Помощь в написании студенческих работ
Антистрессовый сервис

Анализ структуры хроматина и молекулярных комплексов, регулирующих транскрипцию, и распознавание функциональных элементов генома методами системной биологии

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Предложена динамическая интерпретация сборки болыперазмерных комплексов в клетке исходя из введенной гипотезы о модулярной цикличности биологических сетей молекулярного уровня и о колебательной динамике таких сетей. Молекулярные комплексы, в том числе и транскриптосома, считаются представляющими собой осцилляторы с самой большой в сети частотой колебаний биологической активности составляющих… Читать ещё >

Анализ структуры хроматина и молекулярных комплексов, регулирующих транскрипцию, и распознавание функциональных элементов генома методами системной биологии (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. СОСТОЯНИЕ ПРОБЛЕМЫ ИЗУЧЕНИЯ ТРАНСКРИПЦИИ
    • 1. 1. ТРАНСКРИПЦИЯ КАК УРОВЕНЬ РЕГУЛЯЦИИ
    • 1. 2. РЕГУЛЯТОРНЫЕ ЭЛЕМЕНТЫ ГЕНОМА И ВЗАИМОСВЯЗЬ МЕЖДУ НИМИ
    • 1. 3. РЕГУЛЯТОРЫ ТРАНСКРИПЦИИ
    • 1. 4. ИЗУЧЕНИЕ РЕГУЛЯТОРОВ ТРАНСКРИПЦИИ И ИХ КОМПЛЕКСОВ
    • 1. 5. ИЗУЧЕНИЕ САЙТОВ СВЯЗЫВАНИЯ ФАКТОРОВ ТРАНСКРИПЦИИ
    • 1. 6. ИЗУЧЕНИЕ БЕЛОК-БЕЛКОВОГО ВЗАИМОДЕЙСТВИЯ В КОМПЛЕКСАХ РЕГУЛЯТОРОВ ТРАНСКРИПЦИИ
  • Глава 2. ОБЪЕКТЫ И ВЫБРАННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ
    • 2. 1. ИСХОДНЫЕ ДАННЫЕ
    • 2. 2. АЛГОРИТМЫ ПОИСКА РЕГУЛЯТОРНЫХ ЭЛЕМЕНТОВ ГЕНОМА
    • 2. 3. БАЗЫ ДАННЫХ БЕЛОК-БЕЛКОВОГО ВЗАИМОДЕЙСТВИЯ
    • 2. 4. МЕТОДЫ ОПРЕДЕЛЕНИЯ СТРУКТУРНО-ФУНКЦИОНАЛЬНОГО СТАТУСА ЛОКУСА ГЕНОМА
  • Глава 3. РАЗРАБОТКА ПОДХОДОВ К АНАЛИЗУ СТРУКТУРНО-ФУНКЦИОНАЛЬНЫХ ОТНОШЕНИЙ В ТРАНСКРИПЦИОННЫХ КОМПЛЕКСАХ
    • 3. 1. БАЗОВЫЙ АЛГОРИТМ ДЛЯ ИДЕНТИФИКАЦИИ РЕГУЛЯТОРНЫХ МОДУЛЕЙ ГЕНОМА
    • 3. 2. МОДИФИКАЦИЯ АЛГОРИТМА ДЛЯ ЗАДАЧ АНАЛИЗА РЕГУЛЯЦИИ ГЕНОВ В КОНТЕКСТЕ РЕГУЛЯТОРНЫХ СЕТЕЙ
    • 3. 3. МОДИФИКАЦИЯ АЛГОРИТМА ДЛЯ ЗАДАЧ АНАЛИЗА КОРЕГУЛЯЦИИ ГЕНОВ
  • Глава 4. РАЗРАБОТКА МЕТОДА УЧЕТА БЕЛОК-БЕЛКОВОГО ВЗАИМОДЕЙСТВИЯ В ЗАДАЧАХ АНАЛИЗА РЕГУЛЯТОРНЫХ МОДУЛЕЙ ГЕНОМА И СТРУКТУРЫ ХРОМАТИНА
    • 4. 1. УЧЕТ БЕЛОК-БЕЛКОВОГО ВЗАИМОДЕЙСТВИЯ В ОПРЕДЕЛЕНИИ СТРУКТУРЫ ТРАСНСКРИПЦИОННЫХ КОМПЛЕКСОВ
    • 4. 2. ПРИМЕНЕНИЕ ПОДХОДА С УЧЕТОМ БЕЛОК-БЕЛКОВОГО ВЗАИМОДЕЙСТВИЯ К ИНСУЛЯТОРАМ И УЧАСТКАМ СВЯЗЫВАНИЯ С ЯДЕРНЫМ БЕЛКОВЫМ МАТРИКСОМ
    • 4. 3. МЕТОД И АЛГОРИТМ АПРИОРНОГО УЧЕТА БЕЛОК-БЕЛКОВОГО ВЗАИМОДЕЙСТВИЯ В ЗАДАЧАХ РАСПОЗНАВАНИЯ РЕГУЛЯТОРНЫХ ЭЛЕМЕНТОВ ГЕНОМА
  • Глава 5. ПРИМЕНЕНИЕ И РАЗВИТИЕ МЕТОДА УЧЕТА СВЯЗЫВАНИЯ СУБЪЕДИНИЦ БЕЛКОВЫХ КОМПЛЕКСОВ ДЛЯ ИДЕНТИФИКАЦИИ СТРУКТУРЫ БЕЛКОВЫХ КОМПЛЕКСОВ И ОСОБЕННОСТЕЙ ИХ ФУНКЦИОНИРОВАНИЯ
    • 5. 1. СМЫСЛ И ЗНАЧЕНИЕ МЕТОДА СН1Р-8Е
    • 5. 2. ИСПОЛЬЗОВАННЫЕ ДАННЫЕ И ИНСТРУМЕНТЫ
    • 5. 3. КОНКРЕТИЗАЦИЯ НАЧАЛЬНЫХ ДАННЫХ
    • 5. 4. ПРЕДАСТАВЛЕНИЯ О СТРУКТУРЕ И ОСОБЕННОСТЯХ ФУНКЦИОНИРОВАНИЯ ТРАНСКРИПЦИОННОГО КОМПЛЕКСА ИСХОДЯ ИЗ АНАЛИЗА ВНЕПИКОВОГО СИГНАЛА СН1Р-8Е
  • Глава 6. СВЯЗЬ СЕТЕЙ ББВ С РЕГУЛЯТОРНЫМИ СЕТЯМИ
    • 6. 1. ГИПОТЕЗА О СТРУКТУРЕ РЕГУЛЯТОРНЫХ СЕТЕЙ
    • 6. 2. ГИПОТЕЗА О РЕЖИМЕ ФУНКЦИОНИРОВАНИЯ РЕГУЛЯТОРНЫХ СЕТЕЙ
    • 6. 3. ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ, ПОДТВЕРЖДАЮЩИЙ ГИПОТЕЗЫ
    • 6. 4. РЕЗУЛЬТАТЫ АНАЛИЗА СЕТЕЙ ББВ, ПОДТВЕРЖДАЮЩИЕ ГИПОТЕЗЫ

Анализ и распознавание регуляторных элементов ДНК, как кодирующих, так и некодирующих, представляет собой одну из основных задач вычислительной молекулярной биологии и биоинформатики. Эта область находится на стыке экспериментальной молекулярной биологии, прикладной математики и информатики. Данные о регуляторных элементах генома поставляет эксперимент, а анализ и распознавание не изученных экспериментально регуляторных участков производится с помощью специальных алгоритмов.

В настоящее время имеется крайне обширный срез методов, идентифицирующих определенные участки ДНК как регуляторные. Прежде всего это прямые методы определения участков и сайтов связывания факторов транскрипции, такие как EMSA, in vitro footprinting, in vivo footprinting, SELEX, methylation interference assay, ChIP, ChlP-chip, ChlP-seq seq (Orchard K, 1993, Galas DJ, 1978, Tsai SF, 1991, Iguchi-Ariga SM & Schaffner W., 1989; Buck MJ, Lieb JD., 2004; Mardis ER., 2007).

Еще до появления полногеномных методов определения участков связывания белков на ДНК были сформулированы эмпирические правила того, где расположены участки связывания факторов транскрипции, какие последовательности связываются предпочтительно фактором транскрипции и как такие участки позиционированы друг относительно друга. На основании анализа результатов этих методов были построены модели мотивов, объектов, содержащих количественную информацию о наборе сайтов связывания, а именно учитывающих частоту встречаемости каждого нуклеотида в каждом положении сайта. Также выводили консенсус, то есть попросту усредненный сайт связывания для определенного фактора транскрипции или группы таких факторов. На основании такой информации производился поиск сайта связывания в геноме. При этом ставились задачи как найти уже известный сайт так и найти новые, ранее неизвестные сайты.

При проведении такого поиска предполагалось, что предсказанный сайт связывания располагался в любом месте в геноме равновероятно. Однако биологические знания говорят об обратном. Сайты связывания должны находиться в геноме крайне редко и при этом в определенных местах. С биологической точки зрения функциональные сайты связывания регуляторных белков следует искать (1) в районе, локусе, гена, (2) в определенных местах в локусе, доступных для посадки фактора транскрипции. При этом также вполне целесообразно учитывать окружение фактора, так как клеточные процессы регулируются не единичными белками, а их комплексами. Процессы в клетке, в том числе процесс транскрипции, регулируемы огромным количеством самых разных белков, обладающих разными активностями. В случае с регуляцией транскрипции, это разные факторы транскрипции. Они кооперативно связывают ДНК, что повышает специфичность связывания комплекса определенных участков на молекуле ДНК.

В настоящее время имеются в распоряжении методы поиска одиночных сайтов связывания фактора транскрипции, а также их плотных групп, то есть прямых повторов, палиндромов и кластеров сайтов связывания. Кластеры сайтов есть фактически комбинация прямых повторов и палиндромов с плавающим по длине спейсером. В подавляющем большинстве случаев их ищут везде в геноме, без учета специфических районов генома, в которых наличие функциональных сайтов связывания наиболее вероятно.

В этой работе установлен метод выявления предпочтительных мест связывания факторов транскрипции исходя из учета структуры хроматина. Также представлен метод, учитывающий белок-белковое взаимодействие между факторами транскрипции. Построены модели транскрипционных комплексов и выявлены динамические аспекты регуляции транскрипции.

Также приведено решение обратной задачи: распознать субъединичный состав комплекса исходя из профиля связывания субъединиц этого комплекса с ДНК, трактуемого как сигнал ChIP-seq.

Цели и задачи. Цель работы: анализ структуры и динамики хроматина и молекулярных комплексов и распознавание регуляторных элементов генома.

В соответствии с поставленной целью были поставлены следующие задачи.

1. Разработка метода учета структуры хроматина в задачах анализа и распознавания регуляторных генома.

2. Разработка метода учета белок-белкового взаимодействия в комплексе регуляторов транскрипции в задачах анализа и распознавания регуляторных участков генома и подтверждение его важнейшей роли в организации регулирующего транскрипцию комплекса.

3. Анализ и распознавание структуры и особенностей функционирования транскрипционного комплекса.

4. Динамическая интерпретация структур молекулярных комплексов.

Научная новизна.

1. Разработан метод учета структуры хроматина и белок-белкового взаимодействия в анализе и распознавании регуляторных элементов генома. Информация о белок-белковом взаимодействии используется как начальные данные.

2. Разработан подход учета внепиковых частей сигнала СЫР-эед, трактуемый как профиль связывания.

3. Разработана модель структуры элонгационного комплекса РНК полимеразы II с участием факторов транскрипции. Подтверждена гипотеза о стационарной транскриптосоме и предложена, модель стационарной транскриптосомы.

Научно-практическая ценность работы.

Работа вносит существенный вклад в распознавание экспериментально не изученных регуляторных элементов, а также в интегральный анализ изученных. Это важно для определения, уточнения и корректировки профиля экспрессии генов и для частичной реконструкции регуляторных биологических сетей. Практические приложения безусловно могут быть полезны в таких областях, как медицина и биотехнология. Модель биологических сетей, представленная в работе может быть полезна для понимания режима функционирования биологических сетей, что в свою очередь важно как в медицине, так и в биотехнологии.

Вклад соискателя.

1. Разработка алгоритма поиска регуляторных элементов генома исходя из данных о структуре хроматина и белок-белковом взаимодействии.

2. Анализ сигналов СЫР-Бец в интерпретации профиля связывания и формулировка гипотезы о структурной связи факторов транскрипции в элонгации транскрипции с РНК полимеразой II. Обоснование гипотезы о стационарности транскриптосомы в ядре с помощью результатов анализа сигналов СЫР-Бец.

3.

Введение

и разработка интегральной модели биологических сетей, основанной на предположении о наличии высокой распространенности связанных колебаний в подсетях.

Апробация.

Материалы диссертации были представлены на конференциях: МССМВЛ09 (Москва), ВОЯ^Ю (Новосибирск), РвтО (Дрезден), МССМВ" 11 (Москва), 8уз1етзХ (Базель, 2011) и на совместном межлабораторном семинаре ИОГен РАН и секции молекулярной биологии ФГУП «ГосНИИгенетика».

Публикации.

По материалам диссертации опубликовано 4 статьи.

выводы.

1. Сконструирован, программно реализован и верифицирован алгоритм, учитывающий структуру хроматина в задачах анализа и распознавания регуляторных элементов генома.

2. Разработан, программно реализован и верифицирован алгоритм, учитывающий белок-белковое взаимодействие в задачах анализа и распознавания регуляторных элементов генома.

3. Предположена сложная структура молекулярного комплекса, регулирующего элонгацию транскрипции и включающая в себя как комплекс ремоделирования хроматина и гистон-модифицирующие ферменты, так и факторы транскрипции, развивается гипотеза о стационарных транскрипционных комплексах.

4. Дана динамическая интерпретация важности сборки болыдеразмерных комплексов в клетке исходя из разработанной гипотезы о модулярной цикличности биологических сетей молекулярного уровня и о колебательной динамике таких сетей.

ЗАКЛЮЧЕНИЕ

.

Учет структуры хроматина повышает точность распознавания регуляторных элементов генома. Важно учитывать и гиперчувствительные к ДНКазе1 области, и гистоновые домены, и позиционирование относительно гена. В результате анализа выяснено, что единичные участки ChIP-seq попадают в участки, гиперчувствительные к ДНКазе1, в участки FAIRE и в гистоновые домены.

Сконструирован и применен алгоритм, учитывающий структуру хроматина в задачах анализа и распознавания регуляторных элементов генома. В результате применения алгоритма выявлялись различные регуляторные участки в окрестности генов. Разработанный алгоритм был применен для конструирования более сложного алгоритма, учитывающего белок-белковые взаимодействия.

Разработан оригинальный алгоритм, учитывающий информацию о белок-белковых взаимодействиях как исходные данные в задачах анализа и распознавания регуляторных элементов генома. Разработана программная реализация на основе сопряжения Perl и MySQL с помощью специализированного программного интерфейса Perl DBI с встроенными функциями создания и управления базами данных. Разработанный алгоритм был применен к задачам поиска регуляторных элементов относительно гена.

С использованием разработанного алгоритма (п.З) подтверждена важная роль белок-белковых взаимодействий в организации молекулярных комплексов, регулирующих транскрипцию. Была введена область поиска регуляторных элементов, являющаяся пересечением участков ChIP-seq взаимодействующих белков с участками, гиперчувствительных к ДНКазе 1, а также участками FAIRE и гистоновыми доменами. Сайты взаимодействующих белков, найденные в умеренном расширении (50 нт) области пересечения таких участков ChIP-seq, совпадают как с экспериментально идентифицированными, так и представляют собой новые сайты.

С помощью представленного алгоритма учета белок-белкового взаимодействия были существенно расширены известные регуляторные элементы и идентифицированы новые, например HNF4A и COUP-TF1. В ряде случаев также были идентифицированы сети белок-белкового взаимодействия комплексов, связывающих изучаемые участки ДНК. В перспективе целесообразно использовать указанный алгоритм в едином программном комплексе, учитывающем и структуру хроматина, и участки ChIP-seq, и потенциальные сайты связывания факторы транскрипции.

Введена интерпретация метода ChIP-seq, в соответствии с которой все участки ДНК, связанные с белковым комплексом, иммунопреципитируются антителом против любой из субъединиц этого комплекса. Также вводятся представления о «транзитном» связывании субъединиц комплексов с ДНК и о роли внепикового сигнала ChIP-seq в определении такого связывания. Адекватность интерпретации была подтверждена на данных по связыванию субъединиц комплексов ремоделировния хроматина с ДНК.

В соответствии с представленной интерпретацией на основе анализа внепикового сигнала ChIP-seq для факторов транскрипции и РНК полимеразы II выявляется возможная структурная связь элонгирующей РНК полимеразы II с факторами транскрипции. В результате изучения профиля распределения РНК полимеразы II по генам вводится модель, где РНК полимераза II находится всегда связанной с областью промотора вместе с другими регуляторами транскрипции. Таким образом, выявлена сложная структура молекулярного комплекса, регулирующего инициацию транскрипции, и представлены свидетельства его участия в процессах элонгации транскрипцииподтверждается и развивается гипотеза о стационарной транскриптосоме. В дальнейшем планируется построение общей модели стационарной транскриптосомы с учетом всех известных данных.

Предложена динамическая интерпретация сборки болыперазмерных комплексов в клетке исходя из введенной гипотезы о модулярной цикличности биологических сетей молекулярного уровня и о колебательной динамике таких сетей. Молекулярные комплексы, в том числе и транскриптосома, считаются представляющими собой осцилляторы с самой большой в сети частотой колебаний биологической активности составляющих белков. Сборка таких больших комплексов полагается необходимой, чтобы создать и синхронизировать высокочастотные осцилляции активности компонентов молекулярных комплексов. В случае с РНК полимеразой учитывается и тонкая регуляция элонгации транскрипции, и раунды реинициации транскрипции. Основные положения представленной гипотезы находятся в соответствие с рассмотренными экспериментальными данными по топологии и динамике сетей. Перспективной представляется разработка общей модели, включающей пространственные и временные данные о регуляторных сетях и построенной на приоритетном учете колебательного режима функционирования.

Показать весь текст

Список литературы

  1. Alkema WB, Johansson O, Lagergren J, Wasserman WW. MSCAN: identification of functional clusters of transcription factor binding sites. Nucleic Acids Res. 2004 Jul 1 -32(Web Server issue):W195−8.
  2. Arents G, Burlingame RW, Wang BC, Love WE, Moudrianakis EN., The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix, Proc Natl Acad Sei USA. 1991 Nov 15−88(22):10 148−52.
  3. Arndt KM, Kane CM. Running with RNA polymerase: eukaryotic transcript elongation. Trends Genet. 2003. V. 19. № 10. P. 543−50.
  4. Assfalg R, Lebedev A, Gonzalez OG, Schelling A, Koch S, Iben S. TFIIH is an elongation factor of RNA polymerase I, Nucleic Acids Res. 2012 Jan-40(2):650−9. Epub 2011 Sep 28.
  5. Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD. The MAPK cascade is required for mammalian associative learning. Nat Neurosci. 1998 Nov-l (7):602−9.
  6. Azizkhan JC, Jensen DE, Pierce AJ, Wade M. Transcription from TATA-less promoters: dihydrofolate reductase as a model. Crit Rev Eukaryot Gene Expr. 1993−3(4):229−54. Review.
  7. Bar-Nahum G, Nudler E. Isolation and characterization of sigma (70)-retaining transcription elongationcomplexes from Escherichia coli. Cell. 2001 Aug 24−106(4):443−51.
  8. Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell. 1999 Aug 6−98(3):387−96.
  9. Berezikov E, Guryev V, Cuppen E. Exploring conservation of transcription factor binding sites with CONREAL. Methods Mol Biol. 2007−395:437−48.
  10. Bernecky C, Grob P, Ebmeier CC, Nogales E, Taatjes DJ. Molecular architecture of the human Mediator-RNA polymerase II-TFIIFassembly. PLoS Biol. 2011 Mar-9(3):el000603. Epub 2011 Mar 29.
  11. Berridge MJ, Rapp PE. A comparative survey of the function, mechanism and control of cellularoscillators. J Exp Biol. 1979 Aug-81:217−79.
  12. Bewley CA, Gronenborn AM, Clore GM. Minor groove-binding architectural proteins: structure, function, and DNA recognition. Annu Rev Biophys Biomol Struct. 1998−27:105−31.
  13. Buck MJ, Lieb JD., ChlP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments, Genomics. 2004 Mar-83(3):349−60.
  14. Cantin GT, Stevens JL, Berk AJ. Activation domain-mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc Natl Acad Sci USA. 2003 Oct 14- 100(21): 12 003−8. Epub 2003 Sep 23.
  15. Carlson JM, Chakravarty A, DeZiel CE, Gross RH. SCOPE: a web server for practical de novo motif discovery. Nucleic Acids Res. 2007 Jul-35(Web Server issue):W259−64. Epub 2007 May .
  16. Carmack CS, McCue LA, Newberg LA, Lawrence CE. PhyloScan: identification of transcription factor binding sites using cross-species evidence. Algorithms Mol Biol. 2007 Jan 23−2:1.
  17. Chen QK, Hertz GZ, Stormo GD. MATRIX SEARCH 1.0: a computer program that scans DNA sequences for transcriptional elements using a database of weight matrices. Comput Appl Biosci. 1995 Oct-l l (5):563−6.
  18. Cheng H, Jiang L, Wu M, Liu Q. Inferring Transcriptional Interactions by the Optimal Integration of ChlP-chip and Knock-out Data. Bioinform Biol Insights. 2009 Oct 21 -3:129−40.
  19. Cheong R, Levchenko A. Oscillatory signaling processes: the how, the why and the where. Curr Opin Genet Dev. 2010 Dec-20(6):665−9.
  20. Dahdaleh FS, Carr JC, Calva D, Howe JR. SP1 regulates the transcription of BMPR1A. J Surg Res. 2011 Nov-171(l):el5−20. Epub 2011 Jul 23.
  21. Dickinson LA, Joh T, Kohwi Y, Kohwi-Shigematsu T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell. 1992 Aug 21−70(4):631−45.
  22. Donohoe ME, Silva SS, Pinter SF, Xu N, Lee JT. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature. 2009 Jul 2−460(7251):128−32. Epub 2009 Jun 17.
  23. Dumitru CA, Fechner MK, Hoffmann TK, Lang S, Brandau S. A novel p38-MAPK signaling axis modulates neutrophil biology in head and neck cancer. J Leukoc Biol. 2012 Jan 18. Epub ahead of print.
  24. Feaver WJ, Svej strap JQ, Henry NL, Kornberg RD. Relationship of CDK-activating kinase and RNA polymerase II CTD kinaseTFIIH/TFIIK. Cell. 1994 Dec 16−79(6): 1103−9.
  25. Fishburn J, Hahn S. Architecture of the yeast RNA polymerase II open complex and regulation ofactivity by TFIIF. Mol Cell Biol. 2012 Jan-32(l): 12−25. Epub 2011 Oct 24.
  26. Fossati A, Dolfini D, Donati G, Mantovani R. NF-Y recruits Ash2L to impart H3K4 trimethylation on CCAAT promoters. PLoS One. 2011 Mar 21−6(3):el7220.
  27. Frisch M, Frech K, Klingenhoff A, Cartharius K, Liebich I, Werner T, A new tool for the in silico prediction of matrix attachment regions in large genomic sequences. Genome Research 2002 12, 349−354.
  28. Galas DJ, Schmitz A., DNAse footprinting: a simple method for the detection of protein-DNA binding specificity, Nucleic Acids Res. 1978 Sep-5(9):3157−70.
  29. Gaszner M, Felsenfeld G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet. 2006 Sep-7(9):703−13. Epub 2006 Aug 15.
  30. Gerasimova TI, Byrd K, Corces VG. A chromatin insulator determines the nuclear localization of DNA. Mol Cell. 2000 Nov-6(5): 1025−35.
  31. Ghirlando R, Giles K, Gowher H, Xiao T, Xu Z, Yao H, Felsenfeld G. Chromatin domains, insulators, and the regulation of gene expression. Biochim Biophys Acta. 2012 Feb 2. Epub ahead of print.
  32. Gotea V, Ovcharenko I. DiRE: identifying distant regulatory elements of co-expressed genes. Nucleic Acids Res. 2008 Jul l-36(Web Server issue):W133−9. Epub 2008 May 17.
  33. Guglielmi B, Soutourina J, Esnault C, Werner M, TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo. Proc Natl AcadSci USA. 2007. V. 104. № 41. P. 16 062−7.
  34. Hawkins J, Grant C, Noble WS, Bailey TL. Assessing phylogenetic motif models for predicting transcription factor binding sites. Bioinformatics. 2009 Jun 15−25(12):i339−47.
  35. Heinemeyer T, Chen X, Karas H, Kel AE, Kel OV, Liebich I, Meinhardt T, Reuter I, Schacherer F, Wingender E. Expanding the TRANSFAC database towards an expert system of regulatory molecular mechanisms. Nucleic Acids Res. 1999 Jan 1−27(1):318−22.
  36. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature. 1995 Sep 28−377(6547):355−8.
  37. Jeong S, Pfeifer K. Shifting insulator boundaries. Nat Genet. 2004 0ct-36(10): 1036−7.
  38. Kamalakaran S, Radhakrishnan SK, Beck WT. Identification of estrogen-responsive genes using a genome-wide analysis of promoter elements for transcription factor binding sites. J Biol Chem. 2005 Jun 3−280(22):21 491−7. Epub 2005 Mar 24.
  39. Kang K, Chung JH, Kim J. Evolutionary Conserved Motif Finder (ECMFinder) for genome-wide identification of clustered YY1- and CTCF-binding sites. Nucleic Acids Res. 2009 Apr-37(6):2003−13. Epub 2009 Feb 10.
  40. Kankainen M, Loytynoja A. MATLIGN: a motif clustering, comparison and matching tool. BMC Bioinformatics. 2007 Jun 8−8:189.
  41. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004. V. 32 (Database issue) P. 493−6.
  42. Kehayova P, Monahan K, Chen W, Maniatis T. Regulatory elements required for the activation and repression of the protocadherin-alpha gene cluster. Proc Natl Acad Sci US A. 2011 Oct 11−108(41):17 195−200. Epub 2011 Sep 26.
  43. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002 Jun- 12(6):996−1006.
  44. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006 Oct 15−15 Spec No 2: R271−7.
  45. Kokubo T, Takada R, Yamashita S, Gong DW, Roeder RG, Horikoshi M, Nakatani Y. Identification of TFIID components required for transcriptional activation byupstream stimulatory factor. J Biol Chem. 1993 Aug 15−268(23): 17 554−8.
  46. H, Flores O, Weinmann R, Reinberg D. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc Natl Acad Sci USA. 1991 Nov 15−88(22): 10 004−8.
  47. Mardis ER. ChlP-seq: welcome to the new frontier. Nat Methods. 2007.V. 4. № 8. P. 613−4.
  48. Marinescu VD, Kohane IS, Riva A. MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes. BMC Bioinformatics. 2005 Mar 30−6:79.
  49. Marpegan L, Bekinschtein TA, Freudenthal R, Rubio MF, Ferreyra GA, Romano A, Golombek DA. Participation of transcription factors from the Rel/NF-kappa B family in the circadian system in hamsters. Neurosci Lett. 2004 Mar 18−358(1):9−12.
  50. Martyanov V, Gross RH. Using SCOPE to identify potential regulatory motifs in coregulated genes. J Vis Exp. 2011 May 31-(51). pii: 2703. doi: 10.3791/2703.
  51. Mason PB, Struhl K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol Cell Biol. 2003 Nov-23(22):8323−33.
  52. McClung CR. Plant biology: Defence at dawn. Nature. 2011 Feb 3−470(7332):44−5.
  53. Misteli T, Spector DL RNA polymerase II targets pre-RNA splicing factors to transcription sites in vivo. Mol Cell. 1999. V. 3. № 6. P. 697−705.
  54. Mitchell JA, Fraser P. Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev. 2008. V. 22. № 1. P. 20−5.
  55. Morillon A, O’Sullivan J, Azad A, Proudfoot N, Mellor J. Regulation of elongating RNA polymerase II by forkhead transcription factorsin yeast. Science. 2003 Apr 18−300(5618):492−5.
  56. Muller BF, Paulsen D, Deppert W. Specific binding of MAR/SAR DNA-elements by mutant p53. Oncogene. 1996 May 2- 12(9): 1941−52.
  57. Nishida E, Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sei. 1993 Apr- 18(4): 128−31.
  58. Noma K, Cam HP, Maraia RJ, Grewal SI. A role for TFIIIC transcription factor complex in genome organization. Cell. 2006 Jun 2−125(5):859−72.
  59. Oettgen P. Regulation of vascular inflammation and remodeling by ETS factors. Circ Res. 2006 Nov 24−99(11):1159−66. Review.
  60. Ogawa N, Biggin MD. High-throughput SELEX determination of DNA sequences bound by transcription factors in vitro. Methods Mol Biol. 2012−786:51−63.
  61. Orchard K, May GE., An EMSA-based method for determining the molecular weight of a protein—DNA complex, Nucleic Acids Res. 1993 Jul 11−21(14):3335−6.
  62. Paszek P, Jackson DA, White MR. Oscillatory control of signalling molecules. Curr Opin Genet Dev. 2010 Dec-20(6):670−6. Epub 2010 Sep 17.
  63. Pawson T, Scott JD. Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997 Dec 19−278(5346):2075−80.
  64. Prasad MS, Paulson AF. A combination of enhancer/silencer modules regulates spatially restricted expression of cadherin-7 in neural epithelium. Dev Dyn. 2011 Jul-240(7): 1756−68. doi: 10.1002/dvdy.22 675.
  65. Prather DM, Larschan E, Winston F. Evidence that the elongation factor TFIIS plays a role in transcription initiation at GAL1 in Saccharomyces cerevisiae. Mol Cell Biol. 2005. V. 25. № 7. P. 2650−9.
  66. Prestridge DS, Stormo G. SIGNAL SCAN 3.0: new database and program features. Comput Appl Biosci. 1993 Feb-9(l):l 13−5.
  67. Prestridge DS., SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci. 1991 Apr-7(2):203−6.
  68. Pugh BF, Tjian R. Diverse transcriptional functions of the multisubunit eukaryotic TFIIDcomplex. J Biol Chem. 1992 Jan 15−267(2):679−82.
  69. Pugh BF, Tjian R. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 1991 Nov-5(l 1): 1935−45.
  70. Qian S, Varjavand B, Pirrotta V. Molecular analysis of the zeste-white interaction reveals a promoter-proximalelement essential for distant enhancer-promoter communication. Genetics. 1992 May-131(l):79−90.
  71. Quandt K, Freeh K, Karas H, Wingender E, Werner T. Matlnd and Matlnspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 1995 Dec 11−23(23):4878−84.
  72. Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature. 2012 Jan 18. doi: 10.1038/nature 10 799. Epub ahead of print.
  73. Ribich S, Tasic B, Maniatis T. Identification of long-range regulatory elements in the protocadherin-alpha gene cluster. Proc Natl Acad Sci USA. 2006 Dec 26- 103(52): 19 719−24. Epub 2006 Dec 15.
  74. Richard P, Manley JL Transcription termination by nuclear RNA polymerases. Genes Dev. 2009. V. 23. № 11) P. 1247−69.
  75. Riquet FB, Tan L, Choy BK, Osaki M, Karsenty G, Osborne TF, Auron PE, Goldring MB. YY1 is a positive regulator of transcription of the Collal gene. J Biol Chem. 2001 Oct 19−276(42):38 665−72. Epub 2001 Aug 20.
  76. Roberts RL, Mosch HU, Fink GR. 14−3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell. 1997 Jun27−89(7): 1055−65.
  77. Roeder RG. Transcriptional regulation and the role of diverse coactivators in animal cells. FEBSLett. 2005. V. 579. № 4. P. 909−15.
  78. Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA. 2008 Jun 17−105(24):8309−14. Epub 2008 Jun 11.
  79. Sandelin A, Wasserman WW, Lenhard B. ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res. 2004 Jul l-32(Web Server issue):W249−52.
  80. Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE, Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci. 2000 Nov 1−20(21):8177−87.
  81. Schwabish MA, Struhl K., The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol. 2007. V. 27. № 20. P. 6987−95.
  82. Seto E, Shi Y, Shenk T. YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro. Nature. 1991 Nov 21 -354(6350):241−5.
  83. Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci. 2000 Jun- 113 (Pt 11): 1851−6. Review.
  84. Sherman H, Froy O. Expression of human beta-defensin 1 is regulated via c-Myc and the biological clock. Mol Immunol. 2008 Jun-45(l 1):3163−7. Epub 2008 Apr 22.
  85. Solow S, Salunek M, Ryan R, Lieberman PM. Taf (II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J Biol Chem. 2001 May 11 -276(19): 15 886−92. Epub 2001 Feb 20.
  86. Solow SP, Lezina L, Lieberman PM. Phosphorylation of TFIIA stimulates TATA binding protein-TATA interaction and contributes to maximal transcription and viability in yeast. Mol Cell Biol. 1999 Apr-19(4):2846−52.
  87. Stormo GD, DNA binding sites: representation and discovery, Bioinformatics. 2000 Jan- 16(1): 16−23.
  88. Sun L, Yang G, Zaidi M, Iqbal J. TNF-induced gene expression oscillates in time. Biochem Biophys Res Commun. 2008 Jul ll-371(4):900−5. Epub 2008 Mar 31.
  89. Teusink B, Larsson C, Diderich J, Richard P, van Dam K, Gustafsson L, Westerhoff HV. Synchronized heat flux oscillations in yeast cell populations. J Biol Chem. 1996 Oct 4−271(40):24 442−8.
  90. Thomas JO, Travers AA. HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem Sci. 2001 Mar-26(3): 167−74.
  91. Tokovenko B, Golda R, Protas O, Obolenskaya M, El’skaya A. COTRASIF: conservation-aided transcription-factor-binding site finder. Nucleic Acids Res. 2009 Apr-37(7):e49. Epub 2009 Mar 5.
  92. Treisman R. Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol. 1996 Apr-8(2):205−15.
  93. Tsai SF, Strauss E, Orkin SH, Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter, Genes Dev. 1991 Jun-5(6):919−31.
  94. Vernimmen D, Lynch MD, De Gobbi M, Garrick D, Sharpe JA, Sloane-Stanley JA, Smith AJ, Higgs DR. Polycomb eviction as a new distant enhancer function. Genes Dev. 2011 Aug 1−25(15): 1583−8.
  95. Voronina S, Sukhomlin T, Johnson PR, Erdemli G, Petersen OH, Tepikin A. Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells. J Physiol. 2002 Feb 15−539(Pt l):41−52.
  96. Wassarman DA, Sauer F TAF (11)250: a transcription toolbox. J Cell Sci. 2001 Aug-114(Pt 16):2895−902.
  97. Wasylyk B, Hagman J, Gutierrez-Hartmann A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem Sci. 1998 Jun-23(6):213−6.
  98. West AG, Gaszner M, Felsenfeld G. Insulators: many functions, many mechanisms. Genes Dev. 2002 Feb l-16(3):271−88. Review. No abstract available.
  99. Whitmarsh AJ, Davis RJ. Structural organization of MAP-kinase signaling modules by scaffold proteinsin yeast and mammals. Trends Biochem Sci. 1998 Dec-23(12):481−5.
  100. Wilhelm E, Takacs C, Bell B. Probing endogenous RNA polymerase II pre-initiation complexes by electrophoretic mobility shift assay. Methods Mol Biol. 2012−809:63−74.
  101. Wilsbacher LD, Takahashi JS. Circadian rhythms: molecular basis of the clock. Curr Opin Genet Dev. 1998 0ct-8(5):595−602.
  102. Xiao T, Wallace J, Felsenfeld G. Specific sites in the C terminus of CTCF interact with the SA2 subunit of the cohesin complex and are required for cohesin-dependent insulation activity. Mol Cell Biol. 2011 Jun-31(11):2174−83. Epub 2011 Mar 28.
  103. Yamada Y, Forger D. Multiscale complexity in the mammalian circadian clock. Curr Opin Genet Dev. 2010 Dec-20(6):626−33.
  104. Yang WM, Inouye C, Zeng Y, Bearss D, Seto E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA. 1996 Nov 12−93(23):12 845−50.
  105. Yasuda J, Whitmarsh AJ, Cavanagh J, Sharma M, Davis RJ. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol. 1999 Oct-19(10):7245−54.
Заполнить форму текущей работой