощаются. В этих условиях основной задачей системы желез внутренней секреции становится не поддержание максимальной работоспособности, а сохранение внутренней среды организма в пределах, совместимых с жизнью.

В частности, для этих целей повышается выделение тирокальцитонина щитовидной железы, вызывая снижение возбудимости центральной нервной системы и мышечного аппарата.

Поскольку без гормональной поддержки протекание физиологических процессов невозможно, истощение желез внутренней секреции в результате выполнения чрезвычайно тяжелой и или длительной работы является одним из факторов, обуславливающих ее прекращение.

При систематических занятиях циклическими видами спорта улучшается кровоснабжение мозга, общее состояние нервной системы на всех её уровнях. При этом отмечаются большая сила, подвижность и уравновешенность нервных процессов, поскольку нормализуются процессы возбуждения и торможения, составляющие основу физиологической деятельности мозга. Самые полезные виды спорта — это бег, плавание, лыжи, коньки, велосипед, теннис.

При отсутствии необходимой мышечной активности происходят нежелательные изменения функций мозга и сенсорных систем, снижается уровень функционирования подкорковых образований, отвечающих за работу, например, органов чувств (слух, равновесие, вкус) или ведающих жизненно важными функциями (дыхание, пищеварение, кровоснабжение). Вследствие этого наблюдается снижение общих защитных сил организма, увеличение риска возникновения различных заболеваний. В таких случаях характерны неустойчивость настроения, нарушение сна, нетерпеливость, ослабление самообладания.

Физические тренировки оказывают разностороннее влияние на психические функции, обеспечивая их активность и устойчивость. Установлено, что устойчивость внимания, восприятия, памяти находится в прямой зависимости от уровня разносторонней физической подготовленности.

Основным свойством нервной системы, которое может учитываться при отборе в циклические виды спорта, является уравновешенность. Считается, что чем длиннее дистанция, тем меньше требования, предъявляемые к силе нервных процессов, и больше — к уравновешенности. [23]

Основные процессы, происходящие в нервной системе во время интенсивной физической нагрузки

— Формирование в головном мозге модели конечного результата деятельности.

— Формирование в головном мозге программы предстоящего поведения.

— Генерация в головном мозге нервных импульсов, запускающих мышечное сокращение, и передача их мышцам.

— Управление изменениями в системах, обеспечивающих мышечную деятельность и не принимающих участие в мышечной работе.

— Восприятие информации о том, каким образом происходит сокращение мышц, работа других органов, как изменяется окружающая обстановка.

— Анализ информации, поступающей от структур организма и окружающей обстановки.

— Внесение при необходимости коррекций в программу поведения, генерация и посылка новых исполнительных команд мышцам.

2.5 Физиологические изменения в обмене веществ организма и в железах внутренней секреции

Умеренные физические нагрузки оказывают благоприятное влияние на процессы обмена веществ в организме.

Обмен белков у спортсменов характеризуется положительным азотным балансом, то есть количество потребляемого азота (главным образом азот содержится в белках) превосходит количество выделяемого азота. Отрицательный азотный баланс наблюдается во время болезней, похудания, нарушения обмена веществ. У людей, занимающихся спортом, белки используются главным образом для развития мышц и костей. В то время как у нетренированных людей — для получения энергии (при этом выделяется ряд вредных для организма веществ).

Обмен жиров у спортсменов ускоряется. Гораздо больше жиров используется во время физической активности, следовательно, меньше жиров запасается под кожей. Регулярные занятия легкой атлетикой снижают количество, так называемых, атерогенных липидов, которые приводят к развитию тяжелой болезни кровеносных сосудов — атеросклероз.

Обмен углеводов во время занятий циклическими видами спорта ускоряется. При этом углеводы (глюкоза, фруктоза) используются для получения энергии, а не запасаются в виде жиров. Умеренная мышечная активность восстанавливает чувствительность тканей к глюкозе и предупреждает развитие диабета 2 типа. Для выполнения быстрых силовых движений (поднимание тяжестей) тратятся в основном углеводы, а вот во время продолжительных несильных нагрузок (например, ходьба или медленный бег), — жиры.

Железы внутренней секреции Изменения активности желез внутренней секреции во время занятий циклическими видами спорта зависят от характера выполняемой работы, ее длительности и интенсивности. В любом случае эти изменения направлены на обеспечение максимальной работоспособности организма. [24]

Даже если организм еще не начал выполнять мышечную работу, но готовится к ее осуществлению (состояние спортсмена перед стартом), в организме наблюдаются изменения в деятельности желез внутренней секреции, характерные для начала работы.

Таблица 6

Изменение секреции гормона при значительных мышечных нагрузках

Изменение секреции гормона

Гормоны, содержание которых повышается

Физиологический эффект

Повышается выделение адреналина и норадреналина мозгового вещества надпочечников

Повышается возбудимость нервной системы, увеличивается частота и сила сердечных сокращений, увеличивается частота дыхания, расширяются бронхи, расширяются кровеносные сосуды мышц, головного мозга, сердца, сужаются кровеносные сосуды неработающих органов (кожи, почек, пищеварительного тракта и др.), увеличивается скорость распада веществ, освобождая энергию для мышечного сокращения.

Повышается выделение гормона роста (соматотропного гормона) гипофиза

Усиливается распад жиров в жировой ткани, облегчается их использование как источника энергии для мышечного сокращения. Облегчается усвоение клетками питательных веществ.

Повышается выделение гормона гипофиза, стимулирующего деятельность коркового вещества надпочечников (адренокортикотропного гормона).

Увеличивается выделение гормонов коркового вещества надпочечников.

Повышается выделение глюкокортикоидов и минералокортикоидов коркового вещества надпочечников

Под влияние глюкокортикоидов увеличивается скорость образования углеводов в печени и выход углеводов из печени в кровяное русло. Из крови углеводы могут поступить в работающие мышцы, обеспечивая их энергией.

Под влиянием минералокортикоидов происходит задержка воды и натрия в организме и увеличивается выделение калия из организма, что предохраняет организм от обезвоживания и поддерживает ионное равновесие внутренней среды.

Повышается выделение вазопрессина задней доли гипофиза.

Сужаются кровеносные сосуды (неработающих органов), обеспечивая дополнительный резерв крови для работающих мышц. Уменьшается выделение воды почками, что предотвращает организм от обезвоживания

Повышается выделение глюкагона внутрисекреторных клеток поджелудочной железы.

Облегчается распад углеводов и жиров в клетках, выход углеводов и жиров из мест их хранения в кровь, откуда они могут быть использованы мышечными клетками в качестве источника энергии.

Гормоны, содержание которых снижается

Снижается выделение гонадотропного гормона гипофиза (гормона регулирующего деятельность половых желез).

Уменьшается активность половых желез.

Снижается выделение половых гормонов половых желез (при силовой нагрузке содержание тестостерона может повышаться, особенно в восстановительный период).

Уменьшается специфическое действие половых гормонов.

Снижается выделение аналогов половых гормонов коркового вещества надпочечников.

Уменьшается специфическое действие половых гормонов.

Снижается выделение инсулина внурисекреторных клеток поджелудочной железы.

Блокируется отложение углеводов в запас, что облегчает их использование в качестве источника энергии для мышечного сокращения.

Изменения в деятельности других желез внутренней секреции малозначительны или недостаточно изучены.

3. Характеристика процессов утомления и восстановления в циклических видах спорта

3.1 Физиологические и биохимические основы утомления при занятиях легкой атлетикой

Проблема утомления считается актуальной общебиологической проблемой, представляет большой теоретический интерес и имеет важное практическое значение для деятельности человека, занимающегося легкой атлетикой. Вопрос о правильной трактовке процесса утомления долгое время оставался дискуссионным. Ныне оно рассматривается как состояние организма, возникающее вследствие выполнения физической работы и проявляющееся во временном снижении работоспособности, в ухудшении двигательных и вегетативных функций, их дискоординации и появлении чувства усталости. Как показали исследования последних десятилетий, структуру той или иной мышцы составляют различные по функциональным особенностям и организации деятельности двигательные единицы (ДЕ), которые, как и мышечные волокна, имеют свои функциональные отличия. P.E. Burke (1975) предложил разделить ДЕ исходя из сочетания двух свойств — скорости сокращения и устойчивости к утомлению. Им было выдвинуто четыре типа ДЕ (таблица 7).

Таблица 7

Типы двигательных единиц

Типы

Свойства

Способность волокон ДЕ

S FR

Медленные, весьма устойчивые к утомлению

Утилизация аэробных источников энергии

Быстрые, устойчивые к утомлению

Приспособлены к обоим типам энергетического обмена

FF

Быстрые, быстро утомляемые

Более способны к анаэробному гликолизу

F (i)

Быстрые, промежуточные

Есть мнение (Гидиков А.А., 1975; Козаров Д., Шапков Ю. Т., 1983), что у человека наиболее надёжно различаются лишь ДЕ, относящиеся к двум крайним типам — медленные, устойчивые к утомлению (S) и быстрые, быстро утомляемые (FF). [24]

Виды утомления. В развитии утомления различают скрытое (преодолеваемое) утомление, при котором сохраняется высокая работоспособность, поддерживаемая волевым усилием. Экономичность двигательной деятельности в этом случае падает, работа выполняется с большими энергетическими затратами. Это компенсируемая форма утомления. При дальнейшем выполнении работы развивается некомпенсированное (полное) утомление. Главным признаком этого состояния является снижение работоспособности. При некомпенсированном утомлении угнетаются функции надпочечников, снижается активность дыхательных ферментов, происходит вторичное усиление процессов анаэробного гликолиза.

Различают 3 стадии утомления. В частности, при выполнении физической нагрузки в первой стадии утомления по сравнению с выполнением таковой в «устойчивом» состоянии происходят более глубокие сдвиги в показателях сердечно — сосудистой и дыхательной систем. Во второй стадии утомления наблюдается дальнейшее снижение биоэлектрической активности коры большого мозга и более напряженная деятельность сердечно — сосудистой и дыхательной систем. Третья стадия утомления характеризуется снижением биоэлектрической активности коры большого мозга (до 22% по сравнению с предыдущими двумя стадиями утомления) и ухудшением функционирования сердечно-сосудистой и дыхательной систем.

В работающих мышцах при утомлении происходит исчерпание запасов энергетических субстратов (АТФ, КФ, гликоген), накапливаются продукты распада (молочная кислота, кетоновые тела) и отмечаются резкие сдвиги внутренней среды организма. При этом нарушается регуляция процессов, связанных с энергетическим обеспечением мышечного сокращения, появляются выраженные изменения в деятельности систем легочного дыхания и кровообращения.

Как известно запасы АТФ в мышцах незначительны, их едва хватает на 1 с напряженной мышечной работы. Запасов креатинфосфата (КФ), используемого для ресинтеза АТФ при работе максимальной интенсивности, хватает всего на 6−8 с. Снижение скорости ресинтеза АТФ может явиться причиной наступающего утомления.

В скелетной мышце человека после максимальной кратковременной работы до отказа концентрация КФ падает почти до нуля, а концентрация АТФ — примерно до 60−70% значения в состоянии покоя.

В состоянии утомления снижается концентрация АТФ в нервных клетках и нарушается синтез ацетилхолина в синаптических образованиях, в результате чего нарушается деятельность ЦНС по формированию двигательных импульсов и передаче их к работающим мышцам; замедляется скорость переработки сигналов, поступающих от проприои хеморецепторов; в моторных центрах развивается охранительное торможение, связанное с образованием гамма-аминомасляной кислоты. [25]

При утомлении в процессе тренировок угнетается деятельность желез внутренней секреции, что ведёт к уменьшению выработки гормонов и снижению активности ряда ферментов. Прежде всего, это сказывается на миофибриллярной АТФ-азе, контролирующей преобразование химической энергии в механическую работу. При снижении скорости расщепления АТФ в миофибриллах автоматически уменьшается и мощность выполняемой работы. В состоянии утомления уменьшается активность ферментов аэробного окисления и нарушается сопряжение реакций окисления с ресинтезом АТФ. Для поддержания необходимого уровня АТФ происходит вторичное усиление гликолиза, сопровождающееся закислением внутренних сред и нарушением гомеостаза. Усиливающийся катаболизм белковых соединений сопровождается повышением содержания мочевины в крови.

Максимальная физическая нагрузка большой длительности приводит организм спортсмена к увеличению продуцирования в мышечных клетках молочной кислоты, диффундирующей затем в крови и вызывающей изменения кислотно-щелочного равновесия. Снижение рН внутренней среды влияет на активность ряда ферментов, которая бывает наивысшей в слабощелочной среде (рН = 7,35−7,40). Снижение рН в процессе физической нагрузки максимальной и субмаксимальной интенсивности приводит к уменьшению активности многих ферментов, в частности фосфофруктокиназы, АТФ-азы. У спортсменов величина рН может составлять 6,9 и ниже (после нагрузки высокой интенсивности в течение 40−60 с) (Osnes J.B., Hermansen L, 1997).

Научные исследования показали, что важное значение в определении функционального состояния спортсменов играют показатели активности симпато-адреналовой системы (САС). Являясь интегральным нейро-гормональным индикатором, характеризующим стрессовую и эмоциональную реакцию спортсменов в ответ на тренировочные и соревновательные нагрузки, эта система играет важнейшую гомеостатическую и адаптационно-трофическую роль в организме. Её можно использовать для оценки текущего состояния, эмоционального напряжения, в предстартовом периоде и на соревнованиях, развития утомления и адаптационных процессов в организме.

В исследовании В. В. Мехрикадзе (1985) было показано, что при кратковременной интенсивной нагрузке (тренировке, направленной на увеличение скорости бега) по сравнению с предтренировочным фоном наблюдалась достоверная активация гормонального и медиаторного звеньев САС. Было отмечено повышенное выделение адреналина (в 3 раза), норадреналина (в 1,5 раза), однако резервные возможности системы, существенно не изменялись. [26]

У спринтеров при нагрузке скоростной направленности САС преимущественно реагирует адреналовой реакцией. Это хорошо согласуется с известными представлениями о том, что адреналин «гормон тревоги» ответствен за быструю мобилизацию энергетических ресурсов, быстрый переход организма из состояния покоя в состояние повышенной активности.

Таблица 8

Характеристика зон мощности в процессе выполнения физических упражнений

Характеристика физиологических показателей

Виды упражнений

Максимальной анаэробной (анаэробной) Утомление связано прежде всего с кислородно-транспортной системой, лимитирующей работоспособность. Энергообеспечение осуществляется за счет фосфагенной энергетической системы (АТФ+КФ) при некотором участии лактацидной (гликолитической) системы. «Средняя» лёгочная вентиляция не превышает 20−30% от максимальной. ЧСС повышается ещё до старта — 140−150, а после финиша — 160−180 уд/мин. Концентрация лактата в крови после работы составляет 5−8 ммоль/л. Перед выполнением упражнений несколько повышается концентрация глюкозы в крови. До и в процессе выполнения упражнений в крови повышается концентрация катехоламинов и гормона роста, снижается концентрация инсулина. Кислородный запрос может составлять 7−14 л, а кислородный долг- 6−12 л, то есть 90−95% от кислородного долга

Бег на 100 м, спринтерская велогонка на треке, плавание и ныряние на дистанцию до 50 м. Продолжительность — до 30 с

Околомаксимальной анаэробной (смешанной) Утомление связано прежде всего с кислородно-транспортной системой, лимитирующей работоспособность. Предстартовое повышение ЧСС — до 150−160, после финиша пульс достигает 180−190 уд/мин. В процессе выполнения упражнений легочная вентиляция растёт и к завершению достигает 50−60% от максимальной рабочей вентиляции для данного спортсмена (60−80 л/мин.). Возрастает скорость потребления O2 и достигает 70−80% от индивидуального МПК. Концентрация лактата в крови после упражнения высокая — до 15 ммоль/л. Она тем выше, чем больше дистанция и выше квалификация спортсмена. Концентрация глюкозы повышена — до 100−120 мг%

Бег на 200−400 м, плавание на дистанциях до 100 м, бег на коньках на 500 м. Продолжительность от -20 до 50 с

Субмаксимальной анаэробной.

В развитии утомления определяющим фактором является недостаточное снабжение мышц кислородом (энергетическое обеспечение идёт за счёт анаэробного гликолиза). Кислородный запрос может достигать 20−40 л, а уровень энергетических затрат в 4−5 раз превышает максимум аэробного производства энергии. ЧСС, сердечный выброс, лёгочная вентиляция могут быть близки к максимальным значениям для конкретного спортсмена. Концентрация лактата в рабочих мышцах и крови — до 20−25 ммоль/л. Соответственно рН крови снижается до 7,0. Повышается глюкоза в крови — до 1 50 мг%. Высоко содержание в плазме крови катехоламинов и гормона роста. Под влиянием продуктов анаэробного распада меняется проницаемость клеточных мембран для белков, увеличивается их содержание в крови, они могут выходить в мочу, где их концентрация достигает 1, 5%.

Бег на 800 м, плавание на 200 м, бег на коньках на 1000 и 1500 м, заезды на 1 км в велоспорте (трек). Продолжительность — от 1 до 2 мин

В заключение следует подчеркнуть, что напряженная и длительная физическая нагрузка обязательно сопровождается той или иной степенью утомления, которое, в свою очередь, вызывает процессы восстановления, стимулирует адаптационные перестройки в организме. Соотношение утомления и восстановления и есть, по существу, физиологическая основа процесса спортивной тренировки.

3.2 Течение восстановительных процессов в организме спортсменов после занятия легкой атлетикой

Ещё И. П. Павловым были вскрыты ряд закономерностей течения восстановительных процессов, не потерявших значения в настоящее время.

1. В работающем органе наряду с процессами разрушения и истощения происходит процесс восстановления, он наблюдается не только после окончания работы, но уже и в процессе деятельности.

2. Взаимоотношения истощения и восстановления определяются интенсивностью работы; во время интенсивной работы восстановительный процесс не в состоянии полностью компенсировать расход, поэтому полное возмещение потерь наступает позднее, во время отдыха.

3. Восстановление израсходованных ресурсов происходит не до исходного уровня, а с некоторым избытком (явление избыточных компенсаций). [27]

Взгляды И. П. Павлова развил его ученик Ю. В. Фольборт (1951), который заключил, что повторные физические нагрузки могут вести к развитию двух противоположных состояний:

— если каждая последующая нагрузка приходится на ту фазу восстановления, в которой организм достиг исходного состояния, то развивается состояние тренированности, возрастают функциональные возможности организма;

— если же работоспособность ещё не вернулась к исходному состоянию, то новая нагрузка вызывает противоположный процесс — хроническое истощение.

Постепенное исчезновение явлений утомления, возвращение функционального статуса организма и его работоспособности к до рабочему уровню либо превышение последнего соответствует периоду восстановления. Продолжительность этого периода зависит от характера и степени утомления, состояния организма, особенностей его нервной системы, условий внешней среды. В зависимости от сочетания перечисленных факторов восстановление протекает в различные сроки — от минут до нескольких часов или суток при наиболее напряжённой и длительной работе.

В зависимости от общей направленности биохимических сдвигов в организме и времени, необходимом для их возвращения к норме, выделяются два типа восстановительных процессов — срочное и отставленное.

Срочное восстановление распространяется на первые 0,5−1,5 часа отдыха после работы; оно сводится к устранению накопившихся за время упражнения продуктов анаэробного распада и оплате образовавшегося долга; отставленное восстановление распространяется на многие часы отдыха после работы. Оно заключается в усиливающихся процессах пластического обмена и реставрации нарушенного во время упражнения ионного и эндокринного равновесия в организме.

В период отставленного восстановления завершается возвращение к норме энергетических запасов организма, усиливается синтез разрушенных при работе структурных и ферментных белков.

В целях рационального чередования нагрузок необходимо учитывать скорость протекания восстановительных процессов в организме спортсменов после отдельных упражнений, их комплексов, занятий, микроциклов. Известно, что восстановительные процессы после любых нагрузок протекают разновременно, при этом наибольшая интенсивность восстановления наблюдается сразу после нагрузок. По данным В. М. Зациорского (1990), при нагрузках разной направленности, величины и продолжительности в течение первой трети восстановительного периода протекает около 60%, во второй -30% и в третьей — 10% восстановительных реакций. Восстановление функций после работы характеризуется рядом существенных особенностей, которые определяют не только процесс восстановления, но и преемственную взаимосвязь с предшествующей и последующей работой, степени готовности к повторной работе. К числу таких особенностей относят: неравномерное течение восстановительных процессов; фазность восстановления мышечной работоспособности; гетерохронность (неодновременность) восстановления различных вегетативных функций; неодинаковое восстановление вегетативных функций, с одной стороны, и мышечной работоспособности — с другой. [28]

Таблица 9

Время, необходимое для завершения восстановления различных биохимических процессов в период отдыха после напряжённой мышечной работы

Процессы

Время восстановления

Восстановление О2 — запасов в организме

10−15с

Восстановление алактатных анаэробных резервов в мышцах

2−5мин

Оплата алактатного О2 — долга

3−5 мин

Устранение молочной кислоты

0,5−1,5ч

Оплата лактатного О2 — долга

0,5−1, 5ч

Ресинтез внутримышечных запасов гликогена

12−48ч

Восстановление запасов гликогена в печени

12−48ч

Усиление индуктивного синтеза ферментных и структурных белков

12−72ч

Интенсивность протекания восстановительных процессов и сроки восполнения энергетических запасов организма зависят от интенсивности их расходования во время выполнения упражнения (правило В.А. Энгельгартда). Интенсификация процессов восстановления приводит к тому, что в определенный момент отдыха после работы запасы энергетических веществ превышают их до рабочего уровня. Это явление получило название суперкомпенсации, или сверхвосстановления. Протяженность фазы суперкомпенсации во времени зависит от общей продолжительности выполнения работы и глубины вызываемых ею биохимических сдвигов в организме.

Практика доказала, что только совокупное использование педагогических, медико-биологических, психологических средств и методов может составить наиболее эффективную систему восстановления.

Интенсивность и продолжительность тренировки

В разных видах физической деятельности интенсивность тренировки определяется разными параметрами. Например, в аэробных тренировках основным показателем интенсивности является частота сердечных сокращений (ЧСС), а в силовой тренировки величина отягощения и количество повторений. В данном материале рассмотрим, как определяется интенсивность в аэробных тренировках, а принципы построения силовой тренировки изложим в другой статье. [29]

Определение интенсивности нагрузки по ЧСС заключается в том, что существует максимальная ЧСС (ЧСС max) для каждого человека, которая определяется по формуле: 220-возраст. Интенсивность аэробной нагрузки измеряется в процентах от максимальной ЧСС. Например, для человека в возрасте 30 лет максимальная ЧСС равна 220−30 = 190. Если он выполняет нагрузку на пульсе равном 160 ударов в минуту, то это будет соответствовать нагрузке 85% от ЧСС max.

В зависимости от характера энергообеспечения все аэробные тренировки можно разделить на 5 зон интенсивности (таблица 10).

Таблица 10

Характеристика зон интенсивности тренировочного процесса

Зона интенсивности

% от ЧСС max

Предельная продолжительность нагрузки

Вид энергообеспечения

Общее описание

Максимальной аэробной мощности

96−100

3−10 минут

Мышечный гликоген

В оздоровительной тренировке не используется.

Около максимальной аэробной мощности

90−95

10−30 минут

Мышечный гликоген, жиры и глюкоза крови

Периодически может использоваться хорошо подготовленными людьми для развития скоростной выносливости. В оздоров-й тренировке также не используется.

Субмаксимальной аэробной мощности

80−89

30−110 минут

Мышечный гликоген, жиры и глюкоза крови

Используется для развития общей выносливости, укрепления сердечно-сосудистой системы.

Средней аэробной мощности

68−79

110−180 минут

Жиры, мышечный гликоген, глюкоза крови

Используется для поддержания и развития уровня общей выносливости. Рекомендуется как метод снижения веса.

Малой аэробной мощности

180 минут

Жиры, мышечный гликоген, глюкоза крови

Используется как метод реабилитации после перенесенных заболеваний.

Как видно из таблицы, каждая зона интенсивности имеет свое предельное время продолжительности занятия, которое может варьировать зависимости от уровня физической подготовки занимающегося. Если проводить тренировку в определенной зоне интенсивности дольше предельно допустимого времени, то очень вероятно, что через несколько таких тренировок наступит переутомление организма и интерес к занятиям пропадет. Если тренировки проводить меньше положенного времени, то эффективность занятия будет очень низкая, что также способствует пропаданию интереса к занятиям [30]

Почему при систематических тренировках повышается работоспособность человека

Почему и при каких условиях при систематических тренировках происходит повышение нашей физической работоспособности.

Физическая работоспособность человека определяется многими факторами, в том числе она сильно зависит от уровня физической активности. Чтобы ответить на вопрос, почему и при каких условиях при систематических тренировках происходит изменение физической работоспособности, рассмотрим несколько графиков, которые объясняют причины изменения работоспособности человека при занятиях физической культурой.

Рисунок 1. Изменения физической работоспособности при занятиях физическими упражнениями Из графика видно, что, приступая к тренировкам, работоспособность человека находится на каком-то определенном начальном уровне. В процессе тренировки наступает утомление организма и как следствие снижается работоспособность. После прекращения тренировки наступает этап восстановления и, что очень важно, физическая работоспособность и многие определяющие ее функции организма на протяжении периода восстановления после интенсивной тренировки не только достигают предрабочего уровня, но могут и превышать его, проходя через фазу перевосстановления. Спустя некоторое время, повышенная работоспособность возвращается на исходный уровень. [31]

Мы рассмотрели изменение физической работоспособности человека во время и после одного тренировочного занятия. Теперь, чтобы разобрать причины изменения уровня физической работоспособности при систематических тренировках, рассмотрим, что может быть с нашей работоспособностью при последующих тренировках.

Разберем с помощью графиков три возможных варианта.

Рисунок 2. Изменение физическойработоспособности при тренировках с неполным восстановлением Если, приступая к занятию, организм не успел восстановиться после предыдущей тренировки, то его работоспособность снижена по сравнению с начальным уровнем. В результате утомительной тренировки физическая работоспособность снижается до еще более низкого уровня, и если опять не дать организму до конца восстановиться, происходит накопление усталости, что может привести к разным негативным последствиям. Естественно, что такие тренировки могут принести только вред здоровью.

Рисунок 3. Физическая работоспособность при тренировках с большим интервалом отдыха Видно, что если тренировки проходят не регулярно, через большие промежутки времени, то все положительные эффекты тренировок успевают сглаживаться, в результате, приступая к очередной тренировки, приходится все начинать сначала. Конечно, при таком подходе вреда для здоровья не будет, но и пользы от такой работы совсем немного.

Рисунок 4. Изменение физической работоспособности при систематичесих тренировках с оптимальным временем отдыха Если частота занятия такая, что каждая последующая тренировка выполняется в тот момент, когда организм находится в стадии сверхвосстановления (работоспособность выше исходного уровня), то происходит суммация положительных эффектов тренировки и физическая работоспособность постепенно будет повышаться.

Частота, интенсивность и продолжительность тренировок.

Сколько раз в неделю необходимо тренироваться?

Из сказанного в предыдущей статье становится понятно, что частота занятий и время отдыха между ними являются одними из определяющих факторов. Давайте попробуем разобраться, как часто нам надо тренироваться.

Частота тренировок в неделю определяется такими факторами, как объем и интенсивность занятия, уровнем Вашей физической подготовки, а также поставленной перед Вами целью.

В занятиях физической культурой одинаковый эффект может быть достигнут относительно короткими (интенсивными) ежедневными тренировками и продолжительными (но менее интенсивными) тренировками 2−3 раза в неделю. Оптимальная частота занятий для тренировки выносливости — 3−5 раз в неделю, для силовой тренировки — 3 раза в неделю. В зависимости от стажа тренировок и уровня физической работоспособности частота занятий может быть 1−2 раза в неделю на начальном этапе, 2−3 раза в неделю для людей со средней и ниже средней физической подготовкой и 4−6 раз в неделю для людей хорошо подготовленных и адаптированных к занятиям спортом. Если целью занятий является только поддержание физической формы, то тренировки до двух раз в неделю будет вполне достаточно.

Восстановление работоспособности после тренировки

Тренировочная нагрузка. Критерии переутомления. Интервалы отдыха между тренировками

После прекращения физической работы происходят обратные изменения в деятельности тех функциональных систем организма, которые обеспечивали выполнение нагрузки. Вся совокупность изменений в этот период объединяется понятием восстановления. На протяжении восстановительного периода из организма удаляются продукты рабочего метаболизма и восполняются энергетические запасы, пластические вещества (белки, углеводы и т. д.) и ферменты, израсходованные за время мышечной деятельности. По существу происходит восстановление нарушенного работой равновесного состояния организма. Однако восстановление — это не только процесс возвращения организма к предрабочему состоянию. В период восстановления происходят также изменения, которые обеспечивают повышение функциональных возможностей организма, входя в стадию сверхвосстановления. [32]

Интервалы отдыха между занятиями зависят от величины тренировочной нагрузки. Они должны обеспечивать полное восстановление работоспособности как минимум до исходного уровня или в лучшем случае до фазы сверхвосстановления. Тренировка в фазе неполного восстановления недопустима, так как адаптационные возможности организма ограничены.

Чем больше продолжительность тренировочной нагрузки с соответствующей интенсивностью, тем более продолжительными должны быть интервалы отдыха. Так, продолжительность восстановления основных функций организма после кратковременной максимальной анаэробной работы — несколько минут, а после продолжительной работы малой интенсивности, например, после марафонского бега — несколько дней.

Под физической нагрузкой понимают меру воздействия физических упражнений на организм человека, которая складывается из чередования физической работы и отдыха Во время занятия физической культурой нагрузка определяется объемом (количеством повторений, продолжительностью выполнения упражнений, метражом, весовой нагрузкой) и интенсивностью (скоростью выполнения упражнений, интервалом отдыха между повторениями упражнений).

Оптимальная, целесообразная нагрузка — это нагрузка, вызывающая желаемые сдвиги в организме. Оценить воздействие нагрузки на организм можно по показателям функционального состояния (например, по величине ЧСС во время работы или скорости ее восстановления после нагрузки; по скорости двигательной реакции или точности воспроизведения движений).

Систематические занятия физкультурой приводят к адаптации человеческого организма к выполняемой физической работе. В основе адаптации лежат изменения мышечных тканей и различных органов в результате тренировок. Все эти изменения определяют тренировочные эффекты. Они проявляются в улучшении разнообразных функций организма и повышении физической подготовленности.

При анализе факторов, определяющих физические тренировочные эффекты упражнений можно выделить такие аспекты:

функциональные эффекты тренировки

пороговые, «критические» нагрузки для возникновения тренировочных эффектов.

обратимость тренировочных эффектов

специфичность тренировочных эффектов

тренируемость, определяющая величину тренировочного эффекта Последние два аспекта наиболее важны в спортивной тренировке.

Систематическое выполнение определенного рода физических упражнений вызывает следующие основные положительные функциональные эффекты:

Усиление максимальных функциональных возможностей всего организма, его ведущих систем

Повышение экономичности, эффективности деятельности всего организма, его ведущих систем Первый эффект определяется ростом максимальных показателей при выполнении предельных нагрузок. Они отражают текущие максимальные возможности организма, существенные для данного вида упражнений.

Например, об эффекте тренировки выносливости говорит повышение максимальных возможностей в усвоении кислорода, максимального потребления кислорода и продолжительности мышечной работы на выносливость.

Второй эффект проявляется в уменьшении функциональных сдвигов в деятельности других органов и систем организма при выполнении определенной нагрузки. Так, при выполнении одинаковой нагрузки у тренированного и нетренированного наблюдаются более низкие показатели для последнего. Для тренированного же человека будет наблюдаться более низкие функциональные изменения в частоте сердечных сокращений, дыхания или потребления энергии.

В основе этих положительных эффектов лежат:

Структурно-функциональные изменения ведущих органов жизнедеятельности при выполнении определенной работы.

Совершенствование центральной — нервной, эндокринной и автономной клеточной регуляции функций в процессе выполнения физических упражнений.

Одним из основных вопросов при занятии физической подготовкой является выбор соответствующих, оптимальных нагрузок. Они могут определяться следующими факторами:

Реабилитациями после всевозможных перенесенных заболеваний, в том числе и хронических.

Восстановительно-оздоровительная деятельность для снятия психологического и физического напряжения после работы.

Поддержание существующей тренированности на существующем уровне.

Повышение физической подготовки. Развитие функциональных возможностей организма.

Как правило, не возникает серьезных проблем с выбором нагрузок во втором и третьем случаях. Сложнее обстоит дело с выбором нагрузок в первом случае, что и составляет основное содержание лечебной физической культуры.

В последнем случае повышение функциональных возможностей отдельных органов и всего организма, т. е. достижение тренировочного эффекта, достигается в том случае, если систематические тренирующие нагрузки достаточно значительны, достигают или превышают в процессе тренировки некоторую пороговую нагрузку. Такая пороговая тренирующая нагрузка должна превышать повседневную нагрузку.

ЗАКЛЮЧЕНИЕ

Исходя из изучения литературных источников можем сделать вывод, что занятия легкой атлетикой оказывают разностороннее влияние на организм человека. Способствуют равномерному развитию мышц, тренируют и укрепляют сердечно — сосудистую, дыхательную и нервную системы, опорно-двигательный аппарат, повышают обмен веществ.

Адаптация организма к физическим нагрузкам происходит при занятиях физическими упражнениями. Каждый человек перед занятиями должен поставить перед собой цель чего он должен достигнуть улучшить свое здоровье, укрепить сердечно — сосудистую систему, сбросить лишний вес и т. д. От этого и будет зависеть, какую нагрузку надо использовать для достижения цели. С этим и будет связана адаптация организма к физическим нагрузкам.

Выбор оптимальной величины тренировочной нагрузки, а также продолжительности, интенсивности и частоты занятий определяется уровнем физического состояния занимающегося. Индивидуализация тренировочных нагрузок в оздоровительной физической культуре является важнейшим условием их эффективности; в противном случае тренировка может принести вред.

В зависимости от уровня физического состояния все занимающиеся могут быть разделены на три группы: первая группа (специальная) — УФС низкий и ниже среднего, вторая (подготовительная) — УФС средний и третья (основная) — УФС выше среднего (уровень физического состояния).

Как уже стало понятно, оптимальная дозировка тренировочной нагрузки является одним из критериев эффективности занятий физической культурой. Помимо специальных тестов, которые позволяют определить уровень физической подготовки и подобрать соответствующую нагрузку, существуют способы регулярно контролировать свое состояние и тем самым регулировать интенсивность занятий.

Суммарным показателем величины нагрузки (продолжительность плюс интенсивность) является величина ЧСС, измеренная через 10 и 60 минут после окончания занятия. Через 10 минут пульс не должен превышать 96 ударов в минуту, а через 1 час должен быть на 10−12 ударов в минуту выше исходной (до рабочей) величины. Например, если до начала занятия пульс был 70 ударов в минуту, то в случае адекватности нагрузки через 1 час после окончания тренировки он должен быть не более 82 ударов в минуту. Если же в течение нескольких часов после тренировки значения ЧСС значительно выше исходных, это свидетельствует о чрезмерности нагрузки, значит ее необходимо уменьшить.

Объективные данные, отражающие суммарную величину тренировочного воздействия на организм (за недельный и месячный цикл занятий) и степень восстановления, можно получить, ежедневно подсчитывая пульс утром после сна, в положении лежа. Если его колебания не превышают 2−4 ударов в минуту, это свидетельствует о хорошей переносимости нагрузок и полном восстановлении организма. Если же разница пульсовых ударов больше этой величины, это сигнал начинающегося переутомления; в этом случае нагрузку следует немедленно уменьшить.

Очень важный фактор при этом — полноценное питание с включением в пищу достаточного количества витаминов, микроэлементов, минеральных солей. Использование знаний физиологии и медицины в решении многочисленных задач, стоящих перед спортивными педагогами, физиологами, врачами, может дать возможность управления тренировочным процессом, процессами восстановления после тренировочных и соревновательных нагрузок, повышения спортивной работоспособности, что в конечном итоге неминуемо приведет к достижению спортсменом высоких спортивных результатов.

1. Анохин П. К. Очерки по физиологии функциональных систем — М.: Медицина, 1975. 477 с.

2. Анохин П. К. Узловые вопросы теории функциональной системы — М.: Наука, 1980. — 197 с.

3. Балыкин М., Х. Каркобатов, А. Чонкоева, Е. Блажко, Р. Юлдашев, Ю. Пенкина. Структурная «цена» адаптации к физическим нагрузкам в условиях высокогорья Человек в мире спорта: новые идеи, технологии, перспективы / Тез. докл. Междунар. конгр. М., 24−28 мая 1998 г., т.1, с.170−171.

4. Верхошанский Ю. В. Горизонты научной теории и методологии спортивной тренировки // Теор. и практ. физ. культ 1998, № 7, с. 41−54.

5. Коц Я. М., Спортивная физиология. — М.: Физкультура и спорт, 1986.

6. Виру А. А., П. К. Кырге. Гормоны и спортивная работоспособность. — М.: ФиС, 1983. — 159 с.

7. Коробков А. В., Головин В. А., Масляков В. А. Физическое воспитание. — М.: Высш. школа, 1983.

8. Матвеев Л. П. Основы спортивной тренировки. — М.: ФиС, 1977.

9. Новикова А. Д., Теория и методы физического воспитания.

Волков Н. И. Закономерности биохимической адаптации в процессе спортивной тренировки: Учебн. пос. для слушат. Высш. шк. тренеров ГЦОЛИФКа. М., 1986. — 63 с.

10. Волков Н. И. Биология спорта на пороге ХХI века: Юбилейный сборник трудов ученых РГАФК, т.1. — М.: ФОН, 1998. — с. 55−60.

11. Воробьев А. Н. Тяжелоатлетический спорт. Очерки по физиологии и спортивной тренировке. Изд. 2-е. — М.: ФиС, 1977. — 255 с.

12. Воронцов А. Р. Теоретические основы воспитания специальной выносливости пловца // Лекции для студ. ИФК. — М.: ГЦОЛИФК, 1981. — 47 с.

13. Гаркави Л. Х., Е. Б. Квакина, М. А. Уколова. Адаптационные реакции и резистентность организма. — Ростов-на-Дону: Ростовский ун-т, 1977. — 109 с.

14. Гаркави Л. Х., Е. Б. Квакина, М. А. Уколова. Адаптационные реакции и резистентность организма. 2-е изд., доп. — Ростов-на-Дону: Ростовский ун-т, 1979. — 128 с.

15. Горизонтов П. Д., Т. Н. Протасова. Роль АКТГ и кортикостероидов в патологии. — М.: Медицина, 1968. — 335 с.

16. Иорданская Ф. А. О норме и патологии у ведущих спортсменов Донозологические состояния у спортсменов и слабые звенья адаптации к мышечной деятельности. — М., 1982. — с.10−18

17. Коновалов В. Изучение адаптационных реакций организма спортсменов, специализирующихся в легкоатлетических видах на выносливость Человек в мире спорта: новые идеи, технологии, перспективы / Тез. докл. Междунар. конгр. Москва, 24−28 мая 1998 года. Т.1, с.84−85

18. Кузнецова Т. Н. Контроль за переносимостью нагрузок в спортивном плавании по показателям системы белой крови: Автореф. канд. дис. М., 1989

19. Матвеев Л. П. О проблемах теории и методики спортивной тренировки // Теор. и практ. физ. культ.1964, № 4.

20. Матвеев Л. П. Основы спортивной тренировки. — М.: ФиС, 1977. — 248 с.

21. Меерсон Ф. З., М. Г. Пшенникова. Адаптация к стрессовым ситуациям и физическим нагрузкам. — М.: Медицина, 1988. — 256 с.

22. Павлов С. Е., В. В. Асеев и др. Использование низкоэнергетических инфракрасных лазеров в спортивной медицине, как средства повышения спортивной работоспособности. Современное состояние проблемы применения лазерной медицинской техники в клинической практике. Ч.1. М., 1992, с. 95.

23. Павлов С. Е., Т. Н. Кузнецова. Методика применения физиотерапевтических средств (низкоэнергетических ИК-лазеров) в тренировочном процессе пловцов. Метод. разраб. для преподавателей, аспирантов и студентов РГАФК — М.: РГАФК, 1997. — 52 с.

24. Коробков А. В., Головин В. А., Масляков В. А. Физическое воспитание — Высш. школа, 1983.

25. Коц Я. М., Спортивная физиология. — М.: Физкультура и спорт, 1986.

26. Матвеев Л. П. Основы спортивной тренировки. — М.: ФиС, 1977.

27. Новикова А. Д., Теория и методы физического воспитания.

28. Фомин Н. А., Вавилов Ю. Н. Физиологические основы двигательной активности. М.: «ФиС», 1991.

29. Фомин Н. А., Филин В. П. «Возрастные основы физического воспитания». М.: «ФиС», 1982.

30. Холодов Ж. К., Кузнецов B.C. Теория и методика физического воспитания и спорта. / Учебн. пособие для ст-ов высш. учебн. заведений — М.: Издательский центр «Академия», 2000.

31. Хрипкова А. Г., Антропова М. В., Фарбер Д. А. Возрастная физиология. — М.: Просвещение, 1990.

32. Воробьев, В.И. — Определение физической работоспособности спортсменов: Учебное пособие / В. И. Воробьев. — Челябинск, 1998. — 54 с.

33. Физиология человека. Учебник для студентов высших учебн. заведений. /Под общ. ред. Зимкина Н.В. М. Высшая школа, 1984.

34. Аулик, И. В. Определение физической работоспособности в клинике и cпорте / И. В. Аулик // Здоровье нации: Сб. материалов Междунар. науч. Конгр. — М., 1979. — С.192.

35. Ашмарин, Б.А. — Теория и методика физического воспитания: Учебник / Б. А. Ашмарин, Ю. А. Виноградов, 3.Н. Вяткина. — М.: Просвещение, 1990.-287с.

36. Ашмарин, Г. А. — Теория и методика педагогических исследований в физическом воспитании: Учебное пособие / А. Г. Ашмарин.- М.: Просвещение, 1995.-287с.

37. Зимкина, Н.В. — Физиология человека: Учебник / Н. В. Зимкина. — М.: Физкультура и спорт, 1964.-589с.

38. Анатомия человека: Учебник / М. Ф. Иваницкий, Б. А. Никитюка, А. А. Гладышев, Ф. В. Судзиловский. — М.: Тера-Спорт, 2003 — 624 с.

Показать весь текст
Заполнить форму текущей работой