Помощь в написании студенческих работ
Антистрессовый сервис

Анализ механизмов генерации и распространения вариабельного потенциала у проростков тыквы и пшеницы

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Электрические сигналы у высших растений вызывают изменения их функционального состояния, такие как: увеличение интенсивности дыхания (8туикЫп, ВгШкоу 1967; БИек, Козс1е1так 1997), временное снижение активности фотосинтеза (Ви'усЬеу е1 а! 2004; Ког! о! ек е{ а1. 2004; Ьаи{-пег е! а1. 2005), индукция экспрессии генов рт2апкоую, Davies, 1996; Р1заЬп е1 а1. 2004), временное увеличение содержания АТФ… Читать ещё >

Анализ механизмов генерации и распространения вариабельного потенциала у проростков тыквы и пшеницы (реферат, курсовая, диплом, контрольная)

Содержание

  • Список сокращений
  • 1. Обзор литературы
    • 1. 1. Особенности электрогенеза высших растений в покое и при возбуждении
    • 1. 2. Вариабельный потенциал
      • 1. 2. 1. Общая характеристика
      • 1. 2. 2. Механизм генерации вариабельного потенциала
      • 1. 2. 3. Механизм распространения вариабельного потенциала
    • 1. 3. Функциональная роль потенциалов возбуждения у высших растений
  • 2. Материалы и методы
    • 2. 1. Объекты исследования
    • 2. 2. Методы исследования
      • 2. 2. 1. Нанесение локального раздражения
      • 2. 2. 2. Регистрация электрической активности
      • 2. 2. 3. Ингибиторный анализ
      • 2. 2. 4. Измерение ионных концентраций потенциометрическим методом
      • 2. 2. 5. Оптическая когерентная микроскопия
      • 2. 2. 6. Распространение радиоактивной метки
      • 2. 2. 7. Математическое моделирование
      • 2. 2. 8. Статистическая обработка результатов
  • 3. Результаты и обсуждение
    • 3. 1. Общая характеристика реакции, индуцированной локальным повреждением
    • 3. 2. Анализ ионного механизма генерации вариабельного потенциала
    • 3. 3. Анализ механизма распространения вариабельного потенциала
      • 3. 3. 1. Сопоставление скоростей гидравлического сигнала и вариабельного потенциала
      • 3. 3. 2. Анализ возможности распространения вариабельного потенциала в соответствии с химической гипотезой
    • 3. 4. Математическая модель генерации и распространения ВП

Актуальность проблемы. Функционирование растения в меняющихся условиях окружающей среды требует непрерывной адаптации к действию неблагоприятных факторов. Развитие системного ответа при локальном воздействии возможно лишь при условии распространения стрессовых сигналов. У растений выделяют несколько типов стрессовых сигналов — химические, гидравлические и электрические. К электрическим сигналам относят потенциал действия (ПД) и вариабельный потенциал (ВП) (81аЫЬе^ й а1., 2006; Эау1е8, 2006). Генерация ПД происходит при действии неповреждающего раздражения, а ВП, характерная только для высших растений электрическая реакция, возникает при повреждении. Основной отличительной чертой этой реакции является её нерегулярность (вариабельность). ВП отличается от ПД изменчивой формой и амплитудой, способностью возникать в период абсолютной рефрактерности после ПД, и меньшей скоростью распространения. Кроме того, ВП характеризуется значительно большей длительностью, особенно в фазе реполяризации (Опритов и др., 1991; 81апкоую е1 а1., 1998; 81аЫЬе^ е1 а1., 2006).

Электрические сигналы у высших растений вызывают изменения их функционального состояния, такие как: увеличение интенсивности дыхания (8туикЫп, ВгШкоу 1967; БИек, Козс1е1так 1997), временное снижение активности фотосинтеза (Ви'усЬеу е1 а! 2004; Ког! о!ек е{ а1. 2004; Ьаи{-пег е! а1. 2005), индукция экспрессии генов рт2апкоую, Davies, 1996; Р1заЬп е1 а1. 2004), временное увеличение содержания АТФ (Сухов и др., 2005), индукция биосинтеза жасмоновой и абсцизовой кислоты (Н1ауаскоуа, 2007) и др. Вызванные электрическими сигналами изменения функциональной активности, вероятно, направлены на повышение устойчивости растений к действию неблагоприятных факторов (Пятыгин и др., 2008). Пути преобразования электрических сигналов в функциональный ответ на сегодняшний день не известны. Для их понимания необходимо изучение процессов генерации и распространения электрических сигналов.

В настоящее время достаточно хорошо изучены генерация и распространение ПД. Генерация ПД начинается с активации потенциал-зависимых кальциевых каналов и поступления в клетку Са2+, который активирует хлорные каналы (Lunevsky et al., 1983; Lewis et al., 1997). Входящий.

— y, поток Ca и выходящий поток СГ формируют фазу деполяризации ПД. Фаза реполяризации ПД формируется выходящим потоком К+ (Fromm, Spanswick, 1993). В генерации ПД участвует также Н±АТФаза плазмалеммы, вклад которой наиболее значителен в фазе реполяризации (Воденеев и др., 2006).

Сведения об ионном механизме генерации ВП противоречивы. В настоящее время сложилось мнение, что генерация ВП целиком обусловлена переходным изменением активности Н±АТФазы, без возникновения пассивных потоков ионов (Julien et al., 1991; Stahlberg et al., 2006; Zimmermann et al., 2009). Однако сведений для формирования целостной картины генерации ВП недостаточно. Механизм распространения ВП также остаётся не установленным. В отличие от ПД, электрически распространяющегося по флоэме, распространение ВП связывают с ксилемой. Существуют две гипотезы распространения ВП: химическая (Malone, 1996; Davies Е., 2006) и гидравлическая (Malone, 1996; Mancuso S., 1999; Stahlberg et al., 2006). Таким образом, несмотря на значительный период исследований, сведения о ВП у высших растений фрагментарны и остаются противоречивыми. Также отсутствует теоретическое (математическое) описание генерации и распространения ВП.

Цель и основные задачи исследования. Целью работы явилось изучение механизмов генерации и распространения индуцированного локальным повреждением ВП у высших растений.

В связи с поставленной целью выполнялись следующие задачи: 1. Определение основных параметров электрических реакций, индуцированных ожогом;

2. Ингибиторный анализ механизма генерации ВП;

3. Анализ концентрационных сдвигов ионов хлора и протонов потенциометрическим методом при генерации ВП;

4. Анализ механизма распространения ВП на основании сопоставления скоростей распространения гидравлического сигнала и радиоактивной метки со скоростью ВП;

Составление общей схемы распространения и генерации ВП и разработка математической модели ВП.

Научная новизна. Впервые показано, что в генерацию вариабельного потенциала, наряду с изменением активности электрогенного насоса, вносят вклад пассивные потоки ионов Са2+ и СГ.

Распространение ВП может быть обусловлено турбулентной диффузией некоего химического соединения («фактора Рикка») из зоны локального повреждения. Экспериментально показано, что скорость распространения радиоактивной метки из зоны повреждения сопоставима со скоростью распространения ВП.

Предложена схема распространения и генерации ВП у высших растений, согласно которой формирование ВП связано с активацией лиганд-зависимых Саканалов раневым фактором Рикка. Вход в клетку ионов Са, вероятно, вызывает активацию анионных каналов и инактивацию Н±АТФазы.

На основании предложенной схемы разработана математическая модель генерации ВП у высших растений, которая включает в себя описание систем пассивного и активного (первичного и вторичного) транспорта ионов, а также изменения ионных концентраций в клетке, внеклеточной среде, буферные свойства цитоплазмы и апопласта. Верификация модели показала качественное сходство экспериментально зарегистрированных и симулированных изменений потенциала.

Научно-практическое значение. Результаты работы важны для создания целостной картины формирования электрофизиологического ответа у высших растений на действие повреждающих раздражителей. Предложенная в работе схема генерации ВП способствует пониманию механизмов преобразования электрического сигнала в функциональный ответ у высших растений.

Основные выводы и результаты работы могут быть использованы в учебном процессе при разработке соответствующих спецкурсов.

Основные положения диссертации, выносимые на защиту.

1. По мере удаления от зоны локального повреждения уменьшается амплитуда и скорость распространения электрической реакции, изменяется количество импульсов в составе ВП. Это свидетельствует об ослаблении индуцирующего электрический ответ сигнала, передаваемого по растению.

2. Ингибиторный анализ механизма генерации ВП и зарегистрированные потенциометрическим методом концентрационные сдвиги, сопровождающие реакцию, свидетельствуют об участии потоков Са2т, Н+ и СГ в формировании ВП.

3. Инициация ВП обусловлена распространением химического вещества из зоны локального повреждения, о чём свидетельствует соответствие скоростей распространения по растению радиоактивной метки и ВП, а также отсутствие ВП при механическом блокировании распространения химического сигнала.

4. Изменения потенциала, описываемые математической моделью ВП, качественно соответствуют экспериментальным данным, что подтверждает основные положения предложенной модели.

выводы.

1. С увеличением расстояния от зоны локального повреждения происходит снижение амплитуды и скорости распространения ВП, а также изменение количества импульсов в его составе. Такое затухание реакции может свидетельствовать об ослаблении индуцирующего электрический ответ сигнала, передаваемого по растению.

2. Подавление входящего потока Са2+, ингибирование Н±АТФазы и блокирование анионных каналов ведет к угнетению генерации ВП. Генерация ВП сопровождается переходным защелачиванием апопласта и временным увеличением концентрации СГ. Совокупность полученных данных указывает на совместное чН" 2~ь участие НАТФазы и пассивных потоков ионов Са и СГ в процессе генерации ВП.

3. Индукцию ВП вызывает распространение из зоны локального повреждения «фактора Рикка», на что указывают следующие факты: скорость распространения гидравлической волны значительно превышает скорость распространения ВПскорость распространения радиоактивной метки из зоны локального повреждения соответствует скорости распространения ВПблокирование передачи «фактора Рикка» из зоны локального повреждения подавляет распространение ВП.

4. Разработана математическая модель генерации и распространения ВП, учитывающая совместное участие активного и пассивного транспорта ионов в процессе генерации, а так же диффузию раневого вещества. Описываемые моделью изменения потенциала хорошо соответствуют экспериментальным, что служит подтверждением основных положений модели.

ЗАКЛЮЧЕНИЕ

.

В целом, на основании полученных результатов можно предложить следующую схему событий при развитии ВП. Нанесение повреждающего воздействия вызывает выделение «фактора Рикка». «Фактор Рикка» распространяется из зоны локального повреждения по сосудам ксилемы. При этом скорость перемещения соединения значительно возрастает вследствие прохождения гидравлической волны, индуцированной повреждением. По мере распространения «фактор Рикка» активирует лиганд-управляемые кальциевые каналы примыкающих к сосудам ксилемы живых клеток. Вход ионов кальция в клетку является начальным этапом генерации ВП. Увеличение концентрации ионов кальция в клетке вызывает снижение активности Н±АТФазы, а также активацию анионных каналов, что ведет к возникновению выходящего потока хлора, вносящего существенный вклад в деполяризацию. Затем, по-видимому, происходит восстановление концентрации кальция в цитозоле. Можно полагать, что такое снижение концентрации кальция сначала ведет к инактивации хлорных каналов, при подавленной активности Н±АТФазы, а дальнейшее снижение приводит к реактивации Н±АТФазы, которая вносит основной вклад в формирование фазы реполяризации ВП. Таким образом, генерация ВП связана как с пассивными потоками ионов Са2+ и СГ, так и с изменением активности Н±АТФазы. Необходимо подчеркнуть, что генерация ПД происходит при участии тех же потоков ионов, что говорит об универсальности механизмов генерации электрических сигналов различного типа у высших растений. Можно полагать, что однонаправленные изменения функциональной активности, индуцированные как ПД, так и ВП, обусловлены качественным сходством в изменениях ионных концентраций, сопровождающих генерацию электрических реакций обоих типов.

Показать весь текст

Список литературы

  1. В.А., Акинчиц Е. К., Орлова Л. А., Сухов B.C. (2011) Анализ роли ионов
  2. Ca, Н СГ в генерации вариабельного потенциала у высшего растения Cucurbita pepo L. Физиология растений.6 (58): 826−833-
  3. В.А., Опритов В. А., Пятыгин С. С. (2006) Обратимое изменение внеклеточного pH при генерации потенциала действия у высшего растения Cucurbita pepo. Физиология растений. 53: 583−545-
  4. В.А. (2009) Механизмы генерации и функциональная роль потенциалов возбуждения у высших растений. Диссертация на соискание ученой степени доктора биологических наук. Н. Новгород-
  5. Ю.В. (2009) Природа пищевого тракта сосудистых растений. Цитология. 51(5): 375−387-
  6. С. (1998) Медико-биологическая статистика. Пер. с англ. М., Практика. 459 е.-
  7. М. (2009) Молекулярная и клеточная биофизика. Издательство: Бином. Лаборатория знаний. 552 е.-
  8. И.П. (2005) Физиология растений: учебник для студентов ВУЗов. Издательство: Издательский центр «Академия». 637 е.-
  9. В.В., Дмитриева Г. А. (2005) Физиология растений: Учеб. для вузов. М.: Высш. шк. 736 е.-
  10. Ю.Левич В. Г. (1959) Физико-химическая гидродинамика. М.: Физматгиз, 699 е.-
  11. П.Медведев С. С. (1998) Электрофизиология растений. СПб.: Изд-во СпбГУ. 184 с.
  12. С.С., Опритов В. А., Половинкин A.B., Воденеев В. А. (1999) О природе генерации потенциалов действия у высших растений. Доклады АН. 366: 404−407-
  13. С.С., Воденеев В. А., Опритов В. А. (2006) Деполяризация плазматической мембраны как универсальная первичная биоэлектрическая реакция растительных клеток на действие различных факторов. Успехи современной биологии. 126: 493−502-
  14. С.С., Опритов В. А., Воденеев В. А. (2008) Сигнальная роль потенциала действия у высших растений. Физиология растений. 55: 312 319-
  15. С.С. (2001) Электрогенез клеток высшего растения при адаптации к охлаждению: Дисс. докт. биол. наук. Пущино: ИБК РАН, 2001. 292 е.-
  16. С.С. (2003) Электрогенез клеток растения в условиях стресса. Успехи современной биологии. 123: 552−562-
  17. С.С. (2008) Распространяющиеся электрические сигналы в растениях. Цитология. 50: 154−159-
  18. В.Г., Опритов В. А., Лобов CA. (2001) Компьютерное электрофизиологическое исследование распространения потенциала действия в стебле проростка тыквы. Вестник ННГУ. Серия: Биология. № 1. 190−197-
  19. А.Б. (2004) Биофизика: В 2 т. Т. 2: Биофизика клеточных процессов: Учебник. Издательство: МГУ. 471 е.-
  20. В. С., Воденеев В. А., Орлова О. В. (2005) Влияние распространяющихся биоэлектрических реахций на световую стадию фотосинтеза и содержание АТФ в семядольных листьях Cucurbita реро L. Вестник ННГУ. Серия Биология. № 10. 218−224-
  21. B.C., Шерстнева О. Н., Сурова JI.M., Румянцев Е. А., Воденеев В. А. (2013) Влияние вариабельного потенциала на фотосинтез проростков тыквы. Биофизика. 58 (3): 128−135-
  22. И.А. (2002) Сигнальные системы клеток растений. М.: Наука. 294 е.-
  23. Дж. (1985) Введение в теорию ошибок. М.: Мир. 272 е.-
  24. Ю.Б., Зацепина Г. Н. (1980) Электрическая природа распространения вариабельного потенциала у традесканции. Биофизика. 35: 708−712.-
  25. В., Engelmann W. (1995) Pulvini in relation to the membrane potential of motor cells and leaflet movements. Planta. 196: 350−356-
  26. M.J., Shepherd V.A. (2001). Modeling the current-voltage characteristics of charophyte membranes. II. The effect of salinity on membranes of Lamprothamnium papulosum. J. Membrane Biol. 181: 77−89-
  27. Aart J.E. van Bela, Michael Knoblauchb, Alexandra C.U. Furcha, Jens B. Hafkea (2011) (Questions)n on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Science. 181: 210−218-
  28. Bentrup F.-W. (1990) Potassium ion channels in the plasmalemma. Physiol. Plant. 79:705−711-
  29. G.N., Kataev A.A. (2005). Voltage-gated calcium and Ca2±activated chloride channels and Ca2+ transients: voltage-clamp studies of perfused and intact cells of Chara. Eur. Biophys. J. 34: 973−86-
  30. P., Makus D.J., Pearce G., Ryan C.A. (1981). Proteinase inhibitor inducing factor activity in tomato leaves resides in oligosaccharides enzymatically released from cell walls. Proc. Natl. Acad. Sci. USA. 78: 35 363 540-
  31. M.R. (1992) K±channels of stomatal guard cells. J. Gen. Physiol. 99: 615 644-
  32. Boari F" Malone M. (1993) Rapid and systemic hydraulic signals are induced by localized wounding in a wide range ofspecies. J. Exp. Bot. 44: 741−746-
  33. Bulychev A.A., Kamzolkina N.A.(Krupenina), Luengviriya J., Rubin A.B., Miiller S.C. (2004) Effect of a single excitation stimulus on photosynthetic activity and light dependent pH banding in Chara cells. J. Membr. Biol. 202: 11−19-
  34. A.A. (2012) Membrane excitation and cytoplasmic streaming as modulators of photosynthesis and proton flows in characean cells. In: Plant Electrophysiology, A. G. Volkov (ed.). Springer-Verlag Berlin Heidelberg, pp. 273−300-
  35. D.S. (1993) Regulation of cytosolic calcium in plants. Plant Physiol. 103: 7−13-
  36. J.M., Pickard B.G. (1977) Electrical characteristics of cells from leaves of Lycopersicon. Can. J. Bot. 55: 497−510-
  37. E. (1987) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant, Cell and Environ. 10: 623−631-
  38. E. (2006) Electrical signals in plants: facts and hypotheses. In: Plant Electrophysiology. Theory and Methods, Volkov A.G. (ed.). Berlin-Heidelberg: Springer, pp. 407−422-
  39. De Nisi P., Dell’Orto M., Pirovano L., Zocchi G. (1999) Calcium-dependent phosphorylation regulates the plasma-membrane HT-ATPase activity of maize (Zea mays L.) roots. Planta. 209: 187−194-
  40. H., Trebacz K., Zawadzki T. (1989) The effect of excitation on the rate of respiration in the liverwort Conocephalum conicum. Physiol. Plant. 75: 417423-
  41. H., Szarek I., Zawadzki T. (1999) Effects of local cutting on peroxidase activity in the liverwort Conocephalum conicum. Plant peroxidase Newsletter. 12, 3−8-
  42. H., Trebacz K., Zawadzki T. (2001) Transmission route for action potentials and variation potentials in Helianthus annuus L. J. Plant. Physiol. 158: 1167−1172-
  43. H. (2003) Ways of signal transmission and physiological role of electrical potentials in plants. Acta Soc. Bot. Pol. 72: 309−318-
  44. E.E., Ryan C.A. (1990). Interplant communication: airborn methyl jasmonate induces synthesis of protein inhibitor in plant leaves. Proc. Natl. Acad. Sei USA. 87: 7713−7716-
  45. E.E., Ryan C.A. (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell. 4: 129−134-
  46. P., Greppin H., Agosti R.D. (2001) Repetitive action potentials induced in Arabidopsis thaliana leaves by wounding and potassium chloride application. Plant Physiol. Biochem. 39: 961−969-
  47. Felle H.H., Herrmann A., Huckelhoven R., Kogel K.-H. (2005) Root-toshoot signalling: apoplastic alkalinization, a general stress signal and defence factor in barley (Hordeum vulgare). Protoplasma. 227: 17−24-
  48. H. (1981) A study of the current-voltage relationships of electrogenic active and passive membrane elements in Riccia fluitans. Biochim. Biophys. Acta. 646: 151−160-
  49. H.H., Zimmermann M.R. (2007) Systemic signaling in barley through action potentials. Planta. 226: 203−214-
  50. M., Koscielniak J. (1997) The effect of wounding the roots by high temperature on the respiration rate of the shoot and propagation of electric signal in horse bean seedlings (Vicia faba minor). Plant Science. 123: 39−46-
  51. J., Eschrich W. (1988) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. I. The movement of 14C-labelled photoassimilates. Trees. 2: 7−17-
  52. J., Hajirezaei M., Wilke I. (1995) The biochemical response of electrical signaling in the reproductive system of Hibiscus plants. Plant Physiol. 109: 375−384-
  53. J. (1991) Control of phloem unloading by action potentials in Mimosa. Plant Physiol. 83: 529−530-
  54. J. (2006) Long-Distance Electrical Signaling and Physiological Functions in Higher Plants. In: Plant Electrophysiology. Theory and Methods, Volkov A.G. (ed.). Berlin, Heidelberg: Springer-Verlag. pp. 269 286-
  55. J., Bauer T. (1994) Action potentials in maize sieve tubes change phloem translocation. J. Exp. Bot. 45: 463−469-
  56. J., Lautner S. (2007) Electrical signals and their physiological significance in plants. Plant, Cell and Environ. 30: 249−257-
  57. J., Spanswick R. (1993) Characteristics of action potentials in willow (Salix viminalis L.). J. Exp. Bot. 44: 1119−1125-
  58. Gamalei Yu.V., van Bel A.J.E., Pakhomova M.V., Sjutkina A.V. (1994) Effects of temperature on the conformation of the endoplasmic reticulum and on starch accumulation in leaves with the symplasmic minor-vein configuration. Planta. 194:443−453-
  59. D. (2001) Models for oscillations in plants. Aust J Plant. Physiol. 28: 577−590-
  60. D., Hoffstadt J. (1998) Electrocoupling of ion transporters in plants: interaction with internal ion concentrations. J. Membr. Biol. 166: 51−59-
  61. T.E., Lautner S., Felle H.H., Matyssek R., Fromm J. (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ. 32:319−326-
  62. I.I. Sinyukhin A.M. (1963) Functional significance of action currents affecting the gas exchange of higher plants. Fiziol. Rast. 10: 219−226-
  63. Hansen U.-P., Gradmann D., Sanders D., Slayman C.L. (1981) Interpretation of current-voltage relationships for «active» ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms. J. Membr. Biol. 63: 165−190-
  64. V., Naus J. (2007) Chemical signal as a rapid long-distance information messenger after local wounding of plant? Plant Signaling & Behavior. 103−105-
  65. J.L., Frachisse J.M. (1992) Involvement cf the proton pump and proton conductance change in the wave of depolarization induced by wounding in Bidens pilosa. Can. J. Bot. 70: 1451−1458-
  66. Julien J.L., Desbiez M.O., de Jaeger G., Frachisse J.M. (1991) Characteristics of the wave of depolarization induced by wounding in Bidens pilosa L. J. Exp. Bot. 42: 131−137-
  67. Kinoshita T., Nishimura J.M., Shimazakibs K.-I. (1995) Cytosolic2*t- «Iconcentration of Ca regulates the plasma membrane H -ATPase in guard cells of fava bean. The Plant Cell. 7: 1333−1342-
  68. B., Weiler E.W. (1999) A calcium-selective channel from root-tip endomembranes of garden cress. Plant Physiol. 119: 1399−1405-
  69. H., Katou K., Okamoto H. (1985) Homeostatic regulation of membrane potential by an electrogenic ion pump against change in the K+ concentration of the extra- and intra-organ perfusion solutions. Plant Cell Physiol. 26: 351−359-
  70. C., Grams T.E., Schreiber U., Matyssek R., Fromm J. (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytol. 161:715−722-
  71. E., Dziubinska H., Trebacz K. (2010) What do plants need action potentials for? In: Action Potential, Marc L. DuBois (ed.), Nova Science Publishers, pp. 1−26-
  72. N.A., Bulychev A.A. (2007) Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 1767: 781−788-
  73. S., Grams T.E., Matyssek R., Fromm J. (2005) Characteristics of electrical signals in poplarand responses in photosynthesis. Plant Physiol. 138: 2200−2209-
  74. Leon J., Rojo E., Sanchez Serrano J.J. (2001) Wound signaling in plants. J. Exp. Bot. 52: 1−9-
  75. Lewis B.D., Karlin-Neumann G., Davis R.W., Spalding E.P. (1997) Ca2±activated anion channels and membrane depolarization induced by blue light and cold in Arabidopsis seedlings. Plant Physiol. 114: 1327−1334-
  76. Lino B., Baizabal-Aguirre V.M., Gonzales de la Vara L.E. (1998) The plasmamembrane H±ATPase from beet root is inhibited by a calcium-dependent phosphorylation. Planta. 204: 352−359-
  77. V.Z., Zheelova O.M., Vostrikov I.Y. Berestovsky G.N. (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J. Membr. Biol. 72: 43−58-
  78. T., Boiler T., Felix G. (1998) The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell. 10: 1561−1570-
  79. Malone M., Alarcon J-J., Palumbo L. (1994) An hydraulic interpretation in the tomato of rapid, long-distance wound signaling. Planta. 193: 181−185-
  80. M. (1992) Kinetics of wound induced hydraulic signals and variation potentials in wheat seedling. Planta. 187: 505−510-
  81. M. (1994) Wound-induced hydraulic signals and stimulus transmission in Mimosa pudica L. New Phytol. 128: 49−56-
  82. M. (1996) Rapid, lonq-distance signal transmission in higher plants. Adv. Bot. Res. 101: 163−227-
  83. M., Stankovic B. (1991) Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat. Plant, Cell Environ. 14: 431−436-
  84. M., Tomos A.D. (1992) Measurement of gradients of water potential in elongating pea stem by pressure probe and picolitre osmometry. Journal of Experimental. Botany. 43: 1325−1331-
  85. S. (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust. J. Plant Physiol. 26: 55−61-
  86. McGurl B., Pearce G., Orozco-Cardenas M., Ryan C.A. (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255: 1570−1573-
  87. A. J., Weisnseel M. H. (1997) Wound-induced changes of membrane voltage, endogenous currents, and ion fluxes in primary roots of maize. Plant Physiol. 114: 989−998-
  88. M., Ehrenstein G., Iwasa K., Mischke C., Bare C., Satter R.L. (1988) Potassium channels in motor cells of Samanea saman. Plant Physiol. 88: 643 648-
  89. C., Johannes E. (1996) Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin-induced extracellular acidification of mesophyll tissue. Plant Cell Environ. 19: 464170-
  90. O’Donnell P.J., Calavert C., Atzorn R., Wasternack C., Leyser H.M.O., Bowles D.J. (1996) Ethylene as a signal mediating the wound response of tomato plants. Science. 274: 1914−1917-
  91. Orozco-Cardenas M.L., Narvaez-Vasquez J., Ryan C.A. (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin and methyl jasmonate. Plant Cell. 13: 179−191-
  92. A., Zawadzki T. (1976) Action potentials in Lupinus angustifolius shoots. J. Exp. Bot. 27: 859−863-
  93. G., Strydom D., Johnson S., Ryan C.A. (1991) A polypeptide from tomato leaves induces wound-inducible proteinase-inhibitor proteins. Science. 253: 895−898-
  94. Pei Z.-M, Baizabal-Aguirre V.M., Allen G.J., Schroeder J.L. (1998) A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ in Arabidopsis thaliana guard cells. PNAS. 95: 6548−6553-
  95. Pena-Cortes H, Prat S, Atzorn R, Wasternack C, Willmitzer L. (1996) Abscisic acid-deficient plants do not accumulate proteinase inhibitor II following systemin treatment. Planta. 198: 447151-
  96. B. (1973) Action potentials in higher plants. Bot. Review. 39: 172−201-
  97. R.J., Dejaegere R., Pitman M.G. (1985) Regulation of electrogenic pumping in barley by pH and ATP. J. Exp. Bot. 36: 535−549-
  98. A., Parsons R.L., Hettinger J.W., Medford J.I. (2002) In vivo three-dimensional imaging of plants with optical coherence microscopy. Journal of Microscopy. 208: 177−189-
  99. J.D., Thain J.F., Wildon D.C. (1999) Evidence for physically distinct systemic signaling pathways in the wounded tomato plant. Ann. Bot. 84:109−116-
  100. Rodrigues-Navarro A. (2000) Potassium transport in fungi and plants. Biochim. et Biophys. Acta. 1469: 1−30-
  101. G. (1985) Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol. 26: 451−461-
  102. Roblin G., Bonnemain J-L. (1985) Propagation in Vicia faba stem of a potential variation induced by wounding. Plant Cell Physiol. 26: 1273−1283-
  103. Roos, N. P., Brownell, M., Guevremont, A., Fransoo, R., Levin, B., MacWilliam, L., Roos, L.L. (2006). The complete story: A population-based perspective on school performance and educational testing. Canadian Journal of Education. 29(3): 1−22-
  104. A. (1996) Water transport in xylem conduits with ring thickenings. Cell and Environment. 19: 622−629-
  105. Rousset M., de Roo M., Guennecb J.-Y. L., Pichon O. (2002) Electrophysiological characterization of tomato hypocotyl putative action potentials induced by cotyledon heating. Physiologia plantarum. 115: 197−203-
  106. C.A., Moura D.S. (2002) Systemic wound signaling in plants: a new perception. PNAS. 99: 6519−6520-
  107. J.W., Pickard B.G. (1976) Mediation of rapid electrical, metabolic, transpirational and photosynthetic changes by factors released frm wound. III. Measurement of C02 and H20 flux. Can. J. Bot. 54: 2662−2671-
  108. J.M., Ryan C.A. (1999). A 160-kD systemin receptor on the surface of Lycopersicon peruvianum suspension-cultured cells. Plant Cell. 11: 1525−1536-
  109. V.A. (2012) At the Roots of Plant Neurobiology. In: Plant Electrophysiology, A. G. Volkov (ed.), Springer-Verlag Berlin Heidelberg, pp. 3−43-
  110. T., Tazawa M. (1986) Action potential in Luffa cylindrica and its effects on elongation growth. Plant Cell Physiol. 27: 1081−1089:
  111. T. (1969) Physiology of rapid movements in higher plants. An. Rev. Plant Physiol. 20: 165−184-
  112. T. (1953) Some aspects on the slow conduction of stimuli in the leaf of Mimosa pudica. Sci. Rep. Tohoku Univ. 4th Ser. Biol. 20: 72−88-
  113. T. (1973) Transmission of action potentials in Biophytum. BotMag. Tokyo. 86: 51−62-
  114. T. (1991) Rapid plant movements triggered by action potentials. Bot. Mag. Tokyo. 104: 73−95-
  115. T. (1997) Application of leaf extract causes repetitive action potentials in Biophytum sensitivum. J. Plant Res. 110: 485−487-
  116. A.M., Britikov E.A. (1967) Action potentials in the reproductive system of plants. Nature. 215: 1278−1280-
  117. R.M. (2006) Electrogenic pumps. In: Plant Electrophysiology. Theory and Methods, Volkov A.G. (ed.) Berlin-Heidelberg: Springer, pp. 221−246-
  118. R., Cosgrove D.J. (1996) Induction and ionic basis of slow wave potentials in seedlings of Pisum sativum L. Planta. 200: 416−425-
  119. R., Cosgrove D.J. (1997) The propagation of slow wave potentials in pea epicotyls. Plant Physiol. 113: 209−217-
  120. R. (2006) Historical introduction to plant electrophysiology. In: Plant Electrophysiology. Theory and Methods, Volkov A.G. (ed.). BerlinHeidelberg: Springer, pp. 3−15-
  121. R., Cosgrove D.J. (1992) Rapid alterations in growth rate and electrical potentials upon stem excision in pea seedlings. Planta. 187: 523−531-
  122. R., Cosgrove D.J. (1994) Comparison of electric and growth responses to excision in cucumber and pea seedlings. I. Short-distance effects are a result of wounding. Plant Cell Environ. 17: 1143−1151-
  123. R., Cosgrove D.J. (1995) Comparison of electric and growth responses to excision in cucumber and pea seedlings. 11. Long-distance effects are due to hydraulic signals. Plant Cell Environ. 18: 33−41-
  124. R., Cosgrove D.J. (1997a) The propagation of slow wave potentials in pea epicotyls. Plant Physiol. 113: 209−217-
  125. R., Cosgrove D.J. (1997b) A reduced xylem pressure altered the electric and growth responses in cucumber seedlings. Plant Cell Environ 20: 101−109-
  126. R., Cosgrove D.J. (1997c) Slow wave potentials in cucumber differ in form and growth effect from those in pea seedlings. Physiol Plant 101: 379−388-
  127. B., Zawadzki T., Davies E. (1997) Characterization of the variation potential in sunflower. Plant Physiol. 115: 1083−1088-
  128. Stankovic B» Witters D.L., Zawadzki T., Davies E. (1998) Action potentials and variation potentials in sunflower: An analysis of their relationships and distinguishing characteristics. Physiologia Plantarum. 103: 51−58-
  129. B., Davies E. (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. 1 FEBS Lett. 390: 275−279-
  130. B. Davies E. (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta. 202: 402−406-
  131. P.A. (1983) Modern quantitative acid-base chemistry. Can J. Physiol. Pharmacol. 61: 1444−1461-
  132. Stintzi, A., Weber, H., Reymond, P., Browse, J., Farmer, E.E., 2001. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. USA. 98: 12 837−12 842-
  133. V., Akinchits E. Katicheva L., Vodeneev V. (2013) Simulation of Variation Potential in Higher Plant Cells. J Membrane Biol. 264: 287−296-
  134. V.S., Nerush V.N., Orlova L.A., Vodeneev V.A. (2011) Simulation of action potential propagation in plants. J. Theor. Biol. 291: 47−55-
  135. V., Katicheva L.A., Mysyagin S.A., Sinitsina Yu., Vodeneev V. (2012) Analysis of the photosynthetic response induced by variation potential in geranium. Planta. 235: 703−712-
  136. V. S., Vodeneev V. A. (2009) A mathematical model of action potential in cells of vascular plants. J. Membrane Biol. 232: 59−67-
  137. Thomine S., Zimmermann S., Guern J., Barbier-Brygoo H. (1995) ATP-dependent regulation of an anion channel at the plasma membrane of protoplasts from epidermal cells of Arabidopsis hypocotyls. The Plant Cell. 7: 2091−2100-
  138. C.I., Novacky A.J. (1992) Recent aspects of ion-induced pH changes. Curr. Top. Plant. Biochem. Physiol. 11: 231−248-
  139. K. (1959) Der Erregungsvorgang. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 17. Springer, Berlin Heidelberg New York. pp. 24−110-
  140. V.A., Pyatygin S.S., Opritov V.A. (2007) Reversible change of extracellular pH at the generation of mechano-induced electrical reaction in a stem of Cucurbitapepo. Plant Sign. Behavior. 2: 267−268-
  141. V., Orlova A., Morozova E., Orlova L., Akinchits E., Orlova O., Sukhov V. (2012) The mechanism of propagation of variation potentials in wheat leaves. J. Plant Physiol. 169: 949−954-
  142. A.G., Mwesigwa J. (2000) Interfacial electrical phenomena in green plants: action potentials. In: Liquid interfaces in chemical, biological and pharmaceutical applications. New York- Basel: Marcel Dekker Inc., pp. 649 681-
  143. A.G., Dunkley T.C., Morgan S.A., Ruff D., Boyce Y.C., Labady A.J. (2004) Bioelectrochemical signalling in green plants induced by photosensory systems. Bioelectrochem. 63: 91−94-
  144. P.J. (1998) Calcium channels in the plasma membrane of root cells. Ann. Bot. 81: 173−183-
  145. P.J., Broadley M.R. (2003) Calcium in plants. Ann. Bot. 92: 487 511-
  146. Wildon D.C., Thain J. F, Minchin P.E.H., Gubb I.R., Reilly A.J., Skipper Y.D., Doherty H.N., O Donnell P.J., Bowles D.J. (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature. 360: 62−65-
  147. T., Trebacz K. (1985) Extra- and intracellular measurements of action potentials in the liverwort Conocephalum conicum. Physiol. Plant. 64: 477−481-
  148. M.R., Maischak H., Mitho A., Boland W., Felle H.H. (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiology. 149: 1593−1600-
  149. M.R., Felle H.H. (2009) Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities. Planta. 229: 539−547-
Заполнить форму текущей работой