Помощь в написании студенческих работ
Антистрессовый сервис

Биологические свойства клеточного (PrP c) и инфекционного (PrP Sc) прионового протеина in vitro и его иммуноцитохимическая детекция в культурах клеток

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Для изучения самых разных аспектов прионных болезней используются следующие клеточные системы: постоянные клеточные линии — культура клеток нейробластомы мыши N2a (Race et al., 1987; 1988; Butler et al., 1988; Caughey et al., 1989; Borchelt et al., 1990; Priola et al., 1994; Priola and Chese-bro, 1995; Hoelscher et al., 1998; Windl et al., 1999; Nishida et al., 2000; Korth et al., 2000; Bosque… Читать ещё >

Биологические свойства клеточного (PrP c) и инфекционного (PrP Sc) прионового протеина in vitro и его иммуноцитохимическая детекция в культурах клеток (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ВВЕДЕНИЕ
  • 2. ОБЗОР ЛИТЕРАТУРЫ
    • 2. 1. Общая характеристика прионового протеина
    • 2. 2. Функции прионового протеина
    • 2. 3. Нейродегенеративные болезни животных, вызываемые прионами, и некоторые вопросы патогенеза
    • 2. 4. Трансгенные животные как модель изучения прионных болезней.*
    • 2. 5. Культуры клеток для изучения прионов
    • 2. 6. Детекция прионов
  • 3. СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ
    • 3. 1. Материалы и методы
      • 3. 1. 1. Материалы
      • 3. 1. 2. Методы
    • 3. 2. Результаты собственных исследований

    3.2.1. Изучение экспрессии клеточного прионового протеина РгР в культурах клеток моноцитов человека и мыши (клетки мононуклеарной линии: моноциты / макрофаги / микроглия) и активации различных сигнальных трансдукционных каскадов.122

    3.2.1.1. Предварительные эксперименты. Определение активации МАР-киназ и тирозинкиназ в клеточных линиях моноцитов человека ТНР-1 и мыши J774A1, P388D1.122

    3.2.1.2. Определение экспрессии РгР в клеточных линиях моноцитов человека ТНР-1 и мыши J774A.1, P388D1.131

    3.2.1.3. Определение экспрессии РгРс в моноцитах человека и мыши в ответ на длительную стимуляцию липополисахаридом (LPS) и конканавалином, А (СопА).134

    3.2.2. Создание стабильно трансфицированных геном прионового протеина {Ргпр-ген) дикого типа гомологичных систем мышиных моноцитов.137

    3.2.2.1. Предварительные эксперименты: определение оптимального способа трансфекции моноцитов посредством транзиентной трансфекции рекомбинантной конструкцией pRKRS с GFP-геном.137

    3.2.2.2. Стабильная трансфекция моноцитов мыши J774A1 и P388D1 рекомбинантной конструкцией pCI-neo с Ргпр-геном.143

    3.2.2.2.1. Изолирование резистентных к G418 клонов моноцитов, определение экспрессии РгРс.143

    3.2.2.2.2. Изучение процессов метаболизма РгР в моноцитах (в клетках мононуклеарной линии на примере трансфицированных моноцитов мыши P388Dl-PrP).151

    3.2.2.2.2.1. Удаление N-гликанов, связанных с амидной группой аспарагина в РгРс.151

    3.2.2.1.2.2. Определение молекулярной массы и процентного отношения АСТ-РгРс к РгРс в трансфицированных моноцитах P388Dl-PrP.154

    3.2.2.1.2.3. Выявление фрагментов прионового протеина в культуральной среде.158

    3.2.3. Изучение роли РгРс в активации различных сигнальных трансдукционных каскадов в клетках мононуклеарной линии (на модели трансфицированных моноцитов P388D1-РгР).159

    3.2.3.1. Изучение роли РгР в активации МАР-киназы р38 при LPS- и СопА — стимуляции.160

    3.2.3.2. Определение роли РгР в инициации тирозинкиназозависи-мых внутриклеточных сигнальных трансдукционных каскадов через детекцию фосфорилированных по тирозину протеинов.162

    3.2.3.3. Определение возможности ингибирования каскадов сигнальной трансдукции с использованием ингибитора тирозинкиназ Src-семейства.169

    3.2.4. Изучение роли РгРс в антиоксидантной защите.171

    3.2.4.1. Определение уровня экспрессии РгРс в 3-х мерной суспензионной культуре (3D) многоклеточных опухолевых сфероидов предстательной железы человека Du-145.171

    3.2.4.2. Определение экспрессии PrPc, SOD-1 и каталазы.176

    3.2.4.3. Изучение локализации РгРс и антиоксидантных ферментов.177

    3.2.4.4. Определение уровня внутриклеточного редокс-потенциала и экспрессии РгРс в сфероидах разного размера.180

    3.2.4.5. Изучение регуляции экспрессии РгР модуляцией уровня внутриклеточных ROS и воздействием ингибиторов свободных радикалов.183

    3.2.5. Выявление клеточного прионового протеина РгР и агента скрепи PrPSc в культурах клеток сельскохозяйственных животных из Коллекции клеточных культур СХЖ РАСХН и криобанка ВИЭВ и культурах клеток, инфицированных агентом скрепи.187

    3.2.5.1. Иммуноцитохимическая детекция PrPSc в инфицированных культурах клеток с использованием первичных моноклональных антител и вторичных антивидовых антител, меченых щелочной фосфатазой.189

    3.2.5.2. Детекция РгР и РгР в культурах клеток с использованием первичных моноклональных антител и вторичных антивидовых антител, меченых пероксидазой хрена.191

    3.2.5.3. Детекция РгР и РгР в культурах клеток из Коллекции клеточных культур СХЖ РАСХН и криобанка ВИЭВ.194

    4. ОБСУЖДЕНИЕ.221

    5. ВЫВОДЫ.277

    6. ПРАКТИЧЕСКИЕ ПРЕДЛОЖЕНИЯ.282

Актуальность проблемы.

Куру, болезнь Крейцфельда-Якоба (CJD), синдром Герштманна-Штройслера (GSS), скрепи овец и коз, трансмиссивная энцефалопатия норок (ТМЕ) до недавнего времени были наиболее известными медленными инфекциями человека и животных. Однако, длительное время природа этих заболеваний была неизвестна. Существовали различные гипотезы этиологии и патогенеза этих заболеваний, но общепринятыми считались теория «медленных вирусов» и существование вироидов (Sigurdsson, 1954; Hadlow, 1959; Шелудько и Рейфман, 1978). Hadlow (1959) предположил о существовании родства между скрепи и куру, a Klatzo с соавторами (1959) установили взаимосвязь между куру и CJD на основании микроскопических исследований гистопрепаратов ЦНС.

Конец XX века ознаменовался важным открытием в биологии и медицине: было установлено существование нового инфекционного агента — приона, не имеющего нуклеиновой кислоты (Prusiner, 1982). За вклад в изучение инфекционного агента, вызывающего прионные болезни, доктор S.B. Prusiner (Department of Neurology and Biochemistry and Biophysics, University of California, San Francisco, USA) в 1997 году был удостоен Нобелевской премии в области медицины и физиологии.

Белок, получивший название «прионовый протеин», существует, по крайней мере, в 2-х конформационных изоформах. Клеточный (нормальный) л прионовый протеин РгР, протеаза-чувствительная изоформа, состоит, главным образом, из а-спиралейэкспрессируется на протяжении всей жизни: в большем количестве нейронами (Kretzschmar et al., 1986), а также другими клетками. Установление экспрессии РгР не только в нейронах, свидетельствует о том, что участие протеина в нормальной работе синапсов (Collinge et al., 1994) не является основной функцией РгР — более того, прир сутствие РгР на клеточной поверхности ненервных клеток говорит о его возможной роли в клеточной адгезии, трансмембранной передаче сигналов или поглощении экстрацеллюлярных лигандов, то есть о том, что прионовый протеин обладает какими-то более разнообразными функциями. Кроме того, до сих пор очень мало известно о механизмах, лежащих в основе гибели нервных клеток при прионных болезнях. Прионовый протеин может также существовать в виде протеаза-резистентной инфекционной изоформы PrPSc, которая аккумулируется при CJD, BSE и скрепи в головном мозге в виде амилоидных бляшек. PrPSc состоит из 43% (3-слоев и, примерно, 30% ос-спиралей. Склонность молекул РгР формировать Р-структуры и ассоциироваться с глюкозаминогликанами (Snow et al., 1989; 1990) объясняется ами-лоидозом при прионных болезнях. Трансмиссивность инфекционных при-онов связана с тенденцией РгРмолекулы принимать (3-складчатую конфор-мацию как у PrPSc, когда первый из них приходит в контакт с PrPSc (Prusiner, 1998). Установлен ген, ответственный за экспрессию прионового протеина. Исследования на трансгенных мышах с нокаутным Prnp-геном показали, что эти мыши абсолютно резистентны к скрепи инфекции (Bueler et al., 1993). Для образования PrPSc также необходимо присутствие видоспецифичного протеина X (шаперон) хозяина, способного взаимодействовать с обеими изо-формами прионового протеина и индуцировать конверсионный процесс PrPc->PrPSc (Edenhofer et al., 1996; Liautard, 1993; 1999; Shyu et al., 2000). Таким образом, прионы могут действовать как «генетические» элементы, обеспечивая себе бессмертие и наследуемость (Serio et al., 2000). Термин «прион», означающий инфекционную протеиновую частицу, не раскрывает структурную характеристику, физическую природу агента, а лишь подразумевает, что конформационно измененный протеин является основным (если не единственным) компонентом инфекции (Prusiner, 1998; Aguzzi and Weiss-mann, 1997). В настоящее время принято считать, что скрепи, куру, все фор мы CJD, GSS, FFI, FSI, BSE, ТМЕ, С WD, FSE и EUE являются прионными болезнями.

В последние годы сформулировано понятие «конформационные болезни», к которым относят прионные болезни (Гусева и др., 1997; Макаров В. В., 1999; Макаров и Смирнов, 2001; Honeycutt and Thirumalai, 1990; Liautard, 1993; Pan et al., 1993; Sali et al., 1994; Kelly, 1996; Li et al., 1996; Telling et al., 1996; Harrison et al., 1997; Horwich and Weissman, 1997; Cohen and Prusiner, 1998; Safar al., 1998; Chiti et al., 1999; Cohen, 2000; Peretz et al., 2001; Baska-kov et al., 2001; Harrison et al., 2001; Leclerc et al., 2001). Ситуация с прионными болезнями крайне обострилась в связи с появлением BSE в Англии (Wilesmith et al., 1988), достигшей своего пика в 1992 году, и возникновением эпизоотии, в результате которой было зарегистрировано более 177 тыс. голов зараженных животных за период с 1986 года (Maignien et al., 1999), когда было сделано первое гистопатологическое подтверждение болезни (для случая, произошедшего в апреле 1985 года). Запрещение использования мясокостной муки (МКМ) в качестве белковой добавки к рациону кормления крупного рогатого скота в 1989 году привело к снижению заболеваемости BSE (Hoinville, 1994). Предположения о возможности значительного увеличения случаев BSE не подтвердились: прогнозы были очень категоричными на случай горизонтальной передачи болезни и, наоборот, более осторожными на случай вертикальной трансмиссии болезни (Anderson et al., 1996; Ferguson et al., 1999). Однако выделение больных животных в Англии продолжается, несмотря на запрет использования МКМ, то есть у BARB-животных (born after the real ban), родившихся после 1996 года. Количество заболевших животных за последние два года остается стабильно невысоким в Англии, в Швейцарии, которая является второй страной, где зарегистрирована BSE. В Португалии, Ирландии, Франции, Германии отмечается увеличение числа BSE-случаев (Doherr et al., 1999; Donnelly et al., 1999) — Голландия, Бельгия, Люксембург, Лихтенштейн, Дания и другие являются странами, неблагополучными по BSE. С BSE связывают появление у людей новой формы (вариант) болезни CJD — nvCJD (Will et al., 1996; Bruce et al., 1997), первые три случая которой были зарегистрированы в 1995 году в Англии (Britton et al., 1995; Bateman et al., 1995; Tabrizi et al., 1996). С 1996 no 2001 год зарегистрировано более 100 случаев заболевания людей nvCJD. Расширился спектр восприимчивых к прионным болезням животных. Таким образом, конформаци-онные (прионные) болезни следует рассматривать как зоонозные, при которых животные могут быть источником заражения людей.

Осмысление новых данных о том, что конформационно измененные белки могут приобретать непредсказуемые свойства логически привело к появлению нового направления в биотехнологии, названного «протеомика» («proteomics»), которое изучает синтез и возникновение новых форм протеинов, их структуру и функции в клетке (Academy Update, New York Academy of Sciences Member Newsletter, 2001, March-April, 1−3). Понимание структуры и функции всех протеинов в организме даст потенциальную возможность медицинского вмешательства, направленного на процесс формирования протеина в каждой клетке каждой ткани, что является следующим шагом в попытке раскрытия информации о том, каким образом гены связаны с биологической функцией белков в норме и при болезни.

Для исследований различных проблем, связанных с прионами, клиническим проявлением, патогенезом прионных болезней являются лабораторные животные (Юров и др., 1996), в том числе мыши, особенно трансгенные: с нокаутным Ргпр-геном, со сверхэкспрессией Ртр-гена, мыши, несущие гены с различными мутациями, PRNP-ген человека и других видов животных, а также химерные межвидовые генные конструкции при-онового протеина (Hsiao et al., 1990; Prusiner et al., 1990; Bueler et al., 1992; Scott et al., 1993; 1997; Westaway et al., 1994; Telling et al., 1994; 1996; Fischer et al., 1996; Tobler et al., 1996; Sakaguchi et al., 1996; Muramoto et al., 1997;

Chiesa et al., 1998; 2000; Moore et al., 1998; Smerling et al., 1998; Supattapone et al., 2001), а также домашние животные (Надточей и др., 2001).

Одним из наиболее удобных подходов для решения вопросов, связанных с проблемой прионных болезней, является подход, основанный на клеточной биологии, применении клеточных систем — первичных и постоянных культур клеток животных и человека. Использование культур клеток позволяет изучать биосинтез белка, посттрансляционный процессинг, клеточную локализацию протеинов, функции прионового протеина, транспорт РгР и РгР, во.

С Sc просы метаболизма, конверсию РгР —>РгР, направленную ингибицию конверсионных процессов, тестирование терапевтических подходов и многие другие вопросы.

Для изучения самых разных аспектов прионных болезней используются следующие клеточные системы: постоянные клеточные линии — культура клеток нейробластомы мыши N2a (Race et al., 1987; 1988; Butler et al., 1988; Caughey et al., 1989; Borchelt et al., 1990; Priola et al., 1994; Priola and Chese-bro, 1995; Hoelscher et al., 1998; Windl et al., 1999; Nishida et al., 2000; Korth et al., 2000; Bosque and Prusiner, 2000; Winklhofer and Tatzelt J., 2000; Supattapone et al., 2001), культура клеток головного мозга хомяка НаВ (Taraboulos et al., 1990), культура клеток феохромацитомы крысы РС12 (Greene et al., 1991; Mesner et al., 1992; Chiesa and Harris, 2000), культура клеток нейронов гипоталамуса мыши GT1 (Schaetzl et al, 1997; Mange et al., 2000) — культура клеток НГУК-1, гибридная линия клеток опухоли почки мыши RAC, культура диплоидных кожно-мышечных фибробластов человека (Ройхель, 1997), культура клеток яичника китайского хомяка СНО (Lehman and Haris, 1995; 1996; 1997; Lehman et al., 1997; Daude et al., 1997), культура клеток моноцитов человека (Combs et al., 1999), а также первичные культуры клеток головного мозга крысы, овцы (Forloni et al., 1993; Richard et al., 1998), смешанные культуры клеток головного мозга эмбрионов мыши, первичные культуры клеток лимфоцитов, лейкоцитов (Cashman et al., 1990; Klein et al.,.

1997; Mabbot et al, 1997; Dodelet and Cashman, 1998; Raeber et al., 1999; An-toine et al., 2000; Duerig et al., 2000; Klein et al., 2001), клетки микроглии (Williams et al., 1994; Brown et al., 1996; 1997; 1998; Herms et al., 1997; Kretzschmar et al., 1997; Giese et al., 1998).

Диагностика прионных болезней до недавнего времени базировалась на выявлении характерных клинических признаков, а также патогистологиче-ском исследовании головного мозга (Шубин и др., 1984; 1990; 1993; 1994; 1996; 1998; 1999; Суворов, 1987; 1988; Токсеитова, 1993; Токсеитов, 1993; Надточей и др., 2001; Merz et al., 1981; 1984). Иммуногистохимический анализ (ИГХ) с использованием направленных против прионового протеина по-ликлональных и моноклональных антител, предложен в качестве гистологического и доклинического диагностического теста при прионных болезнях (Монкс и др., 1998; Рыбаков 2001 а, ЬРыбаков и др., 2001a-b-cBendheim et al., 1984; Bode et al., 1985; Race et al., 1992; Pocchiari et al., 1994; Foster et al., 1996; Keulen et al., 1996; Hill et al., 1997; 1999; Hilton et al., 1998; Knight, 1998; Schreuder et al., 1996; 1998; O’Rourke et al., 1998; 2000; Collins et al., 2000).

Таким образом, актуальными являются вопросы изучения экспрессии, метаболизма, функции клеточного прионового протеина в разных типах клеток, регуляции экспрессии гена прионового протеина, взаимодействия протеина с другими белками, которые все еще остаются неизвестными, следовательно, подбор адекватных клеточных систем, создание генетически трансформированных клеток, особенно клеток мононуклеарной линии — моноцитов, которые являются предшественниками микроглии головного мозга, — разными вариантами гена прионового протеина. Кроме того, актуальны в научном и практическом отношении проблемы подбора гомологичных клеточных линий для их инфицирования прионами, изучения цитопатогенного действия прионов на клетки, возникающих вслед за этим деструктивных изменений в органах и тканях животных с использованием культур клеток в качестве экспериментальной модели, позволяющих проводить детальное изучение биологии PrPSc, патогенеза прионных болезней, в частности, вопросов, связанных с диссиминацией прионов в организме и разработки методов детекции прионов в культурах клеток. Представляется важным сертификация культур клеток, используемых в вирусологии и биотехнологии, на отсутствие PrPSc.

Цель и задачи исследования

Настоящая работа посвящена изучению функций клеточного прионового протеина РгР и совершенствованию методов выявления PrPSc в культурах клеток. В связи с этим были поставлены следующие задачи: р

1. Изучить экспрессию РгР в культурах клеток моноцитов человека (ТНР-1) и мыши (J477A1 и P388D1).

2. Создать экспериментальные модели гомологичных систем мышиных моноцитов, генетически трансформированных геном прионового протеина мыши {Ргпр-ген) и обладающих сверхэкспрессией протеина.

3. Изучить метаболизм клеточного прионового протеина, экспрессируемого в трансфицированных Ргпр-геном моноцитах мыши.

4. Определить экспрессию РгР в ответ на длительную стимуляцию моноцитов митогенами липолисахаридом (LPS) и конканавалином, А (СопА) и изучить роль клеточного прионового протеина в активации различных сигнальных трансдукционных каскадов в ответ на разные стимулы у клеток мононуклеарной линии на модели трансфицированных Ргпр-теяом моноцитов мыши.

5. Определить действие селективного ингибитора тирозинкиназ на ингиби-цию активации внутриклеточных сигнальных трансдукционных каскадов у трансфицированных Ргпр-геиоы моноцитов мыши.

6. Изучить экспрессию нормального прионового протеина (РгР), супероксид-дисмутазы (SOD-1) и каталазы, возможность их корреляции и солокализации на модели 3-х мерной (3D) суспензионной культуры многоклеточных опухолевых сфероидов предстательной железы человека Du-145. г".

7. Изучить зависимость экспрессии РгР от уровня внутриклеточного ре-докс-потенциала и возможность регуляции экспрессии протеина через регуляцию уровня внутриклеточных ROS и воздействием ингибиторов свободных радикалов на модели культуры Du-145.

8. Оптимизировать иммуноцитохимический метод выявления PrPSc в культурах клеток животных ПО-ТК" ПО-ТК~хСО, ПО-ТКхЛО и НГУК-1, инфицированных агентом скрепи, с использованием моноклональных антител и вторичных антивидовых антител, меченых щелочной фосфатазой или пероксидазой хрена, и провести тестирование некоторых культур клеток сельскохозяйственных животных, депонированных в Коллекции и криобанке культур клеток ВИЭВ, на отсутствие агента скрепи.

Научная новизна работы. гч.

Впервые установлена экспрессия клеточного прионового протеина РгР в перевиваемых моноцитах человека (ТНР-1). Показано достоверное повышение экспрессии РгРс в моноцитах ТНР-1 в ответ на длительное воздействие LPS и СопА.

Плазмида pCI-neo (Promega) со встроенным Ргпр-тепом мыши в сочетании с реагентом SuperFect (QIAGEN) высоко эффективна для проведения стабильной генетической трансформации клеточной линии мышиных моноцитов P388D1.

Получены клоны клеточной линии мышиных моноцитов P388D1, стабильно трансфицированные Prnp-тешм мышив 5-ти клонах из 47 изолиро ванных выявлена сверхэкспрессия РгР, сопоставимая с таковой в нейронах головного мозга. Создана экспериментальная модель генетически трансформированных моноцитов мыши P388Dl-PrP для изучения функций прионового протеина в норме и патологии, в частности, в клетках мононуклеарной линии (моноциты/макрофаги/микроглия).

Установлен участок расщепления в молекуле прионового протеина (Metl 11/Hisl 12), экспрессируемого в Р388В1-РгР-моноцитах. Клеточный прионовый протеин представлен, главным образом, в виде ДС-терминального фрагмента молекулы РгР с MM~18kD (PrPAl 12−231). Содержание фрагмен-тированного протеина составляет более 80% от общего количества клеточного прионового протеина.

Установлено присутствие фрагментов метаболизма прионового протеина (ANT-PrP и ДСТ-PrP), экспрессируемого моноцитами, в кондиционированной культуральной среде, что указывает на возможную циркуляцию прионового протеина (прионовых полипептидов) в крови и лимфе животных и человека.

Впервые установлено, что у нестимулированных моноцитов со сверхэкспрессией РгРс (РгРД112−231) активированы тирозинкиназозависимые сигнальные трансдукционные каскады, что свидетельствует об ассоциации прионового протеина с тирозинкиназами, следовательно, о длительной активации внутриклеточных сигнальных каскадов, которые вызывают фосфорили-рование последующих компонентов сигнальной трансдукции, ведущих к активации различных транскрипционных факторов. Стимуляция СопА, РгР и ДСТ-PrP вызывает дополнительную существенную активацию идентичных сигнальных каскадовустановлено фосфорилирование по тирозину 2-х дополнительных протеинов с ММ~48 kDa, ~36 kDa и двух протеинов с меньшей молекулярной массой, которые являются составными компонентами внутриклеточной сигнальной трансдукции, индуцированной тирозинкиназами.

Стимуляция СопА вызывает идентичную активацию МАР-киназы р38 у трансфицированных моноцитов со сверхэкспрессией РгР и клетках контроля, указывающее на то, что прионовый протеин не участует в активации р38.

Впервые определено, что селективный ингибитор тирозинкиназ Src-семейства подавляет активацию сигнального каскада в моноцитах с повышенной экспрессией клеточного прионового протеина в ответ на стимуляцию клеток СопА и РгР, что свидетельствует об ассоциации прионового протеина с тирозинкиназами Src-семейства и, следовательно, о возможности ингибирования продукции нейротоксинов (фактор некроза опу-холи-а, интерлейкин-1 (3), которые приводят к нейродегенерации при прион-ных болезнях.

Установлена экспрессия РгР в клетках 3-х мерной суспензионной культуры (3D) многоклеточных опухолевых сфероидов предстательной железы человека Du-145- протеин характеризуется полной аминокислотной последовательностью прионового протеина человека (РгРД23−230) и обладает высоким содержанием олигосахаридов.

Впервые установлено существование прямой зависимости экспрессии р

РгР (РгРД23−230) от уровня активных форм кислорода (ROS) и антиоксидантных ферментов (супероксиддисмутаза и каталаза), что свидетельствует об антиоксидантной функции РгР. Показана возможность регуляции экспрессии РгР: усиления экспрессии посредством повышения уровня внутриклеточных ROS и уменьшения экспрессии воздействием ингибиторов свободных радикалов (витамин Е и дегидроаскорбиновая кислота),.

Отработан и оптимизирован метод иммуноцитохимической детекции прионов PrPSc в инфицированных культурах клеток ПО-ТК", ПО-ТКГхСО, (СО — спленоциты овцы), ПО-ТКГхЛО (ЛО — лимфоциты овцы), НГУК-1 и в гистосрезах продолговатого мозга больных BSE животных с использованием.

1 у Q моноклональных антител к.

РгР^с Р89/160.1.5. и F99/97.6.1 и вторичных антимышиных антител, меченых щелочной фосфатазой или пероксидазой хрена. Определено, что клеточные линии ПО-ТК", ПО-ТКГхСО, ПО-ТКГхЛО чувствительны к инфицированию агентом скрепи и могут быть использованы в дальнейших исследованиях, связанных с изучением прионов.

Установлено, что культуры клеток сельскохозяйственных животных: крупного рогатого скота ЛЭК, MDBK, КСТ), овцы (ПО-ТКГ, ПО-ТВГхСО, ПО-ТК" хЛО), свиньи (СПЭВ, ПТП) и крысы (НГУК-1), депонированные к криобанке ВИЭВ, не содержат инфекционных прионов. Уровень экспрессии клеточного прионового протеина РгР в культурах клеток крупного рогатого скота, овцы и культуре НГУК-1 выше, чем в культурах клеток свиньи.

Практическая значимость исследований.

1. Разработан способ получения генетически трансформированных моноцитов мыши P388Dl-PrP с использованием рекомбинантной конструкции pCI-neo (Promega) со встроенным Ргир-геном и реагента Su-perFect (Qiagen).

2. Создана экспериментальная клеточная модель P388Dl-PrP для изучения функций РгР в клетках мононуклеарной линии, в том числе микроглии, и патогенеза прионных болезней.

3. Показана перспективность использования трехмерной суспензионной культуры многоклеточных опухолевых сфероидов предстательной железы человека Du-145 для изучения биологии прионового протеина.

4. Отработан и оптимизирован иммуноцитохимический метод для оценки экспрессии клеточного прионового протеина РгР и детекции прионов PrPSc в культивируемых клетках для сертификации культур клеток на отсутствие агента скрепи.

5. Культуры клеток сельскохозяйственных животных (СПЭВ, ПТП, ЛЭК, КСТ, MDBK, НГУК-1, ПО-ТК", ПО-ТК" хСО, ПО-ТК~хЛО), депонированные в криобанке ВИЭВ, в которых иммуноцитохимическим методом не выявлено присутствия агента скрепи (PrPSc), могут быть использованы в научных и диагностических исследованиях, а также в производстве биопрепаратов.

Положения, выносимые на защиту.

1. Создание генетически трансформированных моноцитов мыши с дополнительным Ртр-геном для изучения функций РгРс.

2. Ассоциация прионового протеина с тирозинкиназами Src-семейства и участие протеина в сигнальных трансдукционных каскадах, ведущих к продукции нейротоксинов.

3. Ингибирование активации тирозинкиназозависимых сигнальных трансдукционных каскадов, ведущих к продукции нейротоксинов, у стимулированных СопА и прионовым протеином клеток мононуклеарной линии селективным ингибитором тирозинкиназ Src-семейства.

4. Антиоксидантная функция РгРс, изученная на модели трехмерной (3D) суспензионной культуры многоклеточных опухолевых сфероидов предстательной железы человека Du-145.

5. Влияние редокс-потенциала и оксидативного стресса на экспрессию РгРсрегуляция экспрессии прионового протеина скэвенджерами свободных радикалов.

6. Иммуноцитохимический метод детекции РгР и РгР в культурах клеток сельскохозяйственных животных с использованием специфичных моноклональных антител и вторичных антител, меченых щелочной фосфатазой или пероксидазой хрена.

2. ОБЗОР ЛИТЕРАТУРЫ.

5. ВЫВОДЫ.

1. Современными методами клеточной биотехнологии, молекулярно-биологическими, иммуноцитохимическими исследованиями на моделях различных клеточных линий животных и человека изучены функции клеточного р прионового протеина РгР — выявлена его роль в антиоксидантной защите: корреляция с уровнем редокс-потенциала и антиоксидантными ферментамиполучены новые научные данные об участии РгР в активации внутриклеточных воспалительных трансдукционных каскадовустановлена возможность направленного воздействия на синтез прионового протеина, ингибицию активации сигнальных трансдукционных каскадов, ведущих к экспрессии нейротоксиновотработаны способы детекции РгРс в интактных и PrPSc в инфицированных агентом скрепи культурах клеток животных и человека, а также в гистосрезах продолговатого мозга больных BSE животных иммуноцитохими-ческим методом.

2. Показано, что мононуклеарные моноциты мыши и человека являются эффективной моделью адекватной клеткам микроглии для изучения экспресС • • f сии и функции РгР in vitro. Установлен высокий уровень экспрессии РгР в культуре клеток моноцитов человека (ТНР-1), тогда как моноциты мыши J774A1 и P388D1 практически не экспрессируют этот белок. Экспрессия РгР в моноцитах ТНР-1 достоверно увеличивается в ответ на длительное воздействие липополисахаридом (LPS) и конканавалином, А (СопА) in vitro, что свидетельствует о возможной ассоциации прионового протеина с рецепторами к LPS и СопА и об участии РгР в регуляции собственной экспрессии.

3. Предложен метод стабильной трансфекции мышиных моноцитов P388D1 дополнительным геном прионового протеина мыши дикого типа с использованием генной конструкции, включающей кольцевую форму плазмиды pCI-neo со встроенным Ргпр-геном мыши, и реагента SuperFect (QIAGEN).

4. Впервые создана гомологичная клеточная модель генетически трансформированных моноцитов мыши P388Dl-PrP со сверхэкспрессией РгРс, которые использованы для изучения метаболизма и функции прионового протеина в клетках мононуклеарной линии. Получено 47 резистентных к генетицину G-418 клонов клеток (P388Dl-PrP), что свидетельствует о встроенности трансфицированного Ргпр-гена: в 5-ти из 47-и клонов выявлена сверхэкспрессия прионового протеина, сопоставимая с таковой в нейронах, которая сохранялась до 25−26 пассажей.

5. Установлено существование участка расщепления прионового протеина (Metl 11/Hisl 12), экспрессируемого в трансфицированных мышиных моноцил тах P388Dl-PrP. Клеточный прионовый протеин РгР присутствует в виде АС-терминального фрагмента с ММ-18 kD (PrPAl 12−231). Содержание фрагл ментированного протеина составляет более 80% от общего количества РгР .

Выявлено присутствие фрагментов метаболизма прионового протеина (ANи.

АС-терминальные регионы РгР) в кондиционированной культуральной среде при выращивании трансфицированных моноцитов P388Dl-PrP, что свидетельствует о возможном участии мононуклеарных клеток в патогенезе при онных болезней. Это позволяет осуществлять детекцию уровня РгР в биологических жидкостях и оценивать активность синтеза прионового протеина клетками.

6. Трансфицированные моноциты P388Dl-PrP находятся в более активном состоянии (по уровню фосфорилированных по тирозину белков) в отличие от клеток контроля, что свидетельствует о постоянной активации тирозинкина-зозависимых внутриклеточных сигнальных каскадов в клетках мононуклеарной линии с высоким уровнем клеточного прионового протеинапри элиминации Ргпр-тепа у трансфицированных моноцитов происходит возврат к исходному уровню фосфорилированных по тирозину протеинов, что свидетельствует об ассоциации прионового протеина с тирозинкиназами.

7. Стимулятор митотической активности СопА (60pg/ml), РгР (9ng/400jul) или ДСТ-PrP (4,5ng/400pl) вызывают у трансфицированных моноцитов P388D1-РгР, обладающих повышенной экспрессией РгРс, активацию идентичных по профилю тирозинкиназозависимых воспалительных сигнальных трансдукционных каскадов. Выявлена активация дополнительных протеинов с ММ ~48kDa, ~36kDa и двух других протеинов с меньшей молекулярной массой, а также сильная активация высокомолекулярных протеинов, расположенных между ММ-маркерами 122 и 211 kDa, — компонентов сигнального трансдук-ционного каскада, инициированного тирозинкиназами. Стимуляция моноцитов P388Dl-PrP липополисахаридом (LPS) не индуцирует активацию тиро-зинкиназных сигнальных трансдукционных каскадов.

8. Липополисахарид и конканавалин, А (СопА) вызывают у P388Dl-PrP мол ноцитов с повышенной экспрессией РгР идентичную по кинетике и уровню фосфорилирования активацию МАР-киназы р38, как в клетках контроля, что свидетельствует о том, что прионовый протеин не участвует в активации р-38.

9. Установлено, что ингибитор тирозинкиназ Src-семейства подавляет активацию тирозинкиназозависимого сигнального трансдукционного каскада у стимулированных СопА и прионовым протеином моноцитов P388Dl-PrP, что свидетельствует об ассоциации прионового протеина с тирозинкиназами Src-семейства и создает предпосылки для изучения действия ингибиторов тирозинкиназ для блокирования нейротоксического действия прионов на нейроны.

10.Удобную и перспективную экспериментальную модель для изучения биологии прионового протеина представляют собой трехмерные клеточные (тканевые) культуры. Экспрессия клеточного прионового протеина РгР в клетках экспериментальной модели 3-х-мерной (3D) суспензионной культуры многоклеточных опухолевых сфероидов предстательной железы человека Du-145, представленного полной последовательностью аминокислотных остатков прионового протеина человека и обладающего высоким содержанием олигосахаридов, зависит от пролиферативной активности клеток сфероидов и находится в прямой зависимости от уровня внутриклеточных активных форм кислорода.

11.Уровень РгР в культивируемых сфероидах коррелирует с активностью антиоксидантных ферментов супероксид дисмутазы (SOD-1) и каталазы: к 11 дню культивирования сфероидов уровень экспрессии РгРс снизился на 90±7%, SOD-1 на 86±7% и каталазы на 70±13% за счет уменьшения количества активно пролиферирующих клеток. Выявлена солокализация.

PrPc, SOD.

1 и каталазы в многочисленных везикулярных структурах, расположеных в перинуклеарном регионе клетки, указывающая на близкое взаимодействие протеинов.

12.Установлено достоверное повышение экспрессии РгРс в сфероидах в ответ на воздействие физиологической концентрации Н2О2 до 277±48%, менадиона до 288±29%, а также BSO (сульфоксимина бутионина) до 282±19% и при культивировании клеток в среде с пониженным содержанием глютамина — до 220±57% (контроль — 100%), что связано с увеличением уровня внутриклеточных ROS. Ингибиторы свободных радикалов (витамин Е и де-гидроаскорбат) вызывают снижение экспрессии РгР в клетках сфероидов до 51±5% и 64±3,6%, соответственно (контроль — 100%).

13.Повышенная продукция ROS в клетках сфероидов уравновешивается параллельным усилением экспрессии антиоксидантных ферментов и РгРс. Существование корреляции между экспрессией клеточного прионового протеина, антиоксидантных ферментов и уровнем редокс-потенциала указывает на роль РгРс, которую протеин играет в системе антиоксидантной защиты. 14. Отработан иммуноцитохимический метод выявления экспрессии РгР в культурах клеток сельскохозяйственных животных и детекции PrPSc в культурах клеток овцы ПО-ТКГ, ПО-ТКГхСО, ПО-ТК~хЛО и культуре клеток НГУК-1, инфицированных гомогенатом мозга больной скрепи овцы, с использованием смеси мышиных моноклональных антител к PrPc/Sc F89/160.1.5 и F99/97.6.1 в сочетании со вторичными антителами против иммуноглобулинов мыши, конъюгированными со щелочной фосфатазой или пероксидазой хрена.

15.Не выявлено присутствия PrPSc в исследованных культурах клеток сельскохозяйственных животных (СПЭВ, ПТП, ЛЭК, КСТ, MDBK, НГУК-1, ПО-ТК", ПО-ТК" хСО, ПО-ТК~хЛО) из Коллекции культур клеток (СХЖ РАСХН) и криобанка ВИЭВ, что позволяет считать изученные культуры свободными от агента скрепи. Полученные данные внесены в паспорта культур. Уровень экспрессии клеточного прионового протеина РгР в культурах клеток крупного рогатого скота (ЛЭК, MDBK, КСТ), овцы (ПО-ТК", ПО-ТК~хСО, ПО-ТК~хЛО) и культуре НГУК-1 был выше, чем в культурах клеток свиньи (СПЭВ, ПТП).

16.Присутствие PrPSc в культивируемых соматических клетках лимфоидного и эпителиоподобного типа позволяет сделать заключение о возможной роли этих клеточных систем в репликации, накоплении и передаче инфекционных прионов в организме животных и, следовательно, в патогенезе прионных болезней.

6. ПРАКТИЧЕСКИЕ ПРЕДЛОЖЕНИЯ.

1. Генетически трансформированные моноциты мыши P388Dl-PrP со сверхэкспрессией прионового протеина предлагаются в качестве экспериментальной модели для изучения биологии прионового протеина.

2. Генетически трансформированные мышиные моноциты P388Dl-PrP со сверхэкспрессией клеточного прионового протеина (PrPAl 12−231) предлагаются для изучения роли мононуклеарных клеток, в том числе микроглии, в патогенезе прионных инфекций.

3. Трехмерная (3D) суспензионная культура опухолевых сфероидов Du-145 предлагается для изучения биологии прионового протеина в трехмерных многоклеточных культурах.

4. Моноклональные анти-РгРс/8с-антитела F89/160.1.5 и F99/97.6.1 к двум консервативным эпитопам прионового протеина овцы пригодны для выявления агента скрепи в культурах клеток сельскохозяйственных животных иммуноцитохимическим методом с применением вторичных антител, меченых щелочной фосфатазой или пероксидазой хрена.

5. Иммуноцитохимический метод предлагается для использования в сертификации культур клеток на отсутствие агента скрепи.

6. «Методические указания по выявлению прионов в культурах клеток с использованием моноклональных анти — РгРс/8с-антител». Рассмотрены и рекомендованы для издания на секции «Ветеринарная Биотехнология» Отделения ветеринарной медицины РАСХН 21 декабря 2000 г. Изданы РАСХН, 16 января 2002 г., 10 стр.

7. «Методические рекомендации по получению генетически трансформированных геном прионового протеина {Ргпр-ген) моноцитов мыши». Рассмотрены и рекомендованы для издания на секции «Ветеринарная Биотехнология» Отделения ветеринарной медицины РАСХН 20 марта 2002, 16 стр., в печати.

Показать весь текст

Список литературы

  1. А.В. Изучение ингибиции активации тирозинкиназ у трансфицированных Ргяр-геном моноцитов мыши. Материалы 2-ой Международной научной конференции «Биотехнолгия в растениеводстве, животноводстве, ветеринарии», Москва, 18−19 октября 2000а, 71−72.
  2. А.В. Прионы и их цитопатогенное действие. В книге «Животная клетка в культуре», под редакцией Л. П. Дьяконова, В. И. Ситькова. Москва 2000b, 315−332.
  3. А.В. Роль моноцитов/макрофагов/микроглии в патогенезе прионовых инфекций. Всероссийская научно-практическая конференция «Научные основы производства ветеринарных, биологических препаратов», Щелково, 8−9 июня 2000с, 98−100.
  4. А.В. Экспрессия прионового белка и активация некоторых ферментов в культуре клеток DU-145. Всероссийская научно-практическая конференция «Научные основы производства ветеринарных, биологических препаратов», Щелково, 8−9 июня 2000d, 96−98.
  5. Клеточная биология на пороге 21 века", Санкт-Петербург, 17−19 октября 2000. Цитология, 2001b, том 43, 4, 340−341.
  6. А.В. Роль клеток лимфоцитарно макрофагального пула в патогенезе прионовых инфекций. Вестник РАСХН, 2001с, 2, 67−70.
  7. А.В. Специфические антитела для детекции прионового протеина. Ветеринария, 200Id, 5, 23−27.
  8. А.В., Дьяконов Л. П. Клеточные системы in vitro в изучении прионов. Сельскохозяйственная биология, 2000, 6, 3−10.
  9. Л.П., Гальнбек Т. В., Куликова И. Л. Методы цитологических исследований. В книге «Животная клетка в культуре». Под редакцией Л. П. Дьяконова и В. И. Ситькова. М., «Спутник», 2000а, 171−182.
  10. Л.П., Гальнбек Т. В., Куликова И. Л., Щекалева И. В., Дагданова А. В., Самуйленко, А .Я., Соловьев Б. В. Каталог Специализированной коллекции культур клеток сельскохозяйственных и промысловых животных (СХЖРАСХН) РККК. Москва, 2000b, 94 стр.
  11. Л.П., Миронова Л. Л., Конюшко О. И. Методические указания по контролю перевиваемых культур клеток из органов и таней овец на отсутствие агента скрепи. Утверждены Департаментом ветеринарии Минсельхозпрода РФ 23 августа 1996 г.
  12. В.А., Завалишин И. А., Ройхель В. М. Прионные болезни человека и животных (Руководство для врачей). М., «Медицина», 1999, 192 стр.
  13. О.И., Миронова Л. Л., Дьяконов Л. П. Метод контроля клеточных субстратов на присутствие агента скрепи. Ветеринария, 1997, 7.
  14. И.Л., Гальнбек Т. В., Дьяконов Л. П., Симонова А. С. Цитомор-фологическая характеристика новых мутантных культур клеток почки овцы и внутривидовых гибридных культур с лимфоцитами и спленоцитами. Доклады РАСХН, 2001, 5, 39−42.
  15. В.В. Избранные вопросы общей эпизоотологии и инфектологии. М., Издательство Российского университета дружбы народов, 1999, 194 стр.
  16. В.В., Смирнов A.M. Уроки прионной «эпопеи» в Европе от биотехногенной катастрофы до большой политики. Аграрная Россия, 2001,3, 15−20.
  17. О., Костелло А., Вивере Э., Авилов В. М., Рыбаков С. С. Контроль губкообразной энцефалопатии крупного рогатого скота в Ирландии. Ветеринария, 1998, 1, 16−22.
  18. В.М. Патогенез и диагностика некоторых медленных прионовых инфекций. Дисс. д. мед. наук. М., 1997.
  19. Нейроинфекции: бешенство, губкообразная энцефалопатия крупного рогатого скота, Крейтцфельда-Якоба и другие прионные болезни, болезнь Ауески, болезнь Тешена", Покров, 30−31 мая, 2001b, 101−103.
  20. С.С., Егоров А. А., Рябоконь А. А. и др. Методические указания по выявлению патогенной изоформы прионного белка в ткани головного и спинного мозга крупного рогатого скота иммуногистохимическим методом. М., 2001b, 10 стр.
  21. С.С., Рябоконь А. А., Егоров А. А. и др. Диагностика и мониторинг губкообразной энцефалопатии крупного рогатого скота в России. Ветеринария, 2001с, 2, 17−21.
  22. Су воров B.C. Патоморфологические изменения, вопросы патогенеза и диагностика скрепи овец. Автореф. дис. канд. вет. наук. Москва, 1987.
  23. B.C. Локализация патогистологических изменений в нервных ядрах головного мозга овец, больных скрепи. Ветеринария, 1988, 3, 40−43.
  24. Н.Т. Скрепи овец сравнительная характеристика клинико-морфологических изменений, цитохимических показателей клеток крови, вопросы патогенеза. Автореф. дис. канд. вет. наук. М., 1993.
  25. Р.А. Липиды крови, головного мозга, мочи и желчи при скрепи овец. Автореф. дис. канд. биол. наук. М., 1993.
  26. Ю.М. и Рейфман В.Г. Вироиды новый класс патогенов. М., «Наука», 1978, 88 стр.
  27. В.А., Кувшинов В. Л., Суворов B.C. Патогистилогическая диагностика скрепи и висна овец. Труды научной конференции по патоморфоло-гии, Саратов, 1990, 169−171.
  28. В.А., Суворов B.C., Коромыслов Г. Ф. и др. Эпизоотическая ситуация по медленным инфекциям овец романовской породы в хозяйствах Нечерноземной зоны России. Бюллетень ВИЭВ, 1996, 7, 14.
  29. В.А., Надточей Г. А., Суворов B.C., Караваев Ю. Д., Коромыслов Г. Ф. Результаты научных исследований по медленным инфекциям овец за 1979−1997 годы. Ветеринария, 1998, 6, 22−25.
  30. В.А., Суворов B.C., Караваев Ю. Д., Поляков В. Ф. Диагностика и клинико-патоморфологические изменения у овец, больных скрепи. Бюллетень ВИЭВ, 1984, 55, 82−90.
  31. В.А., Суворов B.C., Поздеева Р. Д. Особенности дифференциальной диагностики скрепи овец при ассоциированном течении ее с висной. В книге «Ретровирусные и прионные инфекции животных». Труды ВИЭВ, М., 1999, стр. 30−34.
  32. В.А., Суворов B.C., Поздеева Р. Д. и др. Диагностика скрепи и вис-на овец. Ветеринария, 1994, 2, 6−11.
  33. В.А., Ханхасыков С., Суровов B.C. и др. Медленные инфекции по данным клинико-эпизоотологического, патоморфологического и серологического исследований. Всероссийская патоморфологическая конференция, Воронеж, 19−21 октября 1993, 31−32.
  34. Эрнст J1.K., Дьяконов Л. П., Дагданова А. В. Чувствительность культур клеток и эмбрионов сельскохозяйственных и диких животных к вирусам и компетентность к восприятию генетически чужеродной информации. Сельскохозяйственная Биология, 1998, 2, 37−45.
  35. К.П., Шубин В. А., Суворов B.C., Архангельская Г. Н. Изыскание лабораторной модели для культивирования возбудителя губчатой энцефало-патиии крупного рогатого скота. Бюл. ВИЭВ, 1996, 77, 11.
  36. Adam J., Crow Т., Duchen L. et al., Familial cerebral amyloidosis and spongiform encephalopathy. J. Neurol. Neurosurg. Psychiatry, 1982, 45, 37−45.
  37. Aguzzi A. Molecular pathogenesis of spongiform encephalopathies. Verh. Dtsch. Ges. Pathol., 1997, 81, 35−47.
  38. Aguzzi A., Weissmann C. Prion research: the next frontiers. Nature, 1997, 389, 795−798.
  39. Aliev G., Bodin P., Burnstock G. Free radical generators cause changes in endothelial and inducible nitric oxide synthetases and endothelin-1 immunoreactivity in endothelial cell from hyperlipidemic rabbits. Mol. Genet. Metab., 1998, 63, 191−197.
  40. Anderson R. Plasmalemmal caveolae and GPI-anchored membrane proteins. Curr. Opin. Cell Biol., 1993, 5, 647−652.
  41. Anderson R., Donnelly C., Ferguson N. et al. Transmission dynamics and epidemiology of BSE in British cattle. Nature, 1996, 382, 779−788.
  42. Andres-Barquin P.J., LePrince G., Fages C. et al. Expression of glial fibrillary acidic protein and glutamine synthetase genes in the natural scrapie of sheep. Mol. Chem. Neuropathol., 1994, 22, 57−65.
  43. Antoine N., Cesbron J.-Y., Coumans B. et al. Differential expression of cellular prion protein on human blood and tonsil lymphocytes. Hematologica, 2000, 85, 475−480.
  44. Aronoff-Spenser E., Burns C., Avdievich N. et al. Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochem., 2000, 39, 13 760−13 771.
  45. Arnold J., Tipler C., Laszlo L. et al. The abnormal isoform of the prion protein accumulation in late-endosome-like organelles in scrapie-infected mouse brain. J. Pathol., 1995, 176, 403−411.
  46. Bains, J. S., Shaw, C. A. Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Rev., 1997, 25,335−358.
  47. Banati R., Gehrmann J., Schubert P., Kreutzberg G. Cytotoxicity of microglia. Glia, 1993,7, 111−118.
  48. Banati R., Gehrmann J., Czech C. et al. Early and rapid de novo synthesis of Alzheimer beta A4-amyloid precursor protein (APP) in activated microglia. Glia, 1993b, 9, 199−210.
  49. Barna В., Estes М., Jacobs В. et al. Human atrocytes proliferate in response to TNF-a. J. Neuroimmunol., 1990, 30, 239−243.
  50. R.A. & Prusiner S.B. Monoclonal antibodies to the cellular and scrapie prion proteins. J. Inf. Dis., 1986, 3, 518−521.
  51. Bartz J., McKenzie I., Bessen R. et al. Transmissible mink encephalopathy species barrier effect between ferret and mink: PrP gene and protein analysis. J. General Virol., 1994, 75, 2947−2953.
  52. Baskakov I., Legname G., Prusiner S.B., Cohen F. Folding of prion protein to its native a-helical conformation is under kinetic control. J. Biol. Chem., 2001, 276, 19 687−19 690.
  53. Basler K., Oesch В., Scott M. et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell., 1986, 46, 417−428.
  54. Bateman D., Hilton D., Love S. et al. Sporadic CJD in an 18-year-old in the UK. The Lancet, 346, 1155−1156.
  55. E. & Daniel P. Neuropathology of TSE. In: Prions: Novel Infectious Pathgens Causing Scrapie and CJD. (Eds.: Prusiner S., McKinley M.). New York, Academic Press, 1987, 331−385.
  56. M. & McBride P. Early accumulation of pathological PrP in the enteric nervous system and gut-associated lymphoid tissue of hamsters orally infected with scrapie. Neurosci. Lett., 2000, 278, 181−184.
  57. Beekes M., McBride P., Baldauf E. Cerebral targeting indicates vagal spread of infection in hamsters fed with scrapie. J. Gen. Virol., 1998, 601−607.
  58. Behl, C. Vitamin E and other antioxidants in neuroprotection. Int. J. Vitam. Nutr. Res., 1999, 69,213−219.
  59. Bendheim P.E., Barry R.A., DeArmond S.J. et al. Antibodies to a scrapie prion protein. Nature, 1984, 310, 418−421.
  60. Beringue V., Demoy M., Lasmeras C. et al. Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. J. Pathol., 2000, 190, 495−502.
  61. Besnoit M.M., Morel G. Note sur lesions nerveuses de la tremblante du mou-ton. Revue Veterrinaire Т., 1898, XXIII (LV), 397−400.
  62. Bessen R., Kocisko D., Raymond G. et al. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature, 1995, 375, 698−700.
  63. Bessen R., Marsh R. Biological and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol., 1992, 66, 2096−2101.
  64. Betmouni S., Perry V.H., Gordon J.L. Evidence for an early inflammatory response in the CNS of mice with scrapie. Neurosci., 1996, 74, 1−5.
  65. Bignami A., Forno L. Status spongiosus in CJD: Electron microscopic study. Brain, 1970, 93, 89−94.
  66. Billeter M., Riek R., Wider G. et al. Prion protein NMR structure and species barrier for prion diseases. Proc. Natl. Acad. Sci. USA., 1997, 94, 7281−7285.
  67. Blattler Т., Brandler S., Raeber et al. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature, 1997, 398, 69−73.
  68. Bleich S., Kropp S., Degner D. et al. CJD and oxidative stress. Acta Neurol. Scand., 2000, 101,332−334.
  69. Boellaard J., Schlote W., Tateishi J. Neuronal autophagy in experimental CJD. Acta Neuropathol., 1989, 78, 410−418.
  70. Boellaard J., Kao M., Schlote W., Diringer H. Neuronal autophagy in experimental scrapie. Acta Neuropathol., 1991, 82, 225−228.
  71. Bohuslav J., Horejski V., Hansmann C. et al. Urokinase plasminogen-activator receptor, p2-integrins, and src-kinases within a singl receptor complex of human monocytes. J. Exp. Med., 1995, 181, 1381.
  72. Boje K.M., Arora P. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res., 1992, 587, 250−256.
  73. Bolton, D. C., Bendheim, P. E. A modiefied host protein model of scrapie. Ciba Found. Symp., 1988, 135, 164−181.
  74. Borchelt D.R., Koliatsos V., Guarneri M. et al. Rapid anterograde axonal transport of the cellular prion glicoprotein in the peripheral and CNS. J. Biol. Chem., 1994, 269, 14 711−14 714.
  75. Borchelt D.R., Scott M., Taraboulos A. et al. Scrapie and cellular prion protein differ in their kinetics of synthesis and topology in cultured cells. J. Cell. Biol., 1990, 110, 743−752.
  76. Borchelt D.R., Rogers M., Stahl N. et al. Release of the cellular prion protein from cultured cells after loss of its GPI-anchor. Glycobiol., 1993, 3, 319−329.
  77. Bosque P. and Prusiner S.B. Cultured cell sublines highly susceptible to prion infection. J. Virol., 2000, 74, 4377−4386.
  78. Bosque P., Telling G., Cayetano J. et al. Evidence for prion replication in skeletal muscle. Amer. Neurol. Assoc., 122nd Meeting, September, 1997.
  79. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Bio-chem., 1976, 72, 248−254.
  80. Brandler S., Isenmann S., Raeber A. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature, 1996, 379, 339−343.
  81. Brenneisen P., Briviba K., Wlaschek M. et al. Hydrogen peroxide (H202) increases the steady-state mRNA levels of collagenase/MMP-1 in human dermal fibroblasts. Free Radic. Biol. Med., 1997, 22, 515−524.
  82. Britton Т., Al-Sarraj S., Shaw C. et al. Sporadic CJD in a 16-year-old in the UK. The Lancet, 346, 1155.
  83. Brown D.R. and Kretzschmar H. Microglia and prion disease: a review. Histol. Histopathol, 1997,12, 883−892.
  84. Brown D.R. Prion protein peptides: optimal toxicity and peptide blockade of toxicity. Molecular and Cellular Neurosci., 2000, 15, 66−78.
  85. Brown D.R. PrPSc-like prion protein peptide inhibits the function of cellular prion protein. Biochem., 2000, 352, 511−518.
  86. Brown D.R., Hafiz F., Glassmith L.L. et al. Consequences of manganese replacement of copper for prone protein function and proteinase resistance. The EMBO J., 2000, 19, 6, 1180−1186.
  87. Brown D.R., Herms J. and Kretzschmar H.A. Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport, 1994, 5, 2057−2060.
  88. Brown D.R., Qin K., Herms J. et al. The cellular prion protein binds copper in vivo. Nature, 1997a, 390, 684−687.
  89. Brown D.R., Schmidt В., Kretzschmar H.A. A neurotoxic prion protein fragment enhances proliferation of microglia but not astrocytes in culture. Glia, 1996b, 18, 59−67.
  90. Brown D.R., Schmidt В., Kretzschmar H.A. Effects of copper on survival of protein knockout neurons and glia. J. Neurochemistry, 1998,70, 1687−1693.
  91. Brown D.R., Schmidt В., Kretzschmar H.A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature, 1996a, 380, 345−347.
  92. Brown D.R., Schulz-Schaeffer W.J., Schmidt В., Kretzschmar H.A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol., 1997b, 146, 104−112.
  93. Brown D.R., Wong B.-S., Hafiz F. et al. Normal prion protein has an activity like that of superoxide dismutase. Biochem. J., 1999, 344, 1−5.
  94. Brown D. R., Schmidt В., Kretzschmar H.A. Effects of oxidative stress on prion protein expression in PC 12 cells. Int. J. Devi. Neuroscience, 1997, 15, 961−972.
  95. Brown D.R., Schulz-Schaeffer W.J., Schmidt В., Kretzschmar H.A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol., 1997, 146, 104−112.
  96. Brown D.R., Besinger A. Prion protein expression and superoxide dismutase activity. Biochem J., 1998, 334, 423−429.
  97. Brown K.L., Stewart K., Bruce M., Fraser H. Severely combined immuno-deficient (SCID) mice resist infection with BSE. J. Gen. Virol., 1997, 78, 27 072 710.
  98. Brown K.L., Stewart K., Ritchie D. et al. Scrapie replication in lymphoid tissues depends on protein-expressing follicular dendritic cells. Nat. Med., 1999,5, 1308−1312.
  99. Brown K.L., Ritchie P., McBride P. & Bruce M. Detection of PrP in extra-neural tissue. Microscopy research and Technique, 2000, 50, 40−45.
  100. Brown P., Gibbs C., Rodgers-Johnson P. et al. Human spongiform encephalopathy: the National Institute of Health series of 300 cases of experimentally transmitted diseases. Ann. Neurol., 1994, 35, 513−529.
  101. Bruce M. et al. Transmission to mice indicate that «new variant» CJD is caused by the BSE agent. Nature, 1997, 389, 498−501.
  102. Bruce M. Scrapie strain variation and mutation. Br. Med. Bull., 1993, 49, 822−838.
  103. Bruce M., Chree F., McConnell I. et al. Transmission of BSE and scrapie to mice: strain variation and the species barrier. Philosophical Transactions of the Royal Society of London, Series В., 1994, 343, 405−411.
  104. Bruce M., McBride P., Jeffrey M., Scott J. PrP in pathology and pathogenesis in scrapie-infected mice. Mol. Neurobiol., 1994, 8, 105−112.
  105. Bruce M., Will R., Ironside J. et al. Transmissions to mice indicate that «new variant» CJD is caused by the BSE agent. Nature, 389, 498−501.
  106. Bruce M. E, McConnell I., Fraser H., Dickinson A. The disease characteristics of different strains of scrapie in Sine congenic mouse lines: implications forthe nature of the agent and host control of pathogenesis. J. Gen. Virol., 1991, 72, 595−603.
  107. Bruce M.E., Dickinson A.G., Fraser H. Cerebral amyloidosis in scrapie in the mouse: effect of agent strain and mouse genotype. Neuropathol. Appl. Neu-robiol., 1976, 2, 471−478.
  108. Bruce M.E., Fraser H. Scrapie strain variation and its implications. Curr. Top Microbial. Immunol., 1991, 172,125−138.
  109. Bruce M.E., McBride P.A., Farquhar C.F. Precise targeting of the pathology of the sialoglycoprotein, PrP, and vacuolar degeneration in mouse scrapie. Neu-rosci. Lett., 1989, 102, 1−6.
  110. Bueler H., Aguzzi A., Sailer A. et al. Mice devoid of PrP are resistant to scrapie. Cell, 1993, 73, 1339−47.
  111. Bueler H., Fischer M., Lang Y. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature, 1992, 356, 577−582.
  112. Bueler H., Raeber A., Sailer A. et al. High prion and PrPSc levels but delayed onset of disease in scrapie-innoculated mice heterozygous for a disrupted PrP gene. Mol. Med., 1995, 1, 19−30.
  113. Butler D., Scott M., Bockman J. et al. Scrapie-infected murine neuroblastoma cells produce protease-resistant prion protein. J. Virol., 1988, 62, 158−164.
  114. Buja L., Eigenbrodt M.L., Eigenbrodt E.H. Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch. Pathol. Lab. Med., 1993, 117, 12 081 214.
  115. Bursch W., Paffe S., Putz B. et al. Detection of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis, 1990, 11,847−853.
  116. Butefisch C., Gambetti P., Cervenakova L. et al. Inherited prion encephalopathy associated with the novel PRNP H187R mutation. Neurol., 2000, 55, 517−522.
  117. Butler D., Scott M., Bockman J. et al. Scrapie-infected murine neuroblastoma cells produce protease-resistent prion protein. J. Virol., 1988, 62, 15 581 564.
  118. Buyukmichi N., Goehring-Harmon F., Marsh R. Photoreceptor degeneration in experimental transmissible mink encephalopathy in hamsters. Exp. Neurol., 1987b., 96, 727−731.
  119. Buyukmichi N., Goehring-Harmon F., Marsh R. Photoreceptor degeneration during infection with various strains of the scrapie agent in hamsters. Exp. Neurol., 1987a, 97, 201−206.
  120. Capellari S., Parchi P., Russo C. et al. Effect of the mutation on prion protein metabolism. Comparative study of a cell model and human brain. Amer. J. Pathol., 2000, 157,613−622.
  121. Capellari S., Zaidi S., Urig C. et al. Prion protein glycosylation is sensitive to redox change. J. Biol. Chem., 1999, 274, 34 846−34 850.
  122. Cashman M., Loertschner R., Nalbantoglu J. et al. Cellular isoform of the scrapie agent protein participates in lymphocyte activation. Cell, 1990, 61, 185 192.
  123. Caughey В., Race R., Ernst D. et al. Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J. Virol., 1989, 63, 175−181.
  124. Caughey В., Race R., Vogel M. et al. In vitro expression in eukariotic cells of a prion protein gene cloned from scrapie-infected mouse brains. Proc. Natl. Acad. Sci. USA., 1988, 85, 4657−4661.
  125. Caughey В., Raymond G. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J. Biol, chem., 1991,266, 18 217−18 223.
  126. Caughey В., Raymond G., Ernst D., Race R. N-terminal truncation of the scrapie-associated form of the PrP by lysosomal protease (s): implications regarding the site of convercion of PrP to the protease-resistant state. J. Virol., 1991,65,6597−6603.
  127. Caughey В., Raymond G., Priola S. et al. Methods for studying prion protein metabolism and the formation of protease-resistant PrP in cell culture and cell-free systems. Protocol. The EMBO J., 1999, 18, 3193−3203.
  128. Caughey B.W., Dong A., Bhat K.S. et al. Secondary structure analysis of the scrapie-associated protein PrP 27−30 in water by infrared spectroscopy. Bio-chem., 1991,30, 7672−7680.
  129. Chabry J., Caughey В., Chesebro B. Specific inhibition of in vitro formation of protease resistant prion protein by synthetic peptides. J. Biol. Chem., 1998, 273, 13 203−13 207.
  130. Chandler R.C. Experimental scrapie in the mouse. Res. Vet. Sci., 1963, 4, 276−285.
  131. Chandler R.L. Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet, 1961, 1, 1378−1379.
  132. Chanock S.J., Benna J., Smith R.M., Babior B.M. The respiratory burst oxidase. J. Biol.Chem., 1994, 269, 24 519−24 522.
  133. Chazot G., Broussolle E., Lapras C. et al. New variant of CJD in a 26-year-old French man. Lancet, 1996, 347, 1181.
  134. Chen S.G., Teplow D.B., Parchi P. et al. Truncated forms of the human prion protein in normal brain and in prion diseases. J. Biol. Chem., 1995, 270, 19 173−19 180.
  135. Chiesa R. and Harris D. Nerve growth factor-induced differentiation does not alter the biochemical properties of a mutant prion protein expressed in PC 12 cells. L. Neurochem., 2000, 75, 72−80.
  136. Chiesa R., Drisaldi В., Quaglio E. et al. Accumulation of protease-resistant prion protein and apoptosis of cerebellar granule cells in transgenic mice expressing a PrP insertional mutations. RNAS, 2000, 97, 5574−6679.
  137. Chiesa R., Piccardo P., Ghetti В., Harris D.A. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron., 1998,21, 1339−1351.
  138. Chishti M.A., Strome R., Carlson G.A., Westaway D. Syrian hamster prionpprotein (PrP) is expresed in photoreceptor cells of the adult retina. Neurosci. Lett., 1997, 234, 11−14.
  139. Chiti F., Webster P., Taddei N. Desingning conditions for in vitro formation of amyloid profilaments and fibrils. Proc. Natl. Acad. Sci. USA., 1999, 96, 3590−3594.
  140. Clarke P. Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol., 1990, 181, 195−213.
  141. Clouscard C., Beaudry P., Elsen J.M. et al. Different allelic effects of the codons 136−171 of the prion protein gene in sheep with natural scrapie. J. Gen. Virol., 1995, 76, 2097−2101.
  142. Cohen C., Valleron A. When did BSE start? Implications on the prediction of a nwCJD epidemic. Int. J. Epidem., 1999, 28, 526−531.
  143. Cohen F. and Prusiner S.B. Pathologic conformations of prion proteins. An. Rev. Biochem., 1998, 67, 793−819.
  144. Cohen F.E. Prions, peptides and protein misfolding. Mol. Med. Today, 2000, 6, 292−293.
  145. Cohen G.M. Caspases: the executioners of apoptosis. Biochem., 1997, 326, 1−16.
  146. J. & Bradley R. BSE: a decade on Part 2. Lancet, 1997, 349, 715 721.
  147. Collinge J., Palmer M., Sidle K. et al. Transmission of fatal insomnia to laboratory animals. The Lancet, 1995, 346, 569−570.
  148. Collinge J., Palmer M., Sidle K. et al. Unaltered susceptibility to BSE in transgenic mice expressing human prion protein. Nature, 1995, 378, 779−783.
  149. Collinge J., Sidle K., Meads J. et al. Molecular analysis of prion strain variation and the aetiology of «new variant» CJD. Nature83, 685−690.
  150. Collinge J., Whittington M.A., Sidle K.C. et al. Prion protein is necessary for normal synaptic function. Nature, 1994, 370, 295−297.
  151. Collins S., Boyd A., Fletcher A. et al. Recent advances in the pre-mortem diagnosis of CJD. J. Clin. Neurosci., 2000, 7, 195−202.
  152. Combs C., Johnson D., Cannady S. et al. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of (3-amyloid and prion protein. J.Neurosci., 1999, 19, 928−939.
  153. Cooper A. J., Kristal B.S. Multiple roles of glutathione in the central nervous system. Biol. Chem, 1997, 378, 793−802.
  154. Crowley M., Costello, Fitzer-Attas C. et al. A critical role for syk in signal transduction and phagocytosis mediater by Fcy-receptors on macrophages. J. Exp. Med., 1997, 186, 1027−1039.
  155. Cuille J. and Chelle P.L. Transmission experimentale de la tremblante chez la chevre. Comptes Rendus Academie des Sciences, 1939, 208, 1058−1060.
  156. Cunningham A., Wells G., Scott A. et al. TSE in greater kudu. Vet.Rec., 1993, 132, 68.
  157. Damen J.E., Liu P., Rosten R.K. et al. The 145-kDa protein induced to associate with She by multiple cytokines is an inositol tetraphosphate and phospha-tidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA., 1996, 93, 1689−1693.
  158. Daude N., Lehman S., Haris D. Identification of intermediate steps in the conversion of a mutant prion protein to a scrapie-like form in cultures cells. J. Biol. Chem., 1997, 272, 11 604−11 612.
  159. Davis L.S., Patel S.S., Atkinson J.P., Lipsky P.E. Decay-accelerating factor functions as a signal transducing molecule for human T-cells. J.Immunol., 1988, 141,2246.
  160. DeArmond S., Qiu Y., Sanchez H. et al. PrPC glycoform heterogeneity as a function of brain region: Implications for selective targeting of neurons by prion strains. J. Neuropathol. Exp. Neurol., 1999, 58, 1000−1009.
  161. DeArmond SJ., Mobley W.C., DeMott D.L. et al. Changes in the localization of brain prion protein during scrapie infection. Neurology, 1987, 37, 12 711 280.
  162. DeArmond S.J., Sanchez H., Yehiely H. et al. Selective neuronal targeting in prion disease. Neuron., 1997, 19, 1337−1348.
  163. DeArmond S.J., Yang S.L., Lee A. et al. Three scrapie prion isolates exhibit different accumulation patterns of the prion priotein scrapie isoform. Proc.Natl.Acad.Sci.USA., 1993, 90, 6449.
  164. Dickinson A.G. and Outram G.W. The scrapie replication-site hypothesis and its implications for pathogenesis. In Slow transmissible diseases of the nervous system (ed. S.B.Prusiner and W.J.Hadlow), 1979, Vol.2, pp. 13−31. Academic Press, London.
  165. Dickinson A.G. and Stamp J.T. Experimental scrapie in Cheviot and Suffolk sheep. J. Сотр. Pathol., 1969, 79, 23−26.
  166. Dickinson A.G., Meikle V.M. and Fraser H. Identification of a gene which controls the incubation period of some strains of scrapie agent in mice. J. Сотр. Pathol., 1968, 78, 293−299.
  167. Dickinson A.G., Young G.B., Stamp J.T., Renwick C.C. An analysis of natural scrapie in Suffolk sheep. Heredity, 1965, 20, 485−503.
  168. Diedrich M., Bendheim P., Kim Y. et al. Scrapie-associated prion protein accumulates in astrocytes during scrapie infection. Proc. Natl. Acad. Sci. USA., 1991,88,375−379.
  169. Dodelet V. and Cashman N. Prion protein expression in human leukocyte differentiation. Blood, 1998, 91, 1556−1561.
  170. Doherr M., Heim D., Vandevelde M., Fatzer R. Modelling the expected numbers of preclinical and clinical cases of BSE in Switzerland, Vet. Rec., 1999, 145, 155−160.
  171. Doh-Ura K., Iwaki Т., Caughey B. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J. Virol., 2000, 74, 4894−4897.
  172. Doi S., Ito M., Shinagawa M. et al. Western Blot detection of scrapie-associated fibril protein in tissue outside the CNS from preclinical scrapie-infected mice. J. Gen. Virol., 1988, 69, 955−960.
  173. Donne D., Viles J., Groth D. et al. Structure of the recombinant full-length hamster prion protein PrP (23−231): the N-terminus is highly flexible. Proc. Natl. Acad. Sci. USA., 1997, 94, 13 452−13 457.
  174. Donnelly C., Santos R., Ramos M. et al. BSE in Portugal: anticipating the decline of an epidemic. J. Epidem. Biostat., 1999, 4, 277−283.
  175. Duerig J., Giese A., Schulz-Schaeffer W. et al. Differential constitutive and activation-dependent expression of prion protein in human peripheral blood leucocytes. Brit.J.Haematol., 2000, 108, 488−496.
  176. Dyakonov L.P., Galnbeck T.V., Dagdanova A.V. Cytomorphological and Electron Microscopy Characteristic of Diploid PTG (Pig's Thyroid Gland Cell Culture), Abstracts of International Conference «Cell Interactions in
  177. Malignancy, Development and Differentiation», April 2 to 5, 1995, Heidelberg, Germany.
  178. Edenhofer F., Rieger R., Famulok M. et al. Prion protein PrPc interacts with molecular chaperones of the Hsp60 Family. J. Virol., 1996, 70, 4724−4728.
  179. Eikelenboom P., Pozemuller J.M., Kraal G. et al. Cerebral amyloid plaques in Alzheimer’s disease but not in scrapie-affected mice are closely associated with a local inflammatory process. Virchows Arch. (Cell Pathol), 1991, 60, 329−336.
  180. Eklund C.M., Kennedy R.C. and Hadlow W.J. Pathogenesis of scrapie virus infection in the mouse. J. Infect. Dis., 1967, 117, 15−22.
  181. Endo Т., Groth D., Prusiner S., Kobata A. Diversity of oligosaccharide structures linked to asparagines of the scrapie prion protein. Biochem., 1989, 28, 8380−8388.
  182. Fairbairn D.W., Carnahan K.G., Thwaits R. N et al. Detection of apoptosis induced DNA cleavage in scrapie-infected sheep brain. FEMS Microbiol. Lett., 1994, 115,341−346.
  183. Fenderson B.A., Eddy E.M., Hakomory S. Glycoconjugate expression during embryogenesis and its biological significance. BioEssays, 1990, 12, 173.
  184. Ferguson N., Donnelly C., Woolhouse M., Anderson R. Estimation of the basic reproduction number of BSE: the intensity of transmission in British cattle. Proc. R. Soc. Lond. В., 1999, 266, 23−32.
  185. Field E.J., Raine C.S. An electron microcsopic study of scrapie in the mouse. Acta Neuropathol., 1964, 4, 200−211.
  186. Fischer M., Ruelicke Т., Raeber A. et al. Prion protein with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J., 1996, 15, 1255−1264.
  187. Florio Т., Grimaldy M., Scorciello A. et al. Intracellular calcium rise through L-type calcium channels, as molecular mechanism for prion protein fragment 106−126-induced astroglial proliferation Biochem. Biophys. Res. Commun., 1996, 228, 397−405.
  188. Forloni G., Angeretti N., Chiesa R. et al. Neurotoxicity of a prion protein fragment. Nature, 1993, 362, 543−546.
  189. Forloni G., Del Bo K., Angeretti N. et al. A neurotoxic prion protein fragment induces rat astroglial proliferation and hypertrophy. Eur. J. Neurosci., 1994, 6, 1415−1422.
  190. Foster J., Hope J., Fraser H. Transmission of BSE to sheep and goats. Vet. Rec., 1993, 133,339−341.
  191. Foster J., Wilson M., Hunter N. Immunolocalisation of the prion protein in the brains of sheep with scrapie. Vet.Rec., 1996, 139, 512−515.
  192. Fournier J., Escaig-Haye F., Billette de Villemeur T. and Robain O. Ultrastructural localization of cellular prion protein in synaptic boutons of normal hamster hippocampus. C.R.Acad.Sci., Paris, 1995, 318, 339−344.
  193. Fournier J., Escaig-Haye F., Billette de Villemeur T. et al. Distribution andлsubmicrocopic immunogold localization of cellular prion protein (PrP) in extracerebral tissues. Cell Tissue Res., 1998, 292, 77−84.
  194. H. & Dickinson G. Pathogenesis of scrapie in the mouse: the role of spleen. Nature, 1970, 226, 462−463.
  195. H. & Dickinson G. Studies of the LRS in the pathogenesis of scrapie: the role of spleen and thymus. J. Сотр. Pathol., 1978, 88, 563−573.
  196. Fraser H. and Dickinson A.G. Targeting of scrapie lesions and spread of agent via the retino-tectal projection. Brain Res., 1985, 346, 32−41.
  197. Fraser H. Diversity in the neuropathology of scrapie-like diseases in animals. Br. Med. Bull., 1993, 49, 792−809.
  198. Fraser H. et al. Replication of scrapie in spleens of scid mice follows recon-stitution with wild-mouse bone marrow. J.Gen.Virol., 1996, 77, 1935−1940.
  199. Fraser H. Neuropathology of scrapie: the precision of the lesions and their diversity. In «Slow transmissible diseases of the nervous system». V. l, Eds. W.J. Hadlow, S.B. Prusiner. N.Y., Academic Press, 1979, 387−406.
  200. Fraser H. Scrapie: a transmissible degenerative CNS disease. In «Progress in neurological research». Eds. P.O. Behan, R.C. Rose. London. Pitman Publishing Limited, 1978, 194−210.
  201. Fraser H. The pathology of natural and experimental scrapie. In «Slow virus diseases of animals and man». Ed. R.H. Kimberlin. Amsterdam, North Holland Publishing Company, 1976, 267−305.
  202. Fraser H., Bruce M., Chree A. et al. Transmission of BSE and scrapie to mice. J. Gen. Virol., 1992, 73, 1891−1897.
  203. Fraser H., Pearson G., McConnell I. et al. Transmission of feline spongiform encephalopathy to mice. Vet. Rec., 1994, 134, 449.
  204. Frenkel K. and Gleichauf C. Hydrogen peroxide formation by cells treated with a tumor promotor. Free Rad. Res. Comms., 1991, 12−13, 783−794.
  205. Freshney NW, Rawlinson L, Guesdon F. et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell, 1994, 78, 1039−1049.
  206. Freyer J.P. Decreased mitochondrial function in quiescent cells isolated from multicellular tumor spheroids. J. Cell. Physiol., 1998, 176,138−149.
  207. Frigg R., Klein M., Hegyi I. et al. Scrapie pathogenesis in subclinically infected B-cell-deficient mice. J. Virol., 1999, 73, 9584−9588.
  208. Gajdusek D.C. Unconventional viruses and the origin and disappearance of kuru. Science, 1977, 197, 943−960.
  209. Gasset M., Baldwin M.A., Fletterick R.J., Prusiner S.B. Perturbation of the secondary structure of the scrapie prion protein under conditions associated with changes in infectivity. Proc.Natl.Acad.Sci.USA., 1993, 90, 1−5.
  210. Gavrieli Y., Sherman Y., Ben-Sasson S. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell. Biol., 1992, 119, 493−501.
  211. Gebicke-Haerter P., van Calker D., Noerenberg W., Illes P. Molecular mechanisms of microglial activation. Implications for regeneration and neurodegenerative diseases. Neurochem. Int., 1996, 29, 1−12.
  212. Ghadge G., Lee J., Bindokas V. et al. Mutant SOD-1-linked familial amyotrophic lateral sclerosis: molecular mechanismes of neuronal death and protection. J. Neurosci, 1997, 17, 8756−8766.
  213. Ghazizadeh S., Bolen J., Fleit H. Tyrosine phosphorylation and association of syk with Fey RII in monocytic THP-1 cells. Biochem.J., 1995, 305, 669−674.
  214. Ghazizadeh S., Bolen J.B., Fleit H.B. Physical and functional association of Src-related protein tyrosine kinases with Fc gamma RII in monocytic THP-1 cells. J. Biol. Chem., 1994, 269, 8878−8884.
  215. Gibbs C., Gajdusek D., Amyx H. Strain variation in the viruses of CJD and kuru. In: Slow Transmissible Diseases of the Nervous System. Ed: S.V. Prusiner and W.J. Hadlow. Academic Press, London, pp. 87−110.
  216. Giese A., Brown D., Groschup M. et al. Role of microglia in neuronal cell death in prion disease. Brain Pathol., 1998, 8, 449−457.
  217. Giese A., Groschup M.H., Hess B. and Kretzschmar H.A. Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol., 1995, 5, 213 221.
  218. Gilmour J., Bruce M., McKellar A. Cerebrovascular amyloidosis in scrapie-affected sheep. Neuropathol. and Applied Neurobiol., 1985, 11, 173−183.
  219. Giulian D., Baker Т., Shin L.-C. et al. Interleukin 1 of the CNS is prodused by ameboid microglia. J. Exp. Med., 1986, 164, 594−604.
  220. Giulian D., Li J., Leara B. and Keenen C. Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochem. Int. 1994, 25, 227−233.
  221. M. & Aguzzi A. PrPC expression in the peripheral nervous system is a dererminant of prion neuroinvasion. J. Gen. Virol., 2000, 81, 2813−2821.
  222. Glenner G. Amyloid deposits and amyloidosis. Natl. Engl. J. Med., 1980, 302, 1283−1292.
  223. Gold R., Schied M., Rothe G. et al. Detection of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J. Histochem. Cytochem., 1993, 41, 1023−1030.
  224. Goldmann W., Hunter N., Benson G. et al. Different scrapie-associated fibril proteins (PrP) are encoded by lines of sheep selected for different alleles of the Sip gene. J.Gen.Virol., 1991, 72, 2411−2417.
  225. Goldmann W., Hunter N., Foster J.D. et al. Two alleles of a neural protein gene linked to scrapie in sheep. Proc.Natl.Acad.Sci.USA, 1990a, 87, 24 762 480.
  226. Goldmann W., Hunter N., Manson J. The PrP gene of the sheep, a natural host of scrapie. VHIth International Congress of Virology, Berlin, Aug. 26−31 (Abstr), 1990, 284.
  227. Goldmann W., Hunter N., Martin T. et al. Different forms of the bovine PrP gene have five or six copies of a short, G-C-rich element within the protein-coding exon. J. Gen. Virol., 1991, 72, 201−204.
  228. Goldstone S.D., Milligan A.D., Hunt N.H. Oxidative signalling and gene expression during lymphocyte activation. Biochim. Biophys. Acta, 1996, 1314, 175−182.
  229. Gordon W.S. Variation in susceptibility of sheep to scrapie and genetiv implications. In: Report of scrapie seminar, ARS 91−53. Washington, DC: U.S.Department of Agriculture, 1966, 53−67.
  230. Gorodinsky A. and Harris D.A. Glycolipid-anchored protein in N2a cells form detergent-resistant complexes without caveolin. J. Cell Biol., 1995, 129, 619−627.
  231. Gray F., Chretien F., Adle-Biassette H. et al. Neuronal apoptosis in CJD. J. Neuropathol. Exp. Neurol., 1999, 58, 321−338.
  232. Greene L., Sobeih M., Teng K. Methodologies for the culture and experimental use of the PC 12 rat pheochromocytoma cell line. In: Culturing Nerve Cells. Eds. Banker G., Goslin K. MIT Press, Cambridge, 1991, 207−226.
  233. Grimaldi L., Martinov G., Franciotta D. et al. Elevated TNF-a levels in spinal fluid from HIV-1-infected patients with CNS involvement. Ann. Neurol., 1990, 29,21−25.
  234. Groschup M., Beekes M., McBride P. et al. Deposition of disease-assotiated prion protein involves the peripheral nervous system in experimental scrapie. Acta Neuropathol., 1999, 98,453−457.
  235. Guentchev M., Voigtlaender Т., Haberler C. et al. Evidence for oxidative stress in experimental prion disease. Neurobiology of Disease, 2000, 7, 270 273.
  236. Guiroy D.C., Wakayama I., Liberski P.P. and Gajdusek D.C. Relationship of microglia and scrapie amyloid-immunoreactive plaques in kuru, CJD and GSS. Acta Neuropathol. (Berl.), 1994, 87, 526−530.
  237. Hadlow W.J. Scrapie and kuru. Lancet, 1959, 289−290.
  238. Hadlow W.J., Kennedy R.C., Race R.E. and Eklund C.M. Virologic and neurohistologic findings in dairy goats affected with natural scrapie. Vet. Pathol., 1980, 17,187−199.
  239. Hadlow W.J., Kennedy R.C., Race R.E. Natural infection of Suffolk sheep with scrapie virus. J. Infec. Diseases. 1982, 146, 657−664.
  240. S. & Rome L. Stimulation of in vitro myelin synthesis by microglia. Glia, 1994, 11,326−335.
  241. Han J., Lee J., Bidds L., Ulevitch R. A MAP kinase targeted by endotoxin and hyperosmolarity in mammaliam cells. Science, 1994, 265, 808−811.
  242. Haraguchi Т., Fisher S., Olofsson S. et al. Asparagine-linked glicosylation of the scrapie and cellular prion protein. Arch. Biochem. Biophys., 1989, 274, 113.
  243. Harmey J., Doyle D., Brown V., Rogers M. The cellular isoform of the prion protein is associated with caveolae in mouse neuroblastoma (N2a) cells. Biochem. Biophys. Res. Comm., 1995, 210, 753−759.
  244. Harnett M. and Rigley K. The role of G-protein vs protein tyrosine kinase in the regulation of lymphocyte-activation. Immunol Today, 1992, 13, 482.
  245. Harris D.A. Cellular biology of prion protein. Clin. Microbiol. Reviews, 1999, 12,429−444.
  246. Harris D.A., Huber M.T., van Dijken P. et al., Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochem., 1993, 32, 1009−1016.
  247. Harrison P., Bamborough P., Daggett V., Prusiner S.B., Cohen F. The prion folding problem. Curr. Opin. Struct. Biol., 1997, 7, 53−59.
  248. Harrison P., Chan H.S., Prusiner S., Cohen F. Conformational propagation with prion-like characteristics in a simple model of prion folding. Protein Science, 2001, 10,819−835.
  249. Haziot A., Chen S., Ferrero E. et al. The monocyte differentiation antigen, CD 14, is anchored to the cell membrane by a phosphatidylinositol linkage. J. Immunol., 1988, 141,547−552.
  250. Hegde R., Mastrianni J., Scott M. et al. A transmembrane form of the prion protein in neurodegenerative disease. Science, 1998, 279, 827−834.
  251. Heggebo R., Press C., Gunnes G. et al. Distribution of prion protein in the ileal Peyer’s patch of scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent. J. Gen. Virol., 2000, 81, 2327−2337.
  252. Herms J., Tings Т., Gall S. et al. Evidence of presynaptic location and function of the prion protein. J. Neurosci., 1999, 19, 8866−8875.
  253. Herms J.W., Kretzschmar H.A., Titz S., Keller B.U. Patch-clamp analysis of sinaptic transmission to cerebellar Purkinje cells of prion protein knockout mice. Eur. J. Neurosci., 1995, 7, 2508−2512.
  254. Herms J.W., Madlung A., Brown D.R., Kretzschmar H.A. Increase of intracellular free Ca2+ in microglia activated by prion protein fragment. Glia, 1997,21,253−257.
  255. Herrera В., Alvarez A., Sanchez A. et al. ROS mediates the mitochondrial-dependent apoptosis induced by trarsforming growth factor (3 in fetal hepato-cytes. The FASEB J., 2001, 15, 741−751.
  256. Herrmann L., Baszler Т., Knowles D. PrPC mRNA, but not PrPSc is found in the salivery glands of scrapie-infected sheep. Biochemica et Biophysica Acta, 2000, 1479, 147−154.
  257. Hetier E., Ayala J., Bousseau A. Ameboid microglial cells and not astrocytes syntesize TNF-a in Swiss mouse brain cell culteres. Eur. J. Neurosci., 1990, 2, 762−768.
  258. Hill A., Butterworth R., Joiner S. et al. Investigation of variant CJD and other human prion diseases with tonsil biopsy samples. The Lancet, 1999, 353, 183−189.
  259. Hill A., Desbruslais M., Joiner S. et al. The same prion strain causes vCJD and BSE. Nature, 1997, 389, 448−450.
  260. Hill A., Joiner S., Linehan J. et al. Species-barrier-independent prion replication in apparently resistant species. PNAS, 2000, 97, 10 248−10 253.
  261. Hill A., Zeidler M., Ironside J., Collinge J. Diagnosis of new variant CJD by tonsil biopsy. The Lancet, 1997, 349, 99−100.
  262. Hilton D., Fathers E., Edwards P. et al. Prion immunoreactivity in appendix before clinical onset of variant CJD. The Lancet, 352, 1998, 703−704.
  263. Hoelscher C., Delius H., Buerkle A. Overexpression of non-convertible PrPCAl 14−121 in scrapie -infected mouse neuroblastoma cells leads to trans-dominant inhibition of wild-type PrPSc accumulation. J. Virol., 1998, 72, 11 531 159.
  264. Hogan R. N, Kingsbury D.T., Baringer J.R., Prusiner S.B. Retinal degeneration in experimental Creutzfeld-Jakob disease. Lab. Invest., 1983, 49, 708−715.
  265. Hogan R.N., Baringer J.R., Prusiner S.B. Progressive retinal generation in scrapie-infected hamsters: a light and electron microscopical analysis. Lab. Invest., 1981,44, 34−42.
  266. Hoinville L. Decline in the incidence of BSE in cattle born after the introduction of the «feed ban». Vet. Rec., 1994, 134, 274−275.
  267. Honeycutt J. and Thirumalai D. Metastability of the folded states of globular proteins. Proc. Natl. Acad. Sci. USA., 1990, 87, 3526−3529.
  268. Hope J., Shearman M.S., Baxter H.C. et al. Cytotoxicity of prion protein peptide (PrP 106−126) differs in mechanism from the cytotoxic activity of the Alzheimer’s disease amyloid peptide A25−55. Neurodegeneration, 1996, 5, 111.
  269. Horiuchi M., Yamazaki N., Ikeda T. Et al. A cellular form of the prion protein (PrP) exists in many non-neuronal tissues of sheep. J. Gen. Virol., 1995, 76, 2583−2587.
  270. Hornshaw M.P., McDermott J.R., Candy J.M. Copper binding to the N-terminal repeat regions of mammalian and avian prion protein. Biochem. Bio-phys. Res. Commun., 1995, 207, 2, 621−629.
  271. Horwich A., and Weissman J. Deadly conformations protein misfolding in prion disease. Cell., 1997, 89,499−510.
  272. Hsiao K.K., Baker H.F., Crow T.J. et al. Linkage of a prion protein missense variant to GSS. Nature, 1989, 338, 342−345.
  273. Hsiao K.K., Groth D., Scott M. et al. Serial transmission in rodent of neuro-degeneration from transgenic mice expressing mutant prion protein. Proc. Natl. Acad. Sci. USA., 1994, 91, 9126−9130.
  274. Hsiao K.K., Scott M., Foster D. Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science, 1990, 250, 1587−1590.
  275. Huang S. et al. 1993. Immune response in mice that lack the interferon-y receptor. Science 259, 1742.
  276. Huizinga T.W., van der Schoot C.E., Jost C. et al. The Pi-linked receptor FcRIII is released on stimulation of neutrophils. Nature, 1988, 333, 67−69.
  277. Hultberg, В.- Andersson, A.- Isaksson, A. The cell-damaging effects of low amounts of homocysteine and copper ions in human cell line cultures are caused by oxidative stress. Toxicology, 1997, 123, 33−40.
  278. Hunter N., Foster J.D., Dickinson A.G. et al. Linkage of the gene for the scrapie-associated fibril protein (PrP) to the Sip gene in Cheviot sheep. Vet. Rec., 1989, 124, 264−366.
  279. Hunter N., Goldman W., Foster J.D. et al. Natural scrapie and PrP genotype: case control studies in British sheep. Vet. Rec., 1997b, 141, 6, 137−140.
  280. Hunter N., Moore L., Hosie B.D. et al. Association between natural scrapie and PrP genotype in a flock of Sufolk sheep in Scotland. Vet. Rec., 1997, 140, 59−63.
  281. Ii M., Sunamoto M., Ohnishi K. et al. Beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res., 1996, 720, 93−100.
  282. Ikegami Y., Ito M., Isomura E. et al. Pre-clinical and clinical diagnosis of scrapie by detection of PrP priotein in tissue of sheep. Vet. Rec., 1991, 128, 271−275.
  283. Inouye H., Bond J., Baldwin M. et al. Structural changes in a hydrophobic domain of the prion protein induced by hydration and by Ala—>Val and Pro-«Leu substitutions. J. Mol. Biol., 2000, 300, 1283−1296.
  284. Irani K., Xia Y., Zweier J.L. et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science, 1997, 275, 1649−1652.
  285. Ironside J.W., Barrie C., McCardle L., Bell J.E. Microglia cell reactions in human spongiform encephalopathies. Neuropathol. Appl. Neurobiol., 1993, 19, 203 (abstr).
  286. James Т., Liu H., Ulianov N. et al. Solution structute of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA., 1997, 94, 10 086−10 091.
  287. Janicke R., Sprengart M., Wati M. et al. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem., 1998, 273, 9357−9360.
  288. Jeffrey M. and Wells G. Spongiform encephalopathy in a nyala. Vet. Pathol., 1988, 25, 398−399.
  289. Jeffrey M., Goodsir C.M., Bruce M.E. et al. Infection specific prion protein accumulates on neuronal plasmalemme in scrapie infected mice. Neurosci. Lett., 1992, 147, 106−109.
  290. Jeffrey M., Goodsir C.M., Bruce M.E. et al. Morphogenesis of amyloid plaques in 87M murine scrapie. Neuropathol.Appl.Neurobiol., 1994, 20, 535 542.
  291. Jeffrey M. and Halliday W., Goodsir C. A morphometric and immunohisto-chemical study of the vestibular nuclear complex in BSE. Acta Neuropathologies 1992, 84, 652−657.
  292. Jeffrey M. and Halliday W. Numbers of neurons in vacuolated and non-vacuolated neuroanatomical nuclei in BSE-affected brains. J. Compar. Pathol., 1994, 110, 287−293.
  293. Jeffrey M., McGovern G., Goodsir C. et al. Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy. J. Pathol., 2000, 191,323−332.
  294. Jimenez-Huete A., Lievens P., Vidal R. et al. Endogenous proteolic cleavage of normal and disease-associated isoform of the human prion protein in neural and non-neural tissue. Amer.J.Pathol., 1998, 153, 1561−1572.
  295. Junghans F., Teufel В., Buschmann A. et al. Genotyping of German sheep with respect to scrapie susceptibility. Vet. Rec., 1998, 143, 340−341.
  296. Kaltschmidt C., Kaltschmidt В., Lannes-Vieira J. et al. Transcription factor NF-kappa В is activated in microglia during experimental autoimmune encephalomyelitis. J. Neuroimmunol., 1994, 55, 99−106.
  297. Kaneko K., Peretz D., Pan M. et al. Prion protein synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform. Proc. Natl. Acad. Sci. USA, 1995,92, 11 160−11 164.
  298. Kaneko K., Vey M., Scott S. et al. COOH-terminal sequence of the cellular prion protein directs subcellular traffiking and controls conversion into scrapie isoform. Proc. Natl. Acad. Sci. USA, 1997, 94, 2333−2338.
  299. Kaneko K., Zulianello L., Scott M. et al. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc. Natl. Acad. Sci. USA, 1997, 94, 10 069−10 074.
  300. Kascsak R.J., Rubenstein R., Merz P.A. et al. Mouse polyclonal and monoclonal antibodies to scrapie-associated fibril proteins. J. Virol., 1987, 12, 36 883 693.
  301. Kascsak R.J., Rubenstein P., Merz R. et al. Immonological comparizon of scrapie associated fibrils isolated from animals infected with four different scrapie strains. J. Virol., 1986, 59, 676−683.
  302. Kelly J. Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol., 1996, 6, 11−17.
  303. Kerr J., Wyllie A., Currie A. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 1972, 26, 239−257.
  304. Kim J.-I., Ju W., Choi J.-H. et al. Expression of cytokine genes and increased nuclear factor-kappa В activity in the btains of scrapie-infected mice. Mol. Brain Res., 1999, 73, 17−27.
  305. Kimberlin R.H. and Walker C.A. Pathogenesis of scrapie in mice after intragastric infection. Virus Research, 1989a, 12, 213−220.
  306. Kimberlin R.H. and Walker C.A. Pathogenesis of experimental scrapie. In Novel infectious agents and the Central Nervous System (Ciba Foundation Symposium No. 135) (ed. G. Bock and J. Marsh), 1988, pp. 37−65. Wiley, New York.
  307. Kimberlin R.H. and Walker C.A. The role of the spleen in the neuroinvasion of scrapie in mice. Virus Research, 1989b, 12, 201−212.
  308. Kimberlin R.H. Early events in the pathogenesis of scrapie in mice: biological and biochemical studies. In: Slow tramsmissible diseases of the nervous system (Eds. S.B.Prusiner and W.J.Hadlow), 1979, Vol.2, pp.33−54. Academic Press, London.
  309. Kimberlin R.H. Scrapie: how much we really understand? Neuropathol. and Applied Neurobiol., 1986, 12, 131−147.
  310. Kirkwood J. and Cunningham A. Epidemiological observations on spongiform encephalopathies in captive wild animals in British Isles. Vet. Rec., 1994, 135,296−303.
  311. Kirkwood J., Wells G., Wilesmith J. et al. Spongiform encephalopathy in an Arabian oryx and a greater kudu. Vet. Rec., 1990, 127, 418−420.
  312. Kitamoto Т., Mohri S., Tateishi J. Organ distribution of proteinase-resistant prion protein in humans and mice with CJD. J. Gen. Virol., 1989, 70, 33 713 379.
  313. Kitamoto Т., Muramoto Т., Mohri S. et al. Abnormal isoform of prion protein accumulation in follicular dendritic cells in mice with CJD. J.Virol., 1991, 9, 6292−6295.
  314. Klamt F., Dal-Pizzol F., Conte da Frota M. et al. Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radical Biology and Medicine, 2001,30, 10, 1137−1144.
  315. Klatzo I., Gajdusek D., Zigas V. Lab. Invest., 1959, 8, 799−847.
  316. Klegeris A. and McGeer P. P-Amyloid protein enhances macrophages production of ROS and glutamate. J. Neurosci. Res, 1997, 49, 229−235.
  317. Klegeris A., Walker D.G., McGeer P. Interaction of AD рА-peptide with the human monocytic cell line THP-1 results in a protein kinase C-depenedent secretion of tumor necrosis factor-alpha. Brain Res., 1997, 747, 114−121.
  318. Klein M., Frigg R., Flechsig E. et al. A crucial role for B-cells in neuroinvasive scrapie. Nature, 1997, 390, 687−690.
  319. Klein M., Frigg R., Raeber A. et al. PrP expression in В lymphocytes is not required for prion neuroinvasion. Nat. Med., 1998, 4, 1429−1433.
  320. Klein M., Kaeser P., Schwarz P. et al. Complement facilitates early prion pathogenesis. Nature Med., 2001, 7, 488−492.
  321. Knight R. The diagnosis of prion diseases. Parasitology, 1998, 117, S3-S11.
  322. Kocisko D., Come J., Priola S. et al. Cell-free formation of protease-resistant prion protein. Nature, 370, 471−474.
  323. Kocisko D., Priola S., Raymond G. et al. Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc. Natl. Acad. Sci. USA., 1995,92, 3923−3927.
  324. Korotzer A.R., Whittemore E.R., Cotman C.W. Differencial regulation by beta-amyloid peptides of intracellular free Ca2+ concentration in cultured rat microglia. Eur J. Pharmacol., 1995, 288, 125−130.
  325. Korth С., Kaneko K., Prusiner S.B. Expression of unglycolylated mutated prion protein facilitates PrPSc formation in N2a cells infected with different prion strains. J. General. Virol., 2000, 81, 2555−2563.
  326. Korty P.E., Brando C., Shevach E.M. CD59 functions as a signal-transducing molecule for human T-cell activation. J. Immunol., 1991, 146, 4092.
  327. Kozlowski P.B., Moretz R.C., Carp R.I., Wisniewski H.M. Retinal damage in scrapie mice. Acta Neuropathol.(Berl), 1982, 56, 9−12.
  328. Krasemann S., Groschup M.H., Harmeyer S. et al. Generation of monoclonal antibodies against human prion protein in PrP0/0 mice. Mol. Med., 1996, 6, 725−734.
  329. Krauss J., Poo H. Xue W. et al. Reconstitution of antibody-dependent phagocytosis in fibroblast expressing FcyRIII and the complement receptor type3. J.Immunol., 1994, 153, 1769.
  330. Kretzschmar H., Giese A., Brown D. et al. Cell death in prion disease. J.Neural.Transp., 1997, 50, 191−210.
  331. Kretzschmar H.A. Molecular pathogenesis of prion diseases. Eur. Arch. Psychiatry Clin. Neurosci., 1999, 249, III/56-III/63.
  332. Kretzschmar H.A., Ironside J.W., DeArmond S. et al. Diagnostic criteria for sporadic CJD. Arch. Neurology, 1996, 53, 913−920.
  333. Kretzschmar H.A., Prusiner S.B., Stowring L.E. and DeArmond S.J. Scrapie prion protein are synthesized in neurons. Am. J. Pathol., 1986, 122, 1−5.
  334. Kreutzberg G. Microglia: a sensor for pathological events in the CNS. Trends Neurosci., 1996, 19, 312−318.
  335. Krieger-Brauer H.I. and Kather H. Antagonistic effects of different members of the fibroblast and platelet-derived growth factor families on adipose conversion and NADPH-dependent H202 generation in 3T3 LI-cells. Biochem. J., 1995, 307,549−556.
  336. Lampert P., Earl K., Gibbs C., Gaidusek D. Experimantal kuru encephalopathy in chimpanzees and spider monkeys. Electron microcsopic studies. J. Neuropathol. Exp. Neurology, 1969, 28, 353−370.
  337. Lampert P., Earl K., Gibbs C., Gaidusek D. Electron microscopic studies on experimantal spongiform encephalopaties (kuru and CJD) in chimpanzees. In the Vl-th International Congress of Neuropathology, Proc. Masson, Paris, 1970, 916−930.
  338. Lampert P., Hooks J., Gibbs C., Gaidusek D. Altered plasma membranes in experimental scrapie. Acta Neuropathol., 1971, 19, 81−93.
  339. Lampert P., Gaidusek D., Gaidusek D. Subacute spongiform virus encephalopathies. Scrapie, kuru, CJD: a review. Am. J. Pathol-., 1972, 68, 626−652.
  340. Lander, H. M.- Ogiste, J. S.- Teng, К. K.- Novogrodsky, A. p21ras as a common signaling target of reactive free radicals and cellular redox stress. J. Biol. Chem., 1995, 270,21 195−21 198.
  341. Landsverk T. The follicle-associated epithelium of the ileal Peyer’s patch in ruminants is distinguished by its shedding of 50 nm particles. Immunology and Cell Biology, 1987, 65, 251−261.
  342. Landsverk T. Phagocytosis and transcytosis by the follicle-associated epithelium of the Peyer’s patch in calves. Immunology and Cell Biology, 198, 66, 261−268.
  343. Laplanche J.L., Chatelain J., Beaudry P. et al. French autochthonous scra-pied sheep without the 136V PrP polymorphism. Mammalian Genome, 1993, 4, 463−464.
  344. Laplanche J.L., Chatelain J., Launay J.-M. et al. Detection in prion protein gene in a Moroccan family. Nucleic Acids Res., 1990, 18, 6745.
  345. Laplanche J.L., Chatelain J., Westaway D. et al. PrP polymorphism associated with natural scrapie discovered by denaturing gradient gel electrophoresis. Genomics, 1993, 15,30−37.
  346. Lasmeraz C.I. et al. Immune system-dependent and -independent replication of the scrapie agent. Virol., 1996, 70, 1292−1295.
  347. Lasmeraz C.I., Deslys J.-F., Demaimay R. et al. Strain specific and common pathogenic events in murine models of scrapie and BSE. J. General Virol., 1996, 77, 1601−1609.
  348. Lasmeraz C.I., Deslys J.-P., Demaimay R. et al. BSE transmission to macaques. Nature, 1996a, 381, 743−744.
  349. Lassamann H., Bancher C., Breitsschopf H. et al. Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol. (Berl), 1995, 89,35−41.
  350. Laszlo L., Lowe J., Self T. et al. Lysosomes as key organells in the pathogenesis of prion encephalopathies. J. Pathol., 1992, 166, 333−341.
  351. Leclerc E., Peretz D., Ball H. et al. Immobilized prion protein indergoes spontaneous rearrangement to a conformation having features in common with the infectious form. The EMBO J., 2001, 20, 1547−1554.
  352. Lee D.W., Sohn H.O., Lim H.B. Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radical Res., 1999, 30, 499−507.
  353. Lee J., Laydon J., McDonnell P. et al., A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 1994, 372, 739−746.
  354. Leggett M., Dukes J., Pirie H. A spongiform encephalopathy in a cat. Vet. Rec., 1990, 127, 586−588.
  355. Lehman S. and Haris D. A mutant prion protein displays an aberrant membrane association when expressed in cultured cells. J. Biol. Chem., 1995- 270, 24 589−23 597.
  356. Lehman S. and Haris D. Blockade of glycosylation promotes acquisition of scrapie-like properties by the prion protein in cultured cells. J. Biol. Chem., 1997, 272,21 479−21 487.
  357. Lehmann S. and Haris D. Mutant and infectious prion protein display common biochemical properties in cultured cells. J. Biol. Chem., 1996, 271, 16 331 637.
  358. Lehmann S. and Haris D. Two mutant prion protein expressed in cultured cells acquire biochemical properties reminiscent of the scrapie isoform. Proc. Natl. Acad. Sci. USA., 1996, 93, 5610−5614.
  359. Lehmann S., Daude N., Haris D. A wild-type prion protein does not acquire properties of the scrapie isoform when coexpressed with a mutant prion protein in cultured cells. Mol. Brain Res., 1997, 52, 139−145.
  360. Lehmann S., Milhavet O., Mange A. Trafficking of the cellular isoform of the prion protein. Biomed & Pharmacother, 1999, 53, 39−46.
  361. Leopoldt J.G. Nuetzliche und auf die Erfahrung gegruendete Einleitung zu der Landwirtschaft, Part 5, Chapter 12, pp. 344−360, Glogau, 1759, Berlin.
  362. Lev S., Moreno H., Martinez R. et al. Protein tyrosine kinase PYK2 involved in Ca2±induced regulation of ion channel and MAP kinase functions. Nature, 1995,376,737−745.
  363. Li H., Helling R., Tang C., Wingreen N. Emergence of preferred structures in a simple model of protein folding. Science, 1996, 273, 666−669.
  364. Liao F., Shin H.S., Rhee S.G. Tyrosine phosphorilation of phospholipase C-yl I induced by cross-linking of the high-affinity or low affinity Fc receptor for IgG in U937 cells. Proc. Natl. Acad. Sci. USA., 1992, 89,3659−3663.
  365. Liautard J.P. A new theoretical model of protein folding could explain the etiology of degenerative encephalopathy. In: Biologie prospective. Ed. M.-M. Galteau, G. Siest, J. Henny. John Libbey Eurotext, Paris, 1993, pp. 607−614.
  366. Liautard J.P. Analytical background and discussion of the chaperone model of prion diseases. Acta Biotheoretica, 1999, 47, 219−238.
  367. Liberski P., Yanagihara R., Gibbs C., Gajdusek D. White matter ultrastruc-tural patjology of experimental CJD. Acta Neuropathol., 1989, 79, 1−9.
  368. Liberski P., Nerurkar V., Yanagihara R., Gajdusek D. Tumor Necrosis factor-a: cytokine-mediated vacuolation in experimental CJD. Absrtacts of the VHIth International Congress of Virology, Berlin, 1990a, 421.
  369. Liberski P., Yanagihara R., Asher D. et al. Reevaluation of the ultrastruc-tural pathology of experimantal CJD. Brain., 1990b, 113, 121−127.
  370. Liberski P., Yanagihara R., Gibbs C., Gajdusek D. Mechanisms of the damage to myelinated axons in experimantal CJD in mice: an ultrasrtuctural study. Eur. J. Epidemiology, 1991, 7, 545−550.
  371. Liberski P., Yanagihara R., Wells G., Gibbs C., Gajdusek D. Comparative ultrastructural neuropathology of BSE, scrapie and CJD. J. Сотр. Pathol., 1992a, 106,361−381.
  372. Liberski P., Yanagihara R., Gibbs C., Gajdusek D. Neuronal autophagic vacuoles in experimental scrapie and CJD. Acta Neuropathol., 1992c, 83, 134 139.
  373. Liberski P., Yanagihara R., Nerurkar V., Gajdusek D. Tumor Neclosis Factor-a produces CJD-like lesions in vivo. Neurodegeneration, 1993, 2, 215−225.
  374. Lin M., Mirzabekov Т., Kagan B.L. Channel formation by a neurotoxic prion protein fragment. J. Biol. Chem., 1997, 272, 44−47.
  375. Ling E.-A. and Wong W.-C. The origin and nature of ramified and amoeboid microglia, a historical review and current concepts. Glia, 1993, 7, 9−18.
  376. Lioubin M.N., Algate S., Tsai S. et al. pl50Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev., 1996, 10, 1084−1095.
  377. Lledo P.M., Tremblay P., DeArmond S.J. et al. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc. Natl. Acad. Sci. USA., 1996, 93, 2403−2407.
  378. Lo, Y. Y. C.- Wong, J. M. S.- Cruz, T. F. Reactive oxygen species mediate cytokine activation of c-jun NH2-terminal kinases. J. Biol. Chem., 1996, 271, 15 703−15 707.
  379. Lo, Y. Y.- Conquer, J. A.- Grinstein, S.- Cruz, T. F. Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species. J. Cell Biochem., 1998, 69, 19−29.
  380. Locht C., Chesebro В., Race R., Keith J. Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc. Natl. Acad. Sci. USA., 1986, 83, 6372−6376.
  381. Lorton D. PA-induced II-1 beta release from an activated human monocytes cell line is calcium- and G-protein-dependent. Mech. Aging Dev. 1997, 94, 199−211.
  382. Low M.G. The glycosyl-phosphatidil anchor of membrane proteins. Biochem. Biophys. Acta, 1989, 988, 427−454.
  383. Lynd-Johansen F., Olweus J., Symington F. et al. Activation of human monocytes and granulocytes by Mabs to GPI-ancored proteins. Eur.J.Immunol., 1993,23,2782.
  384. Mabbot N., Brown K., Manson J. and Bruce M. T-lymphocyte activation and the cellular form of the prion protein. Immunology, 1997, 92, 161−165.
  385. N., Mackay F., Minns F. & Bruce M. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Med., 2000, 6, 719−720.
  386. Mackenzie A. Immunohistochemical demonstration of glial fibrillary acid protein in scrapie. J. Сотр. Pathol., 1983, 93, 251−259.
  387. Madec J.-Y., Groschup M., Calavas D. et al. Protease-resistant prion protein in brain and lymphoid organs of sheep within a naturally scrapie-infected flock. Microbiol. Pathogenesis., 2000, 28, 353−362.
  388. Maignien Т., Lasmeraz C.I., Berinque V. et al. Pathogenesis of the oral route of infection of mice with scrapie and BSE agent. J. Gen. Virol., 1999, 80, 30 353 042.
  389. Mange A., Nishida N., Milhavet O. et al. Amphotericin В inhibits the generation of the scrapie isoform of the prion protein in infected cultures. J. Virol., 2000, 74,3135−3140.
  390. Manson J., Clarke A., Hooper M. et al. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol. Neurobiol., 1994, 8, 121−127.
  391. Manson J., Clarke A., McBride P. et al. PrP gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegen., 1994, 3, 331−340.
  392. Manson J., Clarke A., Shigematsu K. et al. Accumulation of proteinase K-resistant PrP is restricted by the expression level of normal PrP in mice inoculated with a mouse-adapted strain of the CJD agent. J. Virol., 1995, 69, 75 867 592.
  393. Manson J., West J., Thomson V. et al. The prion protein gene: a role in mouse embryogenesis? Development, 1992, 115, 117−122.
  394. Marcilla A., Rivero-Lezcano O.M., Agarwal A., Robbins K.C. Identification of the major tyrosine kinase substrate in signaling complexes formed after engagement ofFcyR. J. Biol. Chem., 1995, 270, 9115−9120.
  395. Marsh R.F. and Hadlow W. Transmissible mink encephalopathy. Revue Sci-entifique et Technique Office International des Epizooties, 1992, 11, 539−550.
  396. Marsh R.F., Bessen R.A., Lehmann S. and Hartsough G.R. Epidemiological and experimental studies on a new incident of transmissible mink encephalopathy. J.Gen. Virol., 1991, 72, 589−594.
  397. Masters C.L., Harris J.O., Gajdusek D.C., Gibbs C.J. et al. CDJ: patterns of worldwide occurrence and the significance of familial and sporadic clustering. Ann. Neurol., 1978, 5, 177−188.
  398. Mastrianni J., Iannicola C., Myers R. et al. Mutation of the prion protein gene at codon 208 in fCJD. Neurol., 1996, 47, 1305−1312.
  399. McBride P.A. & Beekes M. Pathological PrP is abundant in sympathetic and sensory ganglia of hamsters fed with scrapie. Neusci. Lett., 1999, 265, 135 138.
  400. McBride P.A., Eikelenboom P., Kraal G. et al. PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie-infected mice. J. Pathol., 1992,168,413−418.
  401. McBride P.A., Bruce M.E., Fraser H. Immunostaining of scrapie cerebral amyloid plaques with abtisera raised to scrapie-associated fibrils (SAF). Neu-ropathol. Appl. Neurobiol., 1988, 14, 325−336.
  402. McDonald D.R., Banberger M., Combs C., Landreth G. Beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP-1 monocytes. J. Neurosci., 1998, 18, 4451−4460.
  403. McDonald D.R., Brunden K.R., Landreth G.E. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J. Neurosci., 1997, 17, 2284−2294.
  404. McGeer P. and McGeer E. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain.Res.Rev., 1995,21, 195−218.
  405. McGill I. and Wells G. Neuropathological findings in cattle with clinically suspect but histologically unconfirmed BSE. J. Compar. Pathol., 1993, 108, 241−260.
  406. McKinley M., Taraboulos L., Kenaga D. et al. Ultrastructural localization of scrapie prion proteins in cytoplasmic vesicles of infected cultured cells. Lab. Invest., 1991, 65, 622−630.
  407. McKinley M., Meyer R., Kenaga L. et al. Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. J. Virol., 1991, 65, 1440−1449.
  408. Medori R., Tritschler H.-J., LeBlanc A. et al. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N. Engl. J. Med., 1992,326, 444−449
  409. Mellon P.L., Windle J.J., Goldsmith P.C. et al. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neurons, 1990, 5, 1−10.
  410. Merz P., Rohwer R., Kascsak R. et al. Infection-specific particle from the unconventional slow virus diseases. Science, 1984, 225, 437−440.
  411. Merz P., Somerville R., Wisniewski H., Iqbal R. Abnormal fibrils from scrapie-infected brain. Acta Neuropathol., 1981, 54, 63−74.
  412. Mesner P., Winters Т., Green S. Nerve growth factor with drawal-induced cell death in neuronal PC 12 cells resembles that in sympathetic neurons. J. Cell Biol., 1992, 119, 1669−1680.
  413. Meyer R.K., McKinley M.P., Bowman K.A. et al. Separation and properties of cellular and scrapie prion proteins. Proc. Natl. Аса. USA., 1986, 83, 23 102 314.
  414. Migheli A., Atzori M. Caspase-3 mediates apoptosis in GSS disease. Neuro-biol. Aging, 2000, 21, S266.
  415. Migheli A., Cavalla P., Marino S., Schiffer D. A study of apoptosis in normal and pathologic nervous tissue after in situ end-labeling of DNA strand breaks. J. Neuropathol. Exp. Neurol., 1994, 53, 606−616.
  416. Milhavet O., McMahon H., Rachidi W. et al. Prion infection impairs the cellular response to oxidative stress. PNAS, 2000, 97, 25, 13 937−13 942.
  417. Miyazono M., Iwaki Т., Kitamoto T. et al. A comparative immunohisto-chemical study of kuru and senile plaques with a special reference to glial reactions at various stages of amyloid plaque formation. Am.J.Pathol., 1991, 139, 588−589.
  418. Mohri S., Farquhar C., Somerville R. et al. Immonudetection of a disease specific PrP fraction in scrapie-affected sheep and BSE-affected cattle. Vet. Rec., 1992, 131,537−539.
  419. Moneta M., Gehrmann J., Topper R. et al. Cell adhesion molecule expression in the regenerating rat facial nucleus. J. Neuroimmunol., 1993, 45, 203 206.
  420. Mombaerts P. et al. RAG-1 deficient mice have no mature B- and T-lymphocytes. Cell, 1992, 68, 869.
  421. Monari L., Chen P., Brown P. et al. FFI and fCJD: different prion protein determined by a DNA polymorphism. Proc. Natl. Acad. Sci. USA., 1994, 91, 2839−2842.
  422. Montagana P., Cortelli P., Tinuper P. et al. Clinical features of FFI: Pheno-typic variability in translation to a polymorphism at codon 129 of the prion protein gene. Brain Pathol., 1998, 8, 520.
  423. Montrasio F., Frigg R., Glatzel M. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science, 2000, 288, 1257−1259.
  424. Moore R., Hope J., McBride P. et al. Mice with gene targetted prion protein alterations show that Prnp, Sine and Prni are congruent. Nat. Genet., 1998, 18, 118−125.
  425. Morita Y., Clemens M. G., Miller L. S. et al. Reactive oxidants mediate TNF-alpha-induced leukocyte adhesion to rat mesenteric venular endothelium. Am. J. Physiol., 1995, 269, H1833-H1842.
  426. Moser M., Colello R.J., Pott U., Oesch B. Developmental expression of the prion protein gene in glial cells. Neuron, 1995, 14, 509−517.
  427. Mueller U. et al. Functional role of type I and type II interferons in antiviral defence. Science, 1994,264, 1917−1921.
  428. Mueller W. and Ushijima H. Antagonists on prion protein (PrPSc)-induced toxicity in rat cortical cell cultures. Proc. Acad. Sci. USA., 1986, 83, 23 102 314.
  429. Mueller W., Ushijima H., Schroder H. et al. Cytoprotective effect of NMD A receptor antagonists on prion protein (PrPSc)-induced toxicity in rat cortical cell cultures. Eur. J. Pharmacol, 1993, 246, 261−267.
  430. Muramoto Т., DeArmond S., Scott M. et al. Heritable disorder resembling neuronal storage disease in mice expressing prion protein with deletion of a a-helix. Nat. Med., 1997, 3, 750−753.
  431. Naslavsky N., Stein A., Yanai G. et al. Characterization of detergent-insoluble complexes containing the cellular prion protein and its scrapie iso-form. J. Biol. Chem., 1996, 272, 6324−6331.
  432. New York Academy of Sciences Member Newletter, Academy Update, 2001, March-April, 1−3.
  433. Nishida N., Harris D.A., Vilette D. et al. Successful transmission of tree mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpress-ing wild-type mouse prion protein. J. Virol., 2000, 74, 320−325.
  434. O’Rourke K.I., Baszler T.V., Besser Т.Е. et al. Preclinical diagnosis of scrapie by immunohistochemistry of third eyelid lymphoid tissue. J. Clin. Microb., 2000, 3254−3259.
  435. O’Rourke K.I., Baszler T.V., Miller J.M. et al. Monoclonal antibody F89/160.1.5 defines a conserved epitope on the ruminant prion protein. J. Clin. Microbiol., 1998a, 36, 1750−1755.
  436. O’Rourke K.I., Baszler T.V., Parish S.M. and Knowles D.P. Preclinical detection of PrPSc in nictitating membrane lymphoid tissue of sheep. Vet. Rec., 1998b, 142, 486−491.
  437. O’Rourke K.I., Huff Т., Leathers C. et al. SCID mouse spleen does not support scrapie replication. J. Gen. Virol., 1994, 75, 1511−1514.
  438. Odin J.A., Edberg J.C., Painter C.J. et al. Regulation of phagocytosis and Ca .j flux by distinct regions of the Fc receptor. Science, 1991, 254, 17 851 788.
  439. Oesch В., Westaway D., Walchli M. et al. A cellular gene encodes scrapie PrP 27−30 protein. Cell, 1985, 40, 735−746.
  440. Owen F., Poulter M., Lofthouse R. et al. Insertion in prion protein gene in familial CJD. The Lancet, 1989, 1, 51−52.
  441. Palmer M.S., Mahal S.P., Campbell T.A. et al. Deletions in the prion protein gene are not associated with CJD. Hum. Mol. Gen., 1993, 2, 541−544.
  442. Pan K.-M., Baldwin M., Nguyen J. et al. Conversion of a-helices into (3-sheets features in the formation of the scrapie prion protein. Proc. Natl. Acad. Sci. USA, 1993, 90, 10 962−10 966.
  443. Parchi P., Castellani R., Capellari S. et al. Molecular basis of phenotypic variability in sporadic CJD. Ann. Neurol., 1996, 39, 767−778.
  444. Parchi P., Petersen R., Chen S. et al. Molecular pathology of FFI. Brain Pathol., 1998, 8, 539−548.
  445. Parry H.B. Scrapie disease in sheep (Ed. D.R. Oppenheimer). New York: Academic Press, 1983.
  446. Parry H.B. Scrapie: a transmissible and hereditary disease of sheep. Heredity, 1962, 17, 75−105.
  447. Pauly P.C. and Harris D.A. Copper stimulates endocytosis of the prion protein. Biochem., 1998, 273, 33 107−33 110.
  448. Peretz D., Scott M., Groth D. et al. Strain-specified relative conformational stability of the scrapie prion protein. Protein Science, 2001, 10, 854−863.
  449. Perry V.H. and Gordon S. Macrophages and microglia in the nervous system. TINS, 1988, 11,273−277.
  450. Pocchiari M., Xi Y.G., Ingrosso L. et al. Immunodiagnosis of BSE. Livestock Production. Sci., 1994, 38, 41−46.
  451. Politopoulou G., Seebach J., Schmugge M. et al. Age-related expression of the cellular prion protein in human peripheral blood leukocytes. Haematologica, 2000, 85, 580−587.
  452. Presky D.H., Low M.G., Shevach E.M. Role of GPI-anchored proteins in T-cell activation. J. Immunol, 1990, 144, 860.
  453. Press C., Halleraker M., Landsverk T. Ontogeny of leukocyte population in the ileal Peyer’s patch of sheep. Devel. Comparative Immunology, 1992, 16, 229−241.
  454. Price, D. L.- Sisodia, S. S.- Borchelt, D. R. Genetic neurodegenerative diseases: the human illness and transgenic models. Science, 1998, 282, 10 791 083.
  455. Priola S. and Chesebro B. A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J. Virol, 1995, 69, 7754−7758.
  456. Priola S, Caughey B, Race R, Chesebro B. Heterologous PrP molecules interfere with accumulation of protease-resistant PrP in scrapie-infected murine neuroblastoma cells. J. Virol, 1994, 68, 4873−4878.
  457. Prusiner S.B. and Hsiao K. Human prion diseases. Ann. Neurol, 1994, 35, 385−395.
  458. Prusiner S.B. Genetic and infectious prion diseases. Arch. Neurol, 1993, 50, 1129−1153.
  459. Prusiner S.B. Molecular biology of prion diseases. Science, 1991, 252, 1515−1522.
  460. Prusiner S.B. Novel proteinaceous infectious particles cause scrapie. Science, 1982,216, 136−144.
  461. Prusiner S.B. Prion diseases and the BSE crisis. Science, 1997, 278, 245 251.
  462. Prusiner S.B. Prions. Nobel Lecture. Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 13 363−13 383.
  463. Prusiner S.B., Groth D., Serban A. et al. Ablation of the prion protein gene in mice prevent scrapie and facilitates production of anti-PrP antibodies. Proc. Natl. Acad. Sci. USA., 1993,90, 10 608−10 612.
  464. Prusiner S.B., Groth D., Serban A. et al. Ablation of the prion protein gene in mice prevents scrapie and facilitates of anti-PrP antibodies. Proc. Natl. Acad. Sci. USA, 1993, 90, 10 608−10 612.
  465. Prusiner S.B., McKinley M.P., Bowman K.A. et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell., 1983, 35, 349−358.
  466. Prusiner S.B., Scott M., DeArmond S., Cohen F. Prion protein biology. Cell., 1998, 93,337−348.
  467. Prusiner S.B., Scott M., Foster D. et al. Transgenic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell., 1990, 63, 673−686.
  468. Puri P. L., Avataggiati M. L., Burgio V. L. et al. Reactive oxygen intermediates (ROIs) are involved in the intracellular transduction of angiotensin II signal in C2C12 cells. Ann. N.Y. Acad. Sci., 1995, 752, 394−405.
  469. Qin K., Yang D.S., Yang Y. et al. Copper (II)-induced conformational changes and protease resistance in recombinant and cellular PrP. J.Biol.Chem., 2000, 275, 19 121−19 131.
  470. Race R., Caughey В., Graham K. Analyses of frequency of infection, specific infectivity, and prion protein biosynthesis in scrapie-infected neuroblastoma cell clones. J. Virol., 1988, 62, 2845−2849.
  471. Race R. and Ernst D. Detection of proteinase K-resistant prion protein and infectivity in mouse spleen by 2 weeks after scrapie agent inoculation. J. Gen. Virol., 1992, 73,3319−3323.
  472. Race R., Ernst D., Jenny A. et al. Diagnostic implications of detection of protease K-resistant protein in spleen, lymph nodes, and brain of sheep. Am.J.Vet. Res., 1992, 53, 883−889.
  473. Race R., Fadness L., Chesebro B. Characterization of scrapie infection in mouse neuroblastoma cells. J. General. Virol., 1987, 68, 1391−1399.
  474. Race R., Priola S., Bessen R. et al. Neuron-specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent. Neuron., 1995, 15, 1183−1191.
  475. A. & Aguzzi A. Engulfment of prions in the germinal centre. Immunology Today, Trends. 2000, 66, 21.
  476. Raeber A., Klein M., Frigg R. et al. PrP-dependent association of prions with splenic but not circulating lymphocytes of scrapie-infected mice. EMBO J., 1999, 18, 2702−2706.
  477. Raeber A., Race R., Brandner S. et al. Astrocyte-specific expression of hamster prion protein renders PrP knockout mice susceptible to hamster scrapie. EMBO J., 1997, 16, 6057−6065.
  478. Raeber A., Sailer A., Hegyi I. et al. Ectopic expression of prion protein in T-lymphocytes or hepatocytes of PrP-knockout mice is insufficient to sustain prion replication. Proc. Natl. Acad. Sci. USA, 1999, 96, 3987−3992.
  479. Raingeaud J, Gupta S, Rogers JS. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem., 1995, 270, 7420−7426.
  480. Rankin B.M., Yokum S.A., Mittler R.S., Kiener P. A. Stimulation of tyrosine phosphorilation and calcium mobilization by Fey receptor cross-linking. J. Immunol., 1993, 150, 605−616.
  481. Raymond G., Hope J., Kocisko D. et al. Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature, 1997, 388, 285 288.
  482. Requena J., Groth D., Legname G. et al. Copper-catalyzed oxidation of the recombinant Sha (29−231) prion protein. PNAS, 2001, 98, 13, 7170−7175.
  483. Richard О, Duittoz A, Hevor T. Early, middle, and late stages of neural cells from ovine embryo in primary cultures. Neurosci. Res, 1998, 31, 61−68.
  484. Rieger R, Edenhofer F, Lasmezas C. et al. The human 37 kDa laminin receptor precursor interacts with the prion protein in eukariotic cells. Nat. Med, 1997,3, 1383.
  485. Riek R, Hornemann S, Wider G. et al. NMR characterization of the full-length recombinant murine prion protein, mPrP (23−231). FEBS Lett, 1997, 413, 282−288.
  486. Riek R, Hornemann S, Wider G. et al. NMR structure of the mouse prion protein domain PrP (121−231). Nature, 1996, 382, 180−182.
  487. Robaye B, Mosselmans R, Fiers W. et al. TNF induces apoptosis (programmed cell death) in normal endothelial cell in vitro. Am. J. Pathol, 1991, 138, 447−453.
  488. Robbins D, Shirazi Y, Dysdale B. et al. Production of cytotoxic factors for oligodendrocytes by stimulated astrocytes. J. Immunol, 1987, 139, 2593−2597.
  489. Rock K, Yeh E, Gramm C. et al. TAP, a novel T-cell activating protein involved in the stimulation of МНС-restricted T-lymphocytes. J Exp Med, 1986, 163,315−333.
  490. Rogers M, Taraboulos M, Scott M. et al. Intracellular accumulation of the cellular prion protein after mutagenesis of its Asn-linked glycosylation sites. Glycobiol, 1990, 1, 101−109.
  491. Rosen G. M, Pou S, Ramos C.L. et al. Free radicals and phagocytic cells. FASEB J, 1995,9, 200−209.
  492. Rubenstein R, Carp R, Callahan M. In vitro replication of scrapie agent in a neuronal model: infection of PC 12 cells. J. Gen. Viro-, 1984, 65, 2191−2198.
  493. Rubenstein R, Deng H, Scalici C.L. et al. Alterations in neurotransmitter-related enzyme activity in scrapie-infected PC 12 cells. J. Gen. Virol, 1991, 72, 1279−1285.
  494. Rubenstein R., Kascsak R., Merz P. et al. Detection of scrapie-associated fibrils proteins using anti-SAP antibody in non-purified tissue preparations. J. Cen. Virol., 1986, 67, 671−681.
  495. Rudd P., Wormald M., Wing D. et al. Prion Glycoprotein: structure, dynamics, and role for the sugars. Biochem., 2001, 40, 3759−3766.
  496. Ryder S., Hawkins S., Dawson M., Wells G. The neuropathology of experimental BSE in the pig. J. Сотр. Pathol., 2000, 122, 131−143.
  497. Saez-Valero J., Angeretti N., Forloni G. Caspase-3 activation by P-amyloid and prion protein peptides is independent from threir neurotoxic effect. Neuro-sci. Letters, 2000, 293, 207−210.
  498. Safar J., Roller P.P., Gajdusek D.C., Gibbs C.J. Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J. Biol. Chem., 1993a, 268, 20 276−20 284.
  499. Safar J., Roller P.P., Gajdusek D.C., Gibbs C.J. Thermal-stability and conformational trassitions of scrapie amyloid (prion) protein correlate with infec-tivity. Protein Sci., 1993b., 2, 2206−2216.
  500. Safar J., Wille H., Itri V. et al. Eight prion strains have PrPSc molecules with different conformations. Nat. Med., 1998, 4, 1157−1165.
  501. Sakaguchi S., Katamine S., Nishida N. et al. Loss of cerebellar Purkinje cells in aged mice homologous for a disrupted PrP gene. Nature, 1996, 380, 528−531.
  502. Sales N., Rodolfo R., Hassig et al. Cellular prion protein localization in rodent and primate brain. Eur. J. Neurosci., 1998, 10, 2464−2471.
  503. Sali A., Shachnovich E., Karplus M. How does protein fold? Nature, 1994, 369,248−251.
  504. Sauer H., Dagdanova A., Hescheler J., Wartenberg M. Redox-regulation of intrinsic prion expression in multicellular prostate tumor spheroids. Free Radical Biology and Medicine, 1999b, Vol. 27, Nos. l 1/12, pp. 1276−1283.
  505. Sauer H., Diedershagen H., Hescheler J., Wartenberg M. Calcium-dependence of hydrogen peroxide-induced c-fos expression and growth stimulation of multicellular prostate tumor spheroids. FEBS Lett., 1997, 419, 201−205.
  506. Sawada M., Kondo N., Suzumura A., Marunochi T. Production of TNF-a by microglia and astrocytes in culture. Brain Res., 1989, 491, 394−397.
  507. Sayre L., Perry G., Smith M. Redox metals and neurodegenerative disease. Chemical Biology, 1999, 3, 220−225.
  508. Schaefer A.W., Kamiguchi H., Wong E. et al. Activation of the МАРК signal cascade by the neural cell adhesion molecule LI requires LI internalization. J. Biol. Chem., 1999, 274, 37 965−37 973.
  509. Schaetzl H.M., Laszlo L., Holtzmann D.M. et al. A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J. Virology, 1997, 71, 8821−8831.
  510. Schmerr M., Jenny A. A diagnostic test for a scrapie-infected sheep using a capillary electrophoresis immunoassay with fluorescent-labeled peptides. Electrophoresis, 1998, 19, 409−414.
  511. Schmerr M., Jenny A., Bulgin M. et al. Use of capillary electrophoresis and fluorescent labeled peptides to detect the abnormal prion protein in the blood of animals that are infected with a TSE. J. Chromatography, 1999, 853, 207−214.
  512. Schmid S. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu.Rev. Biochem., 1997, 66, 511−548.
  513. Schmid-Alliana A., Menou L., Manie S. et al. Microtubule integrity regulates Src-like and extracellular signal-regulated kinase activaties in human pro-monocytic cells. J. Biol. Chem., 1998, 273, 3394−3400.
  514. Schreuder B.E., van Keulen L.J., Vromans M.E. et al. Preclinical test for prion diseases. Nature, 1996, 381, 563.
  515. Schreuder B.E., van Keulen L.J., Vromans M.E. et al. Tonsillar biopsy and PrPSc detection in the preclinical diagnosis of scrapie. Vet. Rec., 1998, 142, 564−568.
  516. Schubert J., Stroehmann A., Scholz C., Schmidt R.E. GPI-anchored surface-antigen in the allogeneic activation of T-cells. Clin.Exp.Immunol., 1995, 102, 199.
  517. Schulz-Schaeffer W.J., Giese A., Windl O., Kretzschmar H.A. Polymorphism at codon 129 of the prion protein gene determines cerebellar pathology in CJD. Clin. Neuropathol., 1996, 15, 353−357.
  518. Schulz-Schaeffer W.J., Tschoeke S., Kranefuss N. et al. The paraffin-embedded tissue blot detects PrPSc early in the incubation time in prion diseases. Am. J. Pathol., 2000, 156, 51−56.
  519. Scott J.R. and Fraser H. Degenerative hippocampal pathology in mice infected with scrapie. Acta Neuropathol. (Berl), 1984, 65, 62−68.
  520. Scott M., Foster D., Mirenda C. et al. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell., 1989, 59, 847−857.
  521. Scott M., Groth D., Foster D. et al. Propagation of prions with artificial properties in transgenic mice expressing chimeric PrP genes. Cell., 1993, 73, 979−988.
  522. Scott M., Groth D., Tatzelt J. et al. Propagation of prion strains through specific conformers of the prion protein. J. Virol., 1997, 71, 9032−9044.
  523. Scott M., Kohler R., Foster D., Prusiner S.B. Chimeric prion protein expression in cultured cells and transgenic mice. Prot. Sci., 1992, 1, 986−997.
  524. Scott M., Safar J., Telling G. et al. Identification of a prion protein epitope modulating transmission of BSE prions to transgrnic mice. Proc. Natl. Acad. Sci. USA., 1997, 94, 14 279−14 284.
  525. Scott M., Telling G., Prusiner S. Transgenetics and gene targeting in studies of prion diseases. Curr. Top. Microbiol. Immunol., 1996, 207, 95−123.
  526. Scott M., Will R., Ironside J. et al. Compelling transgenetic evidence for transmission of BSE prions to humans. PNAS, 1999, 96, 15 137−15 142.
  527. Searle J., Kerr J., Bishop C. Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol. Annu., 1982, 17, 229 259.
  528. Selkoe D. Cell biology of the J3-amyloid precursor protein and the genetics of AD. Cold Spring Harbor Symp. Quant. Biol., 1996, 61, 587−596.
  529. Selmaj K., Raine C. TNF mediates myelin and oligodendrocyre damage in vitro. Ann. Neurol., 1988, 23, 339−347.
  530. Selmaj K., Farooq M., Norton W. et al. Proliferation of astrocytes in vitro in response to cytokines. A primery role for TNF. J. Immunol., 1990, 144, 129 135.
  531. Serio T.R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science, 2000, 289, 13 171 321.
  532. Shen Z., Lin C., Unkeless J.C. Correlation among tyrosine phosphorilation of She, p72syk, PLC-yl, Ca2+.- flux in FcyRIIA signaling. J. Immunol., 1994, 152, 3017−3023.
  533. Shinagawa M., Munetaka E., Doi S. et al. Immunoreactivity of a synthetic pentadecapeptide corresponding to the N-terminal region of the scrapie prion protein. J. Gen. Virol., 1986, 67, 1745−1750.
  534. Shinkai Y. et al. Rag-2 dificient mice lack mature lymphocytes owing to inability to initiate V (1) rearrangement. Cell, 1992, 68, 855−867.
  535. Shmerling D., Hegyi I., Fischer M. et al. Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell., 1998, 93,203−214.
  536. Shubin V. A» Shuljak B.F., Kuvshinov V.L. Slow virus infection (scrapie and visna) in the USSR. Eur. J. Epidem., 1991, 7, 524−525.
  537. Shyng S.-L., Heuser E., Harris D.A. A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J. Cell. Biol., 1994, 125, 1239−1250.
  538. Shyng S.-L., Moulder K., Lesko A., Harris D.A. The N-terminal domain of a GPI-anchored prion protein is essential for its endocytosis via clathrin-coated pits. J. Biol. Chem., 1995, 270, 14 793−14 800.
  539. Shyng S.-L., Huber Т., Harris D.A. A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J. Biol. Chem., 1993,268, 15 922−15 928.
  540. Shyng S.-L., Moulder K., Lesko A., Harris D.A. The N-terminal domain of a glycolipid-anchored prion protein is essential for endocytosis via clathrin-coated pits. L. Biol. Chem., 1995, 270, 14 793−14 800.
  541. Shyu W.-C., Kao M.-C., Chou W.-Y. et al. Heat shock modulates prion protein expression in human NT-2 cells. Mol. Neurosci., 2000, 11, 771−774.
  542. Sigurdson B. Br. Vet. J., 1954, 110,341−354.
  543. Sigurdson C.J., Williams E., Miller M. et al. Oral transmission and early lymphoid tropism of chronic wasting disease PrPres in mule deer fawns (Odo-coileus hemionus). J. General Virol., 1999, 80, 2757−2764.
  544. Silei V., Fabrizi C., Venturini G. et al. Activation of microglial cells by PrP and P-amyloid fragments raises intracellular calcium through L-type voltage sensitive calcium chanels. Brain Res., 1999, 818, 168−170.
  545. Simms H., D’Amico R. Regulation of polymorphonuclear leukocytes cytokine receptor expression: the role of altered oxygen tensions and matrix proteins. J. Immunol., 1996, 157, 3605−3615.
  546. Simms H., D’Amico R, Garner C. Polymorphonuclear leukocytes cytokine receptor expression after hypoxia/reoxigenation. J. Lab. Clin. Med., 1996, 127, 364−381.
  547. Simons К. and Ikonen E. Functional rafts in cell membranes. Nature, 1997, 387, 569−572.
  548. Simpson-Herren L, Lloyd H. H. Kinetic parameters and growth curves for experimental tumor systems. Cancer Chemother. Rep, 1970, 54, 143−174.
  549. Sloviter R. S, Dean E, Neubort S. Electron microscopic analysis of adrena-lectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. J. Сотр. Neurol, 1993, 330, 337−351.
  550. Snow A. D, Kisilevsky R, Willmer J. et al. Sulfated glycosaminoglicans in amyloid plaques of prion diseases. Acta Neuropathol (Berl), 1989, 77, 337−342.
  551. Snow A. D, Wight T, Nochlin D. et al. Immunolocalization of heparan-sulfate proteoglycans to the prion protein amyloid plaques of GSS, CJD and scrapie. Lab. Invest, 1990, 63, 601−611.
  552. Solomon K. Rudd C. and Finberg R. The association between glycosylphosphatidylinositol-anchored proteins and heterotrimeric G-protein a-subunits in lymphocytes. Proc. Natl. Acad. Sci. USA, 1996, 93, 6053.
  553. Spranger M, Kiprianova I, Krempien S, Schwab S. Reoxygenation increases the release of reactive oxygen intermediates in murine microglia. J. Cerebral Blood Flow and Metabolism, 1998, 18, 670−674.
  554. Stack M, Scott A, Done S. et al. Natural scrapie: detection of fibrils in extracts from the CNS of sheep. Vet. Rec, 1991, 128, 539−540.
  555. Stahl N, Baldwin M, Hecker R. et al. Glycosylinositol phospholipid anchors of the scrapie and cellular prion protein contain sialic acid. Biochem, 1992,31, 5043−5053.
  556. Stahl N, Borchelt D, Hsiao K, Prusiner S.B. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell, 1987, 51, 229−240.
  557. Stefanova I., Corcoran M.L., Horak E.M. et al. LPS induces activation of CD14-associated protein-tyrosine kinase p53−56Lyn. J.Biol.Chem., 1993, 268, 20 725.
  558. Stefanova I., Horejsi V., Antsotegui I. et al. GPI-anchored cell-surface molecules complexes to protein tyrosine kinase. Science, 1991, 254, 1916.
  559. Streit W.J. and Kreutzberg G.W. Lectin binding by resting and reactive microglia. J. Neurocytol, 1987, 16, 249−260.
  560. Sundaresan M., Yu Z. X. Ferrans V. J, et al. Regulation of reactive oxygen species generation in fibroblasts by Rac 1. Biochem. J., 1996, 318., 379−382.
  561. Supattapone S., Bosque P., Muramoto T. et al. Prion protein of 106 residues creates an artificial transmission barrier for prion replication in transgenic mice. Cell., 1999, 869−878.
  562. Supattapone S., Bouzamondo E., Ball H. et al. A protease-resistant 61-residue prion peptide causes neurodegeneration in transgenic mice. Mol. and Cellular Biol., 2001, 21, 2608−2616.
  563. Supattapone S., Wille H., Uyechi L. et al. Branchede polyamines cure prion-infected neuroblastoma cells. J. Virol., 2001, 75, 3453−3461.
  564. Suzuki, Y. J.- Forman, H. J.- Sevanian, A. Oxidants as stimulators of signal transduction. Free Radic. Biol. Med., 1997, 22, 269−285.
  565. Suzumura A., Marunouchi Т., Yamamoto H. Morphological transformation of microglia in vitro. Brain Res., 1991, 545, 301−306.
  566. Szatrowski T.P. and Nathan C.F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res., 1991, 51, 794−798.
  567. Tagliavini F., Prelli F., Porro M. et al. A soluble form of prion protein in human cerebrospinal fluid: implications for prion-related encephalopathies. Biochem. Biophys. Res. Commun., 1992, 184, 1398−1404.
  568. Tan Y., Rouse J., Zhang A. et al. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J., 1996, 15,4629−4642.
  569. Tang M.X., Redemann C.T., Szoka F.C. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjugate Chem., 1996, 7, 703.
  570. Tang M.X. and Szoka F.C. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Therapy, 1997, 4, 823
  571. Tannenbaum C.S., Hamilton T.A. LPS-induced gene expression in murine peritoneal macrophages is selectively suppressed by agents that elevate intracellular cAMP. J. Immunol., 1989, 142,1274−1280.
  572. Tanzi R. Caspases land on APP: one small step for apoptosis, one giant leap for amyloidosis? Nat. Neurosci., 1999, 2, 585−586.
  573. Taraboulos A., Raeber A.J., Borchelt D.R. et al. Synthesis and trafficking of prion proteins in cultured cells. Mol. Biol. Cell., 1992, 3, 851−863.
  574. Taraboulos A., Scott M., Semenov A. et al. Cholesterol depletion and modification of COO-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J. Cell. Biol., 1995, 129, 121−132.
  575. Taraboulos A., Serban D., Prusiner S.B. Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultered cells. J. Cell Biol., 1990, 110. 2117−2132.
  576. Taylor D.M. Inactivation of transmissible degenerative encephalopathy agents: A Review. The Vet. J., 2000, 159, 10−17.
  577. Telling G., Haga Т., Torchia M et al. Interactions between wild-type and mutant prion proteins modulate neurodegeneration transgenic mice. Genes Dev., 1996, 10, 1736−1750.
  578. Telling G., Parchi P., DeArmond S. et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagation prion diversity. Science, 1996, 274, 2079−2082.
  579. Telling G., Scott M., Hsiao K. et al. Transmission of CJD from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc. Natl. Acad. Sci. USA., 1994, 91, 9936−9940.
  580. Telling G., Scott M., Mastrianni J. et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell., 1995, 83, 79−90.
  581. Thannickal V. J., Aldweib K. D., Fanburg B. L. Tyrosine phosphorylation regulates H2O2 production in lung fibroblasts stimulated by transforming growth factor beta 1. J. Biol. Chem., 1998, 273, 23 611−23 615.
  582. Thomas L.J., DeGasperi R., Sugiyama E. et al. Functional analysis of T-cell mutants defective in the biosynthesis of glycosylphosphatidylinositol-anchor. J. Biol. Chem., 1991,266, 23 175.
  583. Thompson C.B. Apoptosis in the pathogenesis and treatment of disease. Science, 1995,267, 1456−1462.
  584. Thompson C.B. Apoptosis in the pathogenesis and treatment of disease. Science, 1995, 267, 1456−1462.
  585. Thomson L.F., Ruedi J.M., Glass A. et al. Antibodies to 5"-nucleotidase (CD73), a GPI-anchored protein, cause human peripheral blood T-cells to proliferate. J. Immunol., 1989, 143, 1815.
  586. Tobler I., Gaus S., Deboer T. et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature, 1996, 380, 639−642.
  587. Vey M, Pilkuhn S, Wille H. et al. Subcellular colocalization of cellular and scrapie prion proteins in caveolae-like membranous domains. Proc. Natl. Acad. Sci. USA, 1996, 93, 14 945−14 949.
  588. Viles H. H, Cohen F, Prusiner S. et al. Copper binding to the prion protein: Structural implications of four identical cooperative binding sites. Proc.Natl.Acad.Sci.USA, 1999, 96, 2024−2047.
  589. Vnencak-Jones C. L, Phillips J.A. Identification of heterogeneous PrP gene deletions in controls by detection of allele-specific heteroduplexes (DASH). Am. J. Hum. Genet, 1992, 50, 871−872.
  590. Vonakis B. M, Chen H, Haleem-Smith H, Metzger H. The unique domain as the site on Lyn kinase for its constitutive association with the high affinity receptor for IgE. J. Biol. Chen, 1997, 272, 24 072−24 080.
  591. Wartenberg M, Acker H. Induction of cell death by doxorubicin in multicellular spheroids as studied by confocal laser scanning microscopy. Anticancer Res, 1995, 16, 573−580.
  592. Wartenberg M, Acker H. Quantitative recording of vitality patterns in living multicellular spheroids by confocal microscopy. Micron, 1995, 26, 395−404.
  593. Wartenberg M, Frey C, Diedershagen H. et al. Development of an intrinsic P-glycoprotein-mediated doxorubicin resistance in quiescent cell layers of large, multicellular prostate tumor spheroids. Int. J. Cancer, 1998, 75, 855−863.
  594. Wartenberg M, Hescheler J, Acker H. et al. Doxorubicin distribution in multicellular prostate cancer spheroids evaluated by confocal laser scanning microscopy and the 'optical probe technique'. Cytometry, 1998, 31, 137−145.
  595. Weiss A. and Imboden J. Cell surface molecules and early events involved in human T-lymphocyte activation. Adv Immunol, 1987, 41, 31−38.
  596. Weissmann C, Raeber A, Schmerling D. et al. The use of genetically modified mice in prion research. In: Prions: molecular and cellular biology. (Ed. D. A. Harris) Horizon Scientific Press, Wymondham, UK, 1999.
  597. Wells G., Hancock R., Cooley W. et al. BSE: diagnostic significance of vacuolar changes in selected nuclei of the medulla oblongata. Vet.Rec., 1989, 125, 521−524.
  598. Wells G., Hawkins S., Green R. et al. Preliminary observation on the pathogenesis of experimental BSE: an update. Vet. Rec., 1998, 142, 103−106.
  599. Wells G., Wilesmith J., McGill I. BSE: a neuropathological perspective. Brain Pathol., 1991, 1,69−78.
  600. Wells G., Spencer Y., Haritani M. Configuration and topographic distribution of PrP in the CNS in BSE: an immunohistochemical study. Annals of the New York Academy of Sciences, 1994b, 724, 350−352.
  601. Wells G., Scott A., Wilesmith J. et al. Correlation between the results of a histopathological examination and the detection of abnormal brain fibrils in the diagnosis of BSE. Res. Vet. Sci., 1994c, 56, 346−351.
  602. Westaway D., Mirenda C., Foster D. et al. Paradoxical shortening of scrapie incubation times by expression of prion protein transgens derived from long incubation period mice. Neuron, 1991, 7, 59−68.
  603. Westaway D., Zuliani V., Cooper C.M. et al. Homozygosity for prion protein alleles encoding glutamine-171 renders sheep susceptible to natural scrapie. Genes Dev., 1994b., 8, 959−969.
  604. Westaway D., DeArmond S. J., Cayetano-Canlas J. et al. Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell, 1994a, 76, 117−129.
  605. Wilesmith J., Wells G., Granwell M. et al. Bovine spongiform encephalopathy: epidemiological studies. Vet. Rec., 1988, 123, 638−644.
  606. Wilesmith J. and Wells G. Bovine spongiform encephalopathy. Current Topics in Microbiology and Immunology, 1991, 172, 21−38.
  607. R. & Ironside J. Oral infection by BSE prion. Proc. Natl. Acad. Sci. USA., 1999, 96, 4738−4739.
  608. Will R., Ironside J., Zeidler M. et al. A new variant of CJD in the UK. The Lancet, 1996, 347, 921−925.
  609. Williams A.E., Lawson L.J., Perry V.H., Fraser H. Characterization of the microglial response in murine scrapie. Neuropathol. Appl. Neurol., 1994, 20, 47−55.
  610. Williams A.E., vanDam A.-M., Man-A-Hing W.K. et al. Cytokines, prostaglandins and lipocortin-1 are present in the brains of scrapie-infected mice. Brain Res., 1994, 654, 200−206.
  611. Winklhofer and Tatzelt J. Cationic lipopolyamines induce degradation of PrPSc in scrapie-infected N2a cells. Biol. Chem., 2000, 381, 463−469.
  612. Wong B.S., Clive C., Haswell S.J. Copper has differential effect on prion protein with polymorphism of position 129. Biochem. Biophys. Res. Commun., 2000, 269, 726−731.
  613. Wong B.S., Pan Т., Liu T. et al. Prion disease: a loss of antioxidant function? Biochem. Biophys. Res. Commun., 2000, 275, 249−252.
  614. Wong B.S., Wang H., Brown D.R., Jones I.M. Selective oxidation of methionine residues in prion protein. Biochem. Biophys. Res. Commun., 1999, 259, 352−355.
  615. Wood J., Done S. Natural scrapie in goats: neuropathology. Vet. Rec., 1992, 131,93−96.
  616. Wood J., Lung L., Done S. The natural occurence of scrapie in moufflon. Vet. Rec., 1992, 130, 25−27.
  617. Wood J., Zinsmeister P. Tyrosine phosphorilation systems in AD pathology. Neurosci. Lett., 1991, 121, 12−16.
  618. Wood P.L. Differential regulation of IL-1 a and TNFa release from immortalized murine microglia (BV-2). Life Sci., 1994, 55, 661−668.
  619. Wung B.S., Cheng J.J., Hsieh H.J. et al. Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ. Res 1997, 81, 1−7.
  620. Wyllie A.H., Morris R.G., Smith A.L., Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol., 1984, 142, 67−77.
  621. Yen E.T., Reiser H., Daley J., Rock K.L. Stimulation of T-cells via the TAP molecile, a member in a family of activating proteins encoded in the Ly-6 locus. J. Immunol., 1987, 138, 91.
  622. Yuan J., Yankler B. Caspase activity shows the seeds of neuronal death. Nat. Cell Biol., 1999, 1, E44-E45.
  623. Zanusso G., Liu D., Ferrari S. et al. Prion protein expression in different species: analysis with the panel of new mAbs. Proc. Natl. Acad. Sci. USA, 1998, 95, 8812−8816.
  624. Zarewich D., Kindzelskii A., Todd R., Petty H. LPS induces CD14 association with complement receptor type 3, wich is reversed by neutrofils adhesion. J. Immunol., 1996, 156, 480.
  625. Zervos A., Faccio L., Gatto J. et al. Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates Max protein. Proc. Natl. Acad. Sci. USA, 1995,92, 10 531−10 534.q \оП ~ 01 d
Заполнить форму текущей работой