Помощь в написании студенческих работ
Антистрессовый сервис

Дуб черешчатый (Quercus robur L.) на Южном Урале

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Естественно-научного института ФГБОУ ВПО «Пермский государственный национальный исследовательский университет». Изучение микросателлитных локусов проведено в лабораториях Института лесной генетики Федерального министерства продовольствия, сельского хозяйства и защиты потребителей Германии. Диссертационная работа выполнена в рамках плановых тем научно-исследовательских работ ФГБОУ ВПО Башкирский… Читать ещё >

Дуб черешчатый (Quercus robur L.) на Южном Урале (реферат, курсовая, диплом, контрольная)

Содержание

  • Глава 1. Эколого-генетические исследования видов <2иегст
    • 1. 1. Разработка молекулярно-генетических методов 9 исследования видов Оиегст
    • 1. 2. Основные направления исследований в популяционной биологии 13 Оиегст Ь. с применением молекулярно-генетических маркеров
  • Глава 2. Регион, объекты и методы исследований
    • 2. 1. Краткая характеристика региона исследований
    • 2. 2. Объект исследований
    • 2. 3. Методы исследований
  • Глава 3. Генетическое разнообразие в популяциях дуба черешчатого
  • Глава 4. Межпопуляционная дифференциация дуба черешчатого на 78 Южном Урале
  • Глава 5. Внутри- и межпопуляционный поток генов как фактор 108 формирования популяционной структуры дуба черешчатого на Южном Урале
  • Выводы

Актуальность темы

Внутрии межпопуляционные взаимодействия растений играют ключевую роль в динамике во времени и в пространстве генофондов (Slatkin, 1987) и, через ее регуляцию, в формировании устойчивости на популяционном уровне к экологическим факторам среды. Это положение особенно актуально для видов на границах ареалов, где условия среды для них экологически более экстремальны. Здесь из-за небольшой численности популяции больше подвержены к действию дрейфа генов и инбридинга, чувствительны к эрозии генофонда (Geber, 2008). Возможность противодействия этим неблагоприятным явлениям определяется способностью популяционных систем поддерживать оптимальный уровень внутривидой пространственной подразделенности (Алтухов, 1995). Новые комбинации генотипов, легче образующиеся на границах ареалов, могут позволить видам быстрее эволюционировать и дать дополнительные возможности для адаптации и выживания (Petit et al., 2008), Эффективный генетический поток является при этом рассматривается в качестве одного из важнейших факторов (Rousseau et al., 2008).

Генетическая структура популяций дуба черешчатого {Quercus robur L. (Fagaceae)) исследована на большей части ареала и достаточно детально (Ducousso, Bordacs, 2004). Однако на Южном Урале, где проходят его восточная граница (Семериков, 1981), факторы формирования и поддержания генофонда вида практически не изучены (Яковлев, Клейншмит, 2002), особенно с применением современных и информативных молекулярно-биологических методов (Редькина и др., 2008). Данная проблема не позволяет научно обоснованно разрабатывать системные меры для повышении устойчивости дубрав к неблагоприятным экологическим факторам, оценить эколого-генетические последствия наблюдающейся в последние десятилетия деградации дубняков (Григорьев и др., 2000), сохранять и рационально использовать на популяционной основе генофонд вида (Янбаев и др., 2002), совершенствовать в регионе лесосеменное и лесокультурное дело.

Цель исследований — проведение эколого-генетического анализа популяционной структуры дуба черешчатого на границах его ареала на Южном Урале и комплекса факторов, ответственных за формирование и поддержание его генофонда.

В связи с ней решались следующие задачи:

1) Исследовать генетическое разнообразие популяций из различных природно-климатических зон региона и экологических условий местообитаний;

2) Изучить генетическую дифференциацию популяций, расположенных в местообитаниях, характерных для дуба черешчатого, и экологически пессимальных условиях среды;

3) Исследовать роль генетически реализованной миграции пыльцы на дальние расстояния в формировании и поддержании генетического разнообразия популяционных структур;

4) Провести анализ влияния особенностей семенного возобновления на формирование генотипического состава в насаждениях.

Научная новизна. Впервые с применением комплекса молекулярно-генетических методов (аллозимных, 18 811- и микросателлитных локусов), современного научного оборудования и системы математических методов обработки результатов экспериментов изучена популяционная структура дуба черешчатого в восточной части его области распространения. Установлено, что на Южном Урале генетическая дифференциация популяций из характерной для вида экологической среды обитания сравнительно невысока и обусловлена приуроченностью к крупным геоморфологическим образованиям и зонам растительности. Популяции из экологически экстремальной (пессимальной) для вида среды обитания генетически сравнительно более подразделены. Относительно высокое генетическое разнообразие краевых популяций, в том числе расположенных вне ареала, формируется за счет изменчивого по годам генетически реализованного переноса пыльцы на дальние расстояния. Динамика генетической структуры отдельных популяций в пространстве в существенной степени обусловлено особенностей семенного возобновления. Полученные результаты не только выявляют эколого-генетические механизмы формирования генофонда дуба черешчатого на географической и экологической границах ареала, но и расширяют теоретические представления об адаптации древесных растений на популяционной основе к экстремальным экологическим факторам среды обитания.

Практическая значимость. Результаты исследований и практические рекомендации предлагаются для использования Федеральным агентством лесного хозяйства РФ, научными учреждениями, высшими учебными заведениями в их деятельности, в т. ч. для разработки системы мер для повышения устойчивости дубрав и адаптации дуба черешчатого к факторам среды, для разработки программ сохранения и рационального использования на популяционной основе генофонда вида на восточной части ее ареала, совершенствования здесь лесосеменного и лесокультурного дела. Теоретические и практические результаты диссертационной работы могут быть рекомендованы для повышения уровня подготовки бакалавров по направлениям «Биология», «Экология», «Генетика» и «Лесное дело», а также магистров и научно-педагогических кадров высшей квалификации.

Организация исследований. Работа выполнена диссертантом в 20 082 012.Г., в т. ч. в качестве аспиранта очного обучения на кафедре лесоводства и ландшафтного дизайна ФГБОУ ВПО «Башкирский государственный аграрный университет» (Башкирский ГАУ). Исследования с применением изоферментного анализа осуществлены в лаборатории биоразнообразия научно-образовательного центра данного ВУЗа, с использованием 18 811-метода анализа ДНК — в лаборатории «Молекулярной биологии и генетики».

Естественно-научного института ФГБОУ ВПО «Пермский государственный национальный исследовательский университет». Изучение микросателлитных локусов проведено в лабораториях Института лесной генетики Федерального министерства продовольствия, сельского хозяйства и защиты потребителей Германии. Диссертационная работа выполнена в рамках плановых тем научно-исследовательских работ ФГБОУ ВПО Башкирский ГАУ, а также по Программе сотрудничества в сфере аграрных исследований между ФРГ и РФ (2009;2011 и 2012;2013 гг., проект № 3/07 «Oekologisch-genetische Untersuchungen im Hinblick auf Biodiversitaet und Monitoring»), по проекту «Efficient long-distance gene flow into an isolated relict oak stand beyond the eastern range margin of Quercus robur L.» (20 072 009 гг.), указанным выше министерством ФРГ, при поддержке грантов Ассоциации «Агрообразование» (тема «„Экологические и генетические исследования биологического разнообразия дуба черещчатого на границах ареала (на примере Южного Урала)“», 2010 г.) и Института фон Тюнена Федерального исследовательского института сельскохозяйственных земель, лесоводства и рыболовства Германии («Identifizierung von Holzherkunften», 2011 г.). Результаты диссертационной работы послужили в качестве научного задела проекта «Supporting a robust and reliable timber supply with cutting-edge technology», который начал выполняться при участии автора диссертации международным консорциумом исследователей России (Башкирский ГАУ), США, Германии, Австралии и Сингапура при финансовой поддержке Федеральной лесной службы CHIA (2012;2014 гг.).

Личный вклад автора состоит в разработке программы исследований согласно поставленным задачам работы, в выборе объектов и методов, в проведении полевых и лабораторных исследований, в обработке и интерпретации полученных результатов, в их сопоставлении с литературными данными, в подготовке рукописей диссертации и ее автореферата, личной апробации полученных результатов. Подготовка публикаций осуществлена самостоятельно или при активном участии автора диссертационной работы, результаты имеющихся совместных исследований опубликованы.

Апробация работы. Основные результаты и положения работы были представлены и обсуждались на 12 научных и научно-практических конференциях. В их числе 6 международных (Молодежная наука и АПКпроблемы и перспективы: Уфа, 2010; Состояние, проблемы и перспективы развития АПК: Уфа, 2010; ЕС-Россия — 7-я Рамочная программа в области биотехнологии, лесного, рыбного хозяйства и пищи: Уфа, 2010; Синтез знаний в естественных науках: Пермь, 2011; Проблемы популяционной и общей генетики: Москва, 2011; Третье международное совещание по сохранению лесных генетических ресурсов Сибири: Красноярск, 2011) и 6 всероссийских (Актуальные вопросы современной науки и образования: Сибай, 2010; Биоразнообразие и биоресурсы Урала и сопредельных территорий: Оренбург, 2010; Агрокомплекс-2010: Уфа, 2010; Агрокомплекс-2011: Уфа, 2011; Научное обеспечение инновационного развития АПК: Уфа, 2011, Агрокомплекс-2012: Уфа, 2012) научных форумов.

Публикации. По теме диссертации опубликовано 15 научных работ, в том числе 4 статьи в журналах, рекомендованных ВАК.

Структура и объем работы. Диссертационная работа состоит из введения, 5 глав, заключения и выводов. Она изложена на 152 машинописной странице, содержит 13 таблиц и 37 рисунков.

Список литературы

включает 284 источника, из которых 219 — иностранных.

122 ВЫВОДЫ.

1) Три разных типа молекулярно-генетических маркеров (аллозимные, 18 8Яи микроеателлитные локусы) показывают сравнительно высокое генетическое разнообразие дуба черешчатого Южного Урала, в том числе в расположенных в экологически пессимальных условиях среды краевых географически изолированных малых популяциях.

2) Расположенные в типичных для вида условиях среды популяции, по результатам анализа аллозимных локусов, сгруппировались по приуроченности к отдельным зонам растительности Южного Урала и к крупным геоморфологическим образованиям. Выделены северная (зона хвойно-широколиственных лесов на севере Камско-Бельского понижения), центральная (зона широколиственных лесов центральной части Камско-Бельского понижения и низкогорий западного макросклона южно-уральских гор) и южная (граница бореально-лесной и степной зон, юг Зилаирского плато) группы популяций с относительно слабой внутригрупповой генетической дифференциацией.

3) Основной вклад во внутривидовую пространственно-генетическую дифференциацию дуба черешчатого на Южном Урале вносят малые популяции эколого-географического края ареала, расположенные в экологически пессимальных условиях среды.

4) Генетически реализованный поток пыльцы, переносимой на дальние расстояния, является важным фактором формирования относительно высокого аллельного разнообразия в географически изолированных малых популяциях, снижая вероятность воздействия на их генофонд дрейфа генов и инбридинга.

5) Аллельное разнообразие потомства в краевых малых популяциях существенно варьирует по годам. Наиболее вероятной причиной данного феномена может быть воздействие комплекса экологических факторов (погодные условия, ветровой режим и др.), изменяющее качество пыльцы.

6) Гравитационный механизм распространения семян (желудей) дуба черешчатого в малых по численности деревьев географически изолированных дубравах, создавая в древостоях выраженную пространственно-семейную кластеризацию генотипов, является фактором, ответственным за относительно высокое генетическое своебразие популяций на экологической и географической границах ареала.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИОННОЙ РАБОТЫ Статьи в изданиях, рекомендованных ВАК.

1. Янбаев Ю. А., Габитова A.A., Бушбом Ю. и др. Естественное возобновление дуба черешчатого на северо-восточной границе ареала // Аграрная Россия (специальный выпуск «Актуальные проблемы дендроэкологии и адаптации растений», посвященный 80-летию со дня рождения профессора Ю.З. Кулагина). — 2009. — С. 16−17.

2. Коновалов В. Ф., Янбаев Ю. А., Галлеев Э. И., Саитова P.M., Габитова A.A. Состояние и перспективы развития селекции древесных растений в Республике Башкортостан // Аграрный вестник Урала. — 2010. — № 3. — С. 9899.

3. Бушбом Ю., Янбаев Ю. А., Деген Б., Габитова А. А. Динамика генетического разнообразия во времени в изолированной популяции дуба черешчатого Quercus robur h. (Fagaceae) // Генетика. — 2012. — T. 48. — № 1. — С, 135−137.

4. Янбаев Ю. А., Габитова A.A., Боронникова C.B. Экологическая обусловленность межпопуляционной генетической дифференциации дуба черешчатого на Южном Урале // Вестник БГАУ. 2012. — № 2. — С. 63−65.

Публикации в других изданиях.

5. Габитова A.A. Об естественном возобновлении дуба черешчатого // Молодежная наука и АПК. Проблемы и перспективы: матер, междунар. науч.-практ. конф. — Уфа, 2010 г. — С. 198−200.

6. Садыков Х. Х., Габитова A.A., Янбаев Ю. А. О формировании культур дуба черешчатого // Актуальные проблемы современной науки и образования: материалы всерос. науч.-практ. конф. с междунар. участием. -Уфа: РИЦ БашГУ, 2010. — С. 170−173.

7. Бушбом Ю., Деген Б., Янбаев Ю. А., Редькина H.H. и др. Эффективность генетического потока в изолированные малые популяции дуба черешчатого) // Биоразнообразие и биоресурсы Урала и сопредельных территорий: матер. V всерос. науч.-практ. конф. — Оренбург, 2010. — С. 20−22.

8. Габитова A.A., Ахметов А. Р., Ситдиков М. Р. О сохранении биоразнообразия древесных пород в республике Башкортостан // Состояние, проблемы и перспективы развития АПК: матер, междунар. науч.-практ. конф. — Уфа, 2010 г. — 96−98.

9. Габитова A.A., Янбаев Ю. А., Муллагулов Р. Ю., Редькина H.H. и др. Об аллельном разнообразии древесных растений на восточной границе ареала на Южном Урале // ЕС-Россия: 7-я Рамочная программа в области биотехнологии, лесного, рыбного хозяйства и пищи: матер, междунар. науч.-практ. конф. с элементами научной школы для молодежи. — Уфа,.

2010.-С. 81−83.

10. Янбаев Ю. А., Габитова A.A. Полиморфизм изоферментов дуба черешчатого (Quercus robur L.) // Научное обеспечение инновационного развития АПК: мат. всерос. науч.-практ. конф. в рамках XX юбилейной специализированной выставки «Агрокомплекс-2010». — Уфа, Башкирский ГАУ. — 2011.-С. 317−319.

11. Габитова A.A., Янбаев Р. Ю. Генетическое разнообразие дуба черешчатого Южного Урала // Агрокомплекс-2011: мат. всерос. науч.-практ. конф. в рамках XXI международной специализированной выставки. — Уфа,.

2011.-209−211.

12. Садыков Х. Х., Янбаев Ю. А., Габитова A.A., Ахметов А. Р. и др. Эколого-генетические процессы при естественном возобновлении широколиственных лесов Южного Урала // Синтез знаний в естественных науках: матер, межд. науч. конф. — Пермь: Перм. гос. иссл. ун-т., 2011. — Т, 2. -С. 197−200.

13. Габитова A.A., Янбаев Ю. А., Боронникова C.B. Анализ генетического разнообразия дуба черешчатого с применением ISSR-PCR маркеров // Проблемы популяционной и общей генетики: мат. междунар. конф., посвященные памятной дате — 75-летию со дня рождения академика Ю. П. Алтухова. — Москва, 2011. — С. 102−106.

14. Янбаев Ю. А., Бушбом Ю., Деген Б., Габитова A.A. Формирование генетического разнообразия изолированных малых популяций дуба черешчатого на Южном Урале // Проблемы популяционной и общей генетики: мат. междунар. конф., посвященные памятной дате — 75-летию со дня рождения академика Ю. П. Алтухова. — Москва, 2011. — С. 123−127.

15. Габитова A.A., Янбаев Ю. А. Экология семенного размножения дуба черешчатого и формирования генотипического состава популяций в пространстве // Агрокомплекс-2012: мат. всерос. науч.-практ. конф. в рамках XXII международной специализированной выставки. — 2012. — С. 42−44.

Показать весь текст

Список литературы

  1. Adams WT, Birkes DS. Estimating mating patterns in forest tree populations. In: Fineschi S, Malvolti ME, Cannata F, Hattemer HH (eds.) // Biochemical Markers in the Population Genetics of Forest Trees. 1991. — P. 152−172.
  2. Albrecht V., Barone J., Einsweiler R. C et al. Managing land as ecosystem and economy // Cambridge, Massachusetts, USA. 1995.
  3. Alden J., Loopstra C. Genetic diversity and population structure of Picea glauca on an altitudinal gradient in interior Alaska // Canadian Journal of Forest Research. -1987.-V. 17. -P.1519−1526.
  4. Aldrich P. R., Hamrick J. L., Chavarriaga P., et al. Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifer II Mol Ecol. 1998. — V. 7. — P. 933−944.
  5. Aldrich P.R., Jagtap M., Michler C.H., et al. Amplification of North American red oak microsatellite markers in European white oaks and Chinese chestnut // Silvae Genetica.-2003.-V. 52.-P. 176−179.
  6. Aldrich P.R., Michler C.H., Sun W., et al. Microsatellite markers for northern red oak (Fagaceae: Quercus rubra) // Molecular Ecology. 2002. -V. 2. — P. 472−474.
  7. Aldrich P.R., Parker G.R., Michler C.H., et al. Whole-tree silvic identifications and the microsatellite genetic structure of a red oak species complex in Indiana old-growth forest // Canadian Journal of Forest Research. 2003. — V. 33. — P. 2228−2237.
  8. Alfonso-Corrado C., Esteban-Jimenez R., Clark-Tapia R., et al. Clonal and genetic structure of two Mexican oaks: Quercus eduardii and Quercus potosina (Fagaceae) // Evolutionary Ecology. 2004. — V. 18. — P. 585−599.
  9. Alvarez-Buy lia E.R., Chaos A., Pinero D., et al. Demographic genetics of a pioneer tree species: patch dynamics, seed dispersal, and seed banks // Evolution. -1996.-V. 50.-P. 1155−1166.
  10. Angelone S, Hilfiker K., Holderegger R., et al. Regional population dynamics define the local genetic structure in Sorbus torminalis // Molecular Ecology. 2007. -V. 16.-№ 6.-P. 1291−1301.
  11. Bacilieri R., Ducousso A., Kremer A. Genetic, morphological and phenological differentiation between Quercus petraea (Matt.) Liebl. and Quercus robur L. in a mixed stand of Northwest of France // Silvae Genetica. 1995. — V. 44. — P. 1−10.
  12. Bacilieri R., Ducousso A., Petit R.J., et al. Mating system and asymmetric hybridization in a mixed stand of European oaks // Evolution. 1996. — V. 50. — P. 900 908.
  13. Bacilieri R., Labbe T., Kremer A. Intraspecific genetic structure in a mixed population of Quercus petraea (Matt.) Liebl. and Quercus robur L. // Heredity. 1994. -V. 73.-P. 130−141.
  14. Bakker E.G., Van Dam B.C., Van Eck HJ., et al. A discrimination between Quercus robur L. and Q. petraea (Matt.) Liebl. based on species-indicative AFLP markers // Forest Genetics. 2001. — V. 8. — P. 315−322.
  15. Barreneche T., Bahrman N., Kremer A. Two dimensional gel electrophoresis confirms the low level of genetic differentiation between Quercus robur L. and Quercus petraea (Matt.) Liebl. // Forest Genetics. 1996. — V. 3. — P. 89−92.
  16. Barreneche T., Bodenes C., Lexer C., et al. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers // Theoretical and Applied Genetics. 1998. — V. 97. -P. 1090−1103.
  17. Barreneche T., Casasoli M., Russel K., et al. Comparative mapping between Quercus and Castanea using simple sequence repeats (SSRs) // Theoretical and Applied Genetics. 2004. — V. 108. — P. 558−556.
  18. Barton N.H., Hewitt G. Analysis of hybrid zones// Ann. Rev. Ecol. Syst. 1985. -V.16.-P.113−148.
  19. Bellarosa R., Simeone M.C., Papini A., et al. Utility of ITS sequence data for phylogenetic reconctruction of Italian Quercus II Mol Phyl Evol. 2005. — V. 34. — P. 355−370.
  20. Berg E.E., Hamrick J.L. Fine-scale genetic structure of a turkey oak forest // Evolution. 1995. — V. 49. — P. 110−120.
  21. Berg E.E., Hamrick J.L. Regional genetic variation in turkey oak, Quercus laevis II Canadian Journal of Forest Research. 1993. — V. 23. — P. 1270−1274.
  22. Berg E.E., Hamrick J.L. Spatial and genetic structure of two sandhills oaks: Quercus laevis and Quercus margaretta (Fagaceae) // American Journal of Botany. -1994.-V. 81.-P.7−14.
  23. Bergmann F. The allelic distribution at an acid phosphatase locus in Norway spruce {Picea abies) along similar climatic gradients // Theor. Appl. Genet. 1978. — V. 52.- P. 57−64.
  24. Bodenes C., Joandet S., Laigret F., et al. Detection of genomic regions differentiating two closely related oak species Quercus petraea (Matt.) Liebl. and Quercus robur L. // Heredity. 1997. — V. 78. — P. 433−444.
  25. Bordacs S, Popescu F, Slade D, et al. Chloroplast DNA variation in European white oaks. Phylogeography and patterns of diversity based on data from over 2600 populations // Forest Ecology and Management. 2002. — V. — 156. — P. 5−26.
  26. Bordacs S., Burg, K. Genetic differentiation by RAPD-markers of oak species in Hungary. In: Steiner, K. C. (ed.) Diversity and Adaptation in Oak Species. The Pennsylvania State University, Pennsylvania. 1997. — P. 121 -131.
  27. Bordacs S., Popescu F., Slade D., et al. Chloroplast DNA variation of white oaks in the northern Balkan sand in the Carpathian Basin // Forest Ecology and Management. 1997. — V. 156.-P. 197−209.
  28. Bradshaw A.D. Ecological significance of genetic variation between populations, -Sinauer, Sunderland, Mass. 1984. — P. 213−228.
  29. Brendel O., Le Thiec D., Scotti-Saintagne C., et al. Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. // Tree Genetics and Genomes. 2008. — V. 4. — P. 263−278.
  30. Bruschi P, Vendramin GG, Bussotti F, Grossini P. Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in northern and central Italy // Annals of Botany. 2000. — V. 85. — P. 325 333.
  31. Buiteveld J., Bakker E.G., Bovenschen J., et al. Paternity analysis in a seed orchard of Quercus robur L. and estimation of the amount of background pollination using microsatellite markers // Forest Genetics. 2001. — V. 8. — P. 331−337.
  32. Bush R.M., Smouse. P.E. Evidence for the adaptive significance of allozymes in forest trees // New Forests. 1992. — №. 6. — P. 179−196.
  33. Bushbom J., Yanbaev Y., Degen В. Efficient long-distance gene flow into an isolated relict oak stand // Journal of Heredity. 2011. — V. 102. — № 4. — P. 464−472.
  34. Chaisurisi K., El-Kassaby Y.A. Genetic diversity in a seed production population and natural populations of sitka spruce // Biodiv. Conserv. 1994. -V. 3. — P. 512−523.
  35. Cheliak W. M., Pitel J. A. Techniques for Starch Gel Electrophoresis of Enzymes from Forest Tree Species // Information Report PI-X-42, Petawawa National Forestry Institute. 1984.
  36. Cheliak W.M., Murray G., Pitel J.A. Genetic effect of phenotypic selection in white spruce // Forest Ecol. Manag. 1988. — V. 24. — P. 139−149.
  37. Chung M.Y., Chung M.G. Fine-scale genetic structure in populations of Quercus variabilis {Fagaceae) from southern Korea // Canadian Journal of Forest Research. -2002. -V. 80.- P. 1034−1041.
  38. Chung M.Y., Nason J., Chung M.G., et al. Landscape-level spatial genetic structure in Quercus acutissima {Fagaceae) II American Journal of Botany. 2002. -V. 89.-P. 1229−1236.
  39. Cortesi P., Mazzoleni A., Pizzatti C., Milgroom M.G. Genetic similarity of flag shoot and ascospore subpopulations of Erysiphe necator in Italy. // Appl. Environ. Microbiol. 2005. — Y.71. -P. 7788−7791.
  40. Cottrell J.E., Munro R.C., Tabbener H.E., et al. Comparison of fine-scale genetic structure using nuclear microsatellites within two British oakwoods differing in population history // Forest Ecology and Management. 2003. — V. 176. — P. 287−303.
  41. Craft K.J., Owens J.D., Ashley M.V. Application of plant DNA markers in forensic botany: genetic comparison of Quercus evidence leaves to crime scene trees using microsatellites // Forensic Sci Int. 2007. — V. 165. — № 1. — P. 64−70.
  42. Curtu A.L., Gailing O., Leinemann L., et al. Genetic variation and differentiation within a natural community of five oak species (Quercus spp.) II Plant Biol (Stuttg). -2007.- V. 9, -№ 1.-P. 116−26.
  43. Davies S., White A., Lowe A.J. An investigation into effects of long-distance seed dispersal on organelle population genetic structure and colonization rate: a model analysis // Heredity. 2004. — V. 93. — P. 566−576.
  44. Degen B., Streiff R., Ziegenhagen B. Comparative study of genetic variation and differentiation of two pedunculate oak (Quercus robur) stands using microsatellite and allozyme loci //Heredity. 1999. — V. 83. — № 5. — P. 597−603.
  45. Deguilloux M-F., Dumolin-Lapegue S., Gielly L., et al. A set of primers for the amplification of chloroplast microsatellites in Quercus // Molecular Ecology Notes.2003. V. 3. I 24−25.
  46. Deguilloux M-F., Pemonge M-H., Petit R.J. Use of chloroplast microsatellites to differentiate oak populations // Annals of Forest Science. 2004. — V. 61. — P. 825−830.
  47. Demesure B., Sodzi N., Petit R.J. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants // Molecular Ecology. 1995. -V. 4. — P. 129−131.
  48. Dow B.D., Ashley M.V. High levels of gene flow in bur oak revealed by paternity analysis using microsatellites // Journal of Heredity. 1998. — V. 89. — P. 62−70.
  49. Dow B.D., Ashley M.V. Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa II Molecular Ecology. 1996. — V. 5. — P. 615−627.
  50. Dow B.D., Ashley M.V., Howe H.F. Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa 11 Theoretical and Applied Genetics. 1995.-V. 91.-P. 137−141.
  51. Ducousso A. H., Michaud R. Reproduction and gene flow in the genus Quercus II Annales des Sciences Forestieres. 1993. — V. 50. — № 1. — P. 91−106.
  52. Dumolin S., Demesure B., Petit R.J. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method // Theoretical and Applied Genetics. 1995. — V. 91. — P. 1253−1256.
  53. Dumolin-Lapegue S., Demesure B., Fineschi S., et al. Phylogeographic structure of white oaks throughout the European continent // Genetics. 1997. — V. 146. — P. 14 751 487.
  54. Dumolin-Lapegue S., Kremer A., Petit R.J. Are chloroplast and mitochondrial DNA variation species independent in oaks? // Evolution. 1999. — V. 53. — P. 14 061 413.
  55. Dumolin-Lapegue S., Pemonge M.H., Petit R.J. An enlarged set of consensus primers for the study of organelle DNA in plants // Molecular Ecology. 1997. — V. 6. -P. 393−397.
  56. Dzialuk A., Chybicki I. Presence of Triploids among Oak Species // Annals of Botany. 2007. — V. 99. — P. 959−964.
  57. Dzialuk A., Chybicki I., Burczyk J. PCR-multiplexing of nuclear SSR loci in Quercus sp. II Plant Molecular Biology Reporter. 2005. — V. 23. P. 121−128.
  58. Echt C. S., May-Marquardt P., Hseih M., et al. Characterization of microsatellite markers in eastern white pine // Genome. 1996. — V.39. — P. 1102−1108. |
  59. Epperson B.K. Spatial structure of genetic variation within populations of forest trees // New Forests. 1992. — V. 6. — P. 257−278.
  60. Fernandez-M. J.F., Sork V.L. Genetic variation in fragmented forest stands of the Andean Oak Quercus humboldtii Bonpl. (Fagaceae) // Biotropica. 2007. — V. 39. — P. 72−78.
  61. Ferris C., King R. A., Vainola R., et al. Chloroplast DNA recognizes three refugial sources of European oaks and suggests independent eastern and western immigrations to Finland // Heredity. 1998. — V.80. — P.584−593.
  62. Ferris C., Oliver R.P., Davy A.J. et al. Native oak chloroplasts reveal an ancient divide across Europe // Molecular Ecology. 1993. — V. 2. — P. 337−344.
  63. Finkeldey R. Genetic variation of oaks (Quercus spp.) in Switzerland. 1. Allelic diversity and differentiation at isozyme gene loci // Forest Genetics. 2001. — V. 8. — P. 185−195.
  64. Finkeldey R., Matyas G. Genetic variation of oaks {Quercus spp.) in Switzerland. 3, Lack of impact of postglacial recolonization history on nuclear gene loci-.// Theoretical and Applied Genetics. 2003. — V. 106. — P. 346−352.
  65. Geburek T. Are genes randomly distributed over space in mature populations of sugar maple (Acer saccharum Marsh.)? // Ann. Bot. 1993. — V. 71.-P. 217−222. :
  66. Geburek T., Tripp-Knowles P. Genetic architecture in bur oak, Quercus macrocarpa (Fagaceae), inferred by means of spatial autocorrelation analysis // Plant Syst Evolution. 1994. — V. 189. — P. 63−74.
  67. Gomory D. A gene coding for a non-specific NAD-dependent dehydrogenase shows a strong differentiation between Quercus robur and Quercus petraea H, Forest Genetics. 2000. — V. 7. — P. 167−170.
  68. Gomory D., Yakovlev I., Zhelev P., et al. Genetic differentiation of oak populations within the Quercus robur I Quercus petraea complex in Central and Eastern Europe // Heredity. 2001. — V. 86. — P. 557−563.
  69. Gonzalez-Rodriguez A., Arias D.M., Oyama K. Genetic variation and differentiation of populations within the Quercus affinis Quercus laurina {Fagaceae) complex analyzed with RAPD markers // Canadian Journal of Botany. — 2005. — V. 83. -P. 155−162.
  70. Gonzalez-Rodriguez A., Arias D.M., Valencia S, et al. Morphological and RAPD analysis of hybridization between Quercus affinis and Q. laurina (Fagaceae), two Mexican red oaks // American Journal of Botany. 2004. — V. 91. — P. 401−409.
  71. H. -R. The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance // Math Biosciences. 1978. — V.41. — P. 253−271.
  72. H. -R. The probability of losing an allele when diploid genotypes are sampled // Biometrics. 1980. — V. 36. — P.643−652. |
  73. Grivet D., Sork V.L., Westfall R.D., et al. Conserving the evolutionary potential of California valley oak {Quercus lobata Nee): a multivariate genetic approach to conservation planning // Molecular Ecology. 2008. — V. 17(1). — P. 139−156.
  74. Gugerli F., Brodbeck S., Holderegger R. Utility of multilocus genotypes for taxon assignment in stands of closely related European white oaks from Switzerland // Annals of Botany. 2008. — V. 102(5). — P.855−863.
  75. Gupta M., Chyi Y.S., Romero-Severson J., et al. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats // Theor. Appl. Genet. 1994. — V.89. — P. 998−1006.
  76. Guries R.P., Ledig F.T. Genetic structure of populations differentiation in forest trees-// Canadian Journal of Botany. 1981. — P. 42−47
  77. Guttman S.I., Weigt L.A. Electrophoretic evidence of relationships among Quercus (oaks) of eastern North America // Canadian Journal of Botany. 1989. — V. 67.-P. 339−351.
  78. Hampe A., El Masri L., Petit RJ. Origin of spatial genetic structure in an expanding oak population // Molecular Ecology. 2010. — V. 19. — № 3. — P. 459−71.
  79. Hamrick J.L., Godt M.J.W., Sherman-Broyles S.L. Factor influencing levels of genetic diversity in woody plant species //New Forest. 1992. — V. 6. — P. 96−124.
  80. Hertel H., Kaetzel R. Susceptibility of Norway spruce clones (Picea abies (L.) Karst.) to insects and roe deer in relation to genotype and foliar phytochemistry // Phyton-Horn. 1999. — V. 39. — P. 65−72.
  81. Hertel H., Kohlstock N. Different genetic structures of two morphological types of Scots pine (Pinus sylvestris L.) // Silvae Genetica. 1994. — V. 43. — P. 268−271.
  82. Hertel H., Zaspel I. Investigations on vitality and genetic structure in oak stands // Annals of Forest Science. 1996. — V. 53. — P. 761−773.
  83. Jarne P., Lagoda J. L. Microsatellites, from molecules to populations and back // Trends Ecol Evol. 1996. — V. 11. — P. 424−429.
  84. Jensen J.S., Olrik D.C., Siegismund H.R., Lowe A.J. Population genetics and spatial autocorrelation in an unmanaged stand of Quercus petraea in Denmark // Scandinavian Journal of Forest Research. 2003. — V. 18. — P. 295−304.
  85. Jimenez P., Lopez de Heredia U., Collada C., et al. High variability of chloroplast DNA in three Mediterranean evergreen oaks indicates complex evolutionary history // Heredity. 2004.- V. 93.-P. 510−515.
  86. Johnk, N., Siegismund H. R. Population structure and post-glacial migration routes of Quercus robur and Quercus petraea in Denmark, based on chloroplast DNA analysis // Scand J For Res.- 1997. V. 12- P. 130−137.
  87. Jones F.A., Hamrick J.L., Peterson C.J., et al. Inferring colonization history from analyses of spatial genetic structure within populations of Finus strobus and Quercus rubra II Molecular Ecology. 2006. — V. 15. — № 3. — P. 851−861.
  88. Kampfer S., Lexer C., Glossl J., et al. Characterization of (GA)n microsatellite loci from Quercus robur II Hereditas. 1998. — V.129. — P. 183−186. |
  89. Kelleher C.T., Hodkinson T.R., Douglas G.C., et al. Characterisation of chloroplast DNA haplotypes to reveal the provenance and genetic structure of oaks in Ireland // Forest Ecology and Management. 2004. — V. 189. — P. 123−131.
  90. Kelleher C.T., Hodkinson T.R., Douglas G.C., Kelly D.L. Species distinction in Irish populations of Quercus petraea and Q. robur. morphological versus molecular analyses // Annals of Botany. 2005. — V. 96. — № 7. — P. 1237−1246.
  91. Kim Z. S. Viability selection at an allozyme locus during development in European beech (Fagus sylvatica L.) // Silvae Genet. 1985. -V.34. — P.181−186.
  92. Kimura M., Crow J.F. The number of alleles that can be maintained in a finite population//Genetics (US). 1964. — V. 49. — P. 725 — 738.
  93. Klaper R., Hunter M. Genetic versus environmental effects on the phenolic chemistry of turkey oak, Quercus laevis. // In: Diversity and adaptation in oak species. University Park, PA: Penn State University. 1997. — P. 262−267.
  94. Klaper R., Ritland K., Mousseau T.A., et al. Heritability of phenolics in Quercus laevis inferred using molecular markers // Journal of Heredity. 2001. — V. 92. — № 5. -P. 421−426.
  95. Kleinschmit J.R., Bacilieri G.R., Kremer A., et al. Comparison of morphological and genetic traits of pedunculate oak (Q. robur L.) and sessile oak (Q. petraea (Matt.) Liebl) // Silvae Genetica. 1995. — V. 44. — P. 256−269.
  96. Knowles R., Mitton J.B. Genetic heterozygosity and radial growth variability in ¦Pims contorta II Silvae Genet. 1980. — V. 29. — P. 114−118.
  97. Krakowski J., Aitken S.N., El-Kassaby Y.A. Inbreeding and conservation genetics in whitebarc pine // Conservation Genetics. 2003. — V. 4. — P. 581−593.
  98. Kremer A., Petit R.J. Gene diversity in natural populations of oak species // Ann. Sci. For. 1993. — V. 50. Suppl. 1. — P. 186−202.
  99. Kremer A., Zanetto A. Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. II. Multilocus patterns of variation // Heredity. 1997. — P. 476−489.
  100. Krusche D., Geburek T. Conservation of forest gene resources as related to sample size//For Ecol Management.-1991. V.40. -P. 145−150.
  101. Corre V., Dumolin-Lapegue S., Kremer A. Genetic variation at allozyme and RAPD loci in sessile oak Quercus petraea (Matt.) Liebl.: the role of history and geography // Molecular Ecology. 1997. — V. 6. — P. 519−529.
  102. Corre V., Kremer A. Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection // Genetics. 2003. — V. 164. -P. 1205−1219.
  103. Magni C.R., Ducousso A., Caron H., et al. Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae // Molecular Ecology. -2005.-V. 14.-P. 513−524.
  104. Manos P. S., Doyle J.J., Nixon K.C. Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae) II Mol Phyl Evol. -1999.-V. 12.-P. 333−349.
  105. Mattila A., Pakkanen A., Vakkari P., et al. Genetic variation in english oak {Quercus robur L.) in Finland // Silva Fenica. 1994. — V. 28. — P. 251−256.
  106. Matyas G., Sperisen C. Chloroplast DNA polymorphisms provide evidence for postglacial recolonisation of oaks (Quercus spp.) across the Swiss Alps // Theoretical and Applied Genetics. 2001. -V. 102. -P. 12−20.
  107. Mayesa S. G, McGinleya M.A., Werth C.R. Clonal population structure and genetic variation in sand-shinnery oak, Quercus havardii (Fagaceae) II American Journal of Botany. 1998. — V. 85. — P. 1609−1617.
  108. Merzeau D., Comps B., Thiebaut B. et al. Genetic structure of natural stands of Fagus sylvatica L. // Heredity. 1994. — №. 72. — P. 269−277.
  109. Michaud H., Toumi L., Lumaret R., et al. Effect of geographical discontinuity on genetic variation in Quercus ilex L. (holm oak). Evidence from enzyme polymorphism // Heredity. 1995. — V. 74. — P. 590−606.
  110. Millar C.I., Westfall R.D. Allozyme markers in forest genetic conservation // New forests.-1992.-V.6.-P. 347−371.
  111. Mitton J. B. Genetics and the physiological ecology of conifers // Ecophysiology of Coniferous Forests. 1995. — P. 1−35.
  112. Mitton J.B., Grant M.C. Observations on the ecology of quaking aspen Populus tremuloides, in the Colorado Front Range II Am. J. Bot. 1980. — V. 67. — P. 202−209.
  113. Miyazaki Y. Ecological genetic studies of Quercus crispula in Hokkaido // Forest and Tree Breeding. 1989. — V. 153. — P. 1−5.
  114. Montalvo A.M., Conard S.G., Conkle M.T. et al. Population structure, genetic diversity, and clone formation in Quercus chrysolepis {Fagaceae) // American Journal of Botany. 1997. -V. 84. — P. 1553−1564.
  115. Moreau F., Kleinschmit J., Kremer, A. Molecular differentiation between Q. petraea and Q. robur assessed by random amplified DNA fragments // Forest Genetics. 1994.-V. l.-P. 51−64.
  116. Muir G., Schlotterer C. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks {Quercus spp. y /I Molecular Ecology. 2005. — V. 14. — P. 549−561.
  117. Muir G., Schlotterer C. Moving beyond single-locus studies to characterize hybridization between oaks {Quercus spp.) II Molecular Ecology. 2006. — V. 15. — P. 2301−2304.
  118. Muller-Starck G. Genetic differences between 'tolerant' and 'sensitive' beeches {Fagus sylvatica L.) in an environmentally stressed adult forest stand // Silvae Genet.-1985.-V. 34.-P. 241−247.
  119. Muller-Starck G., Herzog S., Hattemer H.H. Intra- and interpopulational genetic variation in juvenile populations of Quercus robur L. and Quercus petraea Liebl. // Annals of Forest Science. 1993. — 50. — P. 233−244.
  120. Muller-Starck G., Zanetto A., Kremer A., et al. Inheritance of isoenzymes in sessile oak {Quercus petraea (Matt.) Liebl) and offspring from interspecific crosses // Forest Genetics. 1996. — V. 3. — P. 1−12.
  121. Muller-Starck G., Ziehe M. Genetic Variation in European Populations of Forest Trees // Sauerlander’s Verlag, Frankfurt. 1991.
  122. Nakanishi A., Tomaru N., Yoshimaru H., et al. Effects of seed- and pollenmediated gene dispersal on genetic structure among Quercus salicina saplings // Heredity. 2009. — V. 102. — № 2. — P. 182−189.
  123. Nakanishi A., Tomaru N., Yoshimaru H., et al. Interannual genetic heterogeneity of pollen pools accepted by Quercus salicina individuals // Molecular Ecology. 2005. — V. 14. — № 14. — P. 4469 — 4478.
  124. Nason JD, Ellstrand NC, Arnold ML. Patterns of hybridization and introgression in populations of oaks, manzanitas, and irises // American Journal of Botany. 1992. — V. 79. P. 101−111.
  125. Naujoks G, Hertel H, Ewald D. Characterization and propagation of an adult triploid pedunculate oak {Quercus robur L.) // Silvae Genetica. 1995. — V. 44. — P. 282−286.
  126. Nei M. Analysis of gene diversity in subdivided populations //Proc Natl Acad Sei USA 1973. — Y. 70. — P. 3321−3323.
  127. Nei M. Genetic distance between populations // Amer. Naturalist. 1972. — V. 106.-P. 283 — 292.
  128. Nei M. Molecular evolutionary genetics // N.Y. Columbia Univ. press. 1987. — P.512.
  129. Nei M. Molecular population genetics and evolution // Amsterdam. 1975. — P.278.
  130. Nei M., Li W.-H. Mathematical model for studying genetic variation iri terms of restriction endonucleases // Proc. Natl. Acad. Sei. USA. 1979. — V. 76. — P. 52 695 273.
  131. Parelle J., Brendel O., Jolivet Y., Drey er E. Intra- and interspecific diversity in the response to waterlogging of two co-occurring white oak species {Quercus robur and Q. petraea) II Tree Physiol. 2007. — V. 27. — № 7. — P. 1027−1034.
  132. Peakall R., Smouse P.E. GenAlEx6: Genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Not. 2006. — V. 6. — P. 288 — 295.
  133. Perlin M. W., Lancia G. Toward fully automated genotyping: Genotyping microsatellite markers by deconvolution // Am J Hum Genet. 1995. — V. 57. — P. 11 991 210.
  134. Petit R., Pineau E., Demesure B., et al. Chloroplast DNA footprints of postglacial recolonization by oaks // Proceedings of the National Academy of Sciences USA. -1997. V. 94. — P. 9996−10 001.
  135. Petit R.J., Bodenes C., Ducousso A., et al. Hybridization as a mechanism of invasion in oaks // New Phytologist. 2003. — V. 161. — P. 151 -164.
  136. Petit R.J., Brewer S., Bordacs S., et al. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence // Forest Ecology and Management. 2002. — V. 156. — P. 49−74.
  137. Petit R.J., Csaikl U.M., Bordacs S., et al. Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations // Forest Ecology and Management. 2002. — V. 156. — P. 5−26.
  138. Petit R.J., El Mousadik A., Pons O. Identifying populations for conservation on the basis of genetic markers//Cons Biol. 1998. — V. 12. — P. 844−855.
  139. Petit R.J., Kremer A, Wagner D.B. Geographic structure of chloroplast DNA polymorphisms in European oaks // Theoretical and Applied Genetics. 1993. — V. 87. -P. 122−128.
  140. Petit R.J., Wagner D.B., Kremer A. Ribosomal DNA and chloroplast DNA polymorphisms in a mixed stand of Quercus robur and Q. petraea // Annales des Sciences Forestieres. 1993. — V. 50. — P.41−41
  141. Pfeiffer A., Olivieri A. M., Morgante M. Identification and characterization of microsatellites in Norway spruce (Picea abies K.)¦// Genome. 1997. — V.40. — P. 411 419.
  142. Robertson A., Newton A.C., Ennos R.A. Multiple hybrid origins, genetic diversity and population genetic structure of two endemic Sorbus taxa on the Isle of Arran, Scotland //Molecular Ecology.- 2004. V. 13. — P. 123−134.
  143. Saiki R. K., Scharf S., Faloona F. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. // Science. 1985. -V. 230. — P. 1350.
  144. Saintagne C., Bodenes C., Barreneche T., et al. Distribution of genomic regions differentiating oak species assessed by QTL detection // Heredity. 2004. — V. 92. — P. 20−30.
  145. Samuel R., Pinsker W., Ehrendorfer F. Electrophoretic analysis of genetic variation within and between populations of Quercus cerris, Q. pubescens, Q. petraea and Q. robur (Fagaceae) from Eastern Austria // Bot Act. 1995. — V. 108. — P. 290−299.
  146. Schnabel A., Hamrick J.L. Comparative analysis of population genetic structure in Quercus macrocarpa and Q. gambelii {Fagaceae) // Sistematic Botany. 1990. — V. 15. — P. 240−251.
  147. Schwarzmann J.F., Gerhold H.D. Genetic structure and mating system of northern red oak {Quercus rubra L.) in Pennsylvania // Forest Sci. 1991. — V. 37. — P. 13 761 389.
  148. Scotti-Saintagne C., Bodenes C., Barreneche T., Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. // Theoretical and Applied Genetics. -2004. V. 109.-P. 1648−1659.
  149. Scotti-Saintagne C., Mariette S., Porth I. Genome scanning for interspecific differentiation between two closely related oak species Quercus robur L. and Q. petraea (Matt.) Liebl.// Genetics. 2004. — V. 168. — P. 1615−1626.
  150. Sewell M.M., Parks C.R., Chase M.W. Intraspecific chloroplast DNA variation and biogeography of North American Liriodendron L. {Magnoliaceae) II Evolution. -1996. V. 50.-P. 1147−1154.
  151. Sharma S.K., Knox M.R. AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis // Theoretical and Applied Genetics. 1996. -V. 93.-P. 751−758.
  152. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies // Genetics. 1995. — V. 139. — P. 457−462.
  153. Sork V. L., Huang S., Wiener E. Macrogeographic and fine-scale genetic structure in a North American oak species, Quercus rubra L. // Annales des Sciences Forestieres. 1993. — V. 50. — P. 261−270.
  154. Sork V.L., Davis F.W., Smouse P.E., et al. Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone? // Molecular Ecology. 2002. — V. 11. — P. 1657−1668.
  155. Sork V.L., Nason J., Campbell D.R., et al. Landscape approaches to the study of gene flow in plants // Trends Ecology Evol. 1999. — V. 142. — P. 219−224.
  156. Soto A., Lorenzo Z., Gil L. Differences in fine-scale genetic structure and dispersal in Quercus ilex L. and Q. suber L.: consequences for regeneration of mediterranean open woods // Heredity. 2007. — V. 99. — № 6. — P. 601−607.
  157. Steinkellner H., Fluch S., Turetschek E., et al. Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea // Plant Mol Biol. 1997. — V. 33. P. 1093−1096.
  158. Steinkellner H., Lexer C., Turetschek E., et al. Conservation of (GA)n microsatellite loci between Quercus species II Molecular Ecology. 1997. — V. 6. — P. 1189−1194.
  159. Strciff R., Ducousso A., Lexer C., et al. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl // Molecular Ecology. 1999. — V. 8.-P. 831−841.
  160. Streiff R., Labbe T., Bacilieri R., et al. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites // Molecular Ecology. 1998. — V. 7. — P. 317−328.
  161. Tabbener H., Taurchini D., de Vries S.G.M., et al. Chloroplast DNA variation in European white oaks. Phylogeography and patterns of diversity based on data from over 2600 populations // Forest Ecology and Management. 2002. — V. 156. — P. 5−26.
  162. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers // Nucl Acids Res. 1989. — V.17. — P. 6463−6471.
  163. Torres A.M., Weeden N.F., Martin A. Linkage among sozyme, RFLP and RAPD markers in Vicia faba // Theor Appl. Genet. 1993. — V. 5. — P. 937−945.
  164. Toumi L., Lumaret R. Allozyme variation in cork oak (Quercus suber L.): the role of phylogeography, genetic introgression by other Mediterranean oak species and human activities // Theoretical and Applied Genetics. 1998. — V. 97. — P. 647−656.
  165. Tovar-Sanchez E., Oyama K. Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence // American Journal of Botany. 2004. — V. 91. — P. 1352−1363.
  166. Vaha J-P., Primmer C.R. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci // Molecular Ecology. 2006, — V. 15. — P. 63−72.
  167. Vakkari P., Blom A., Rusanen M., et al. Genetic variability of fragmented stands of pedunculate oak (Quercus robur) in Finland // Genetica. 2006. — V. 127. — № 1−3. -P. 231−241.
  168. Valbuena-Carabana M., Gonzalez-Martinez S.C., Hardy O.J., et al. Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization // Molecular Ecology. 2007. — V. 16.-№ 6. — P. 1207−1219.
  169. Yalbuena-Carabana M., Gonzalez-Martinez SC., Sork V.L., et al. Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in central Spain // Heredity. 2005. — V. 95. — P. 457−465.
  170. Vallejos, C. E. Enzyme activity staining. In: Tanskley, S. D. and Orton, T. J. (eds) // Isozymes in Plant Genetics and Breeding. 1983. — P. 469−516.
  171. Vicario F., Vendramin G.G., Rossi P. et al. Allozyme, chloroplast DNA and RAPE) markers for determining genetic relationships between Abies alba and the relicpopulation of Abies nebrodensis II Theor. Appl. Genet. 1995. — V. 90. — P. 1012— 1018.
  172. Weir, B. S. Genetic Data Analysis Sinauer Associates // Sunderland, MA. 1990.
  173. Whittemore A.T., Schaal B.A. Interspecific gene flow in sympatric oaks // Proceedings of the National Academy of Sciences of the USA. 1991. — V. 88. — P. 2540−2544.
  174. Williams J.G.K., Kubelik A.R., Livak K.J. et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers // Nucl. Acids Res. 1990. — V. 18. -P. 6531- 6535.
  175. Wolfe A.D., Liston A. Contributions of PCR-based methods to plant systematics and evolutionary biology. // Molecular systematics of plants. II. DNA sequencing. Norwell: Kluwer Academic Publishers, 1998. P. 43−86.
  176. Wright S. The genetical structure of populations // Annals of Eugenics. — 1951. — V.15.-P. 323−354
  177. Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating // Evolution. 1965. — V. 19. — P.395−420.
  178. Yazdani R. Lindgren D. Rudin D. Gene dispersion and selfmg frequency in a seed tree stand of Pinus sylvestris L. // Population genetics in forestry lecture notes. 1985. -P. 139−154.
  179. Yeh F. C-, O’malley D. M. Enzyme variations in natural populations of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, from British Columbia. I. Genetic variation patterns in coastal populations // Silvae Genet. 1980. — V.29. -P. 83−92.
  180. Zanetto A., Kremer A. Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. I. Monolocus patterns of variation // Heredity. 1995. — V. 75. — P. 506 517.
  181. Zanetto A., Kremer A., Miiller-Starck G., et al. Inheritance of isozymes in pedunculate oak {Quercus robur L.) // Journal of Heredity. 1996. — V. 87. — P. 364 370.
  182. Zanetto A., Roussel G., Kremer A. Geographic variation of interspecific differentiation between Quercus robur L. and Quercus petraea Matt. (Liebl.). // Genet. 1994. — V. — P. 111−123.
  183. Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification // Genomics. 1994. -V. 20.-P. 176−183.
  184. Zoldos V., Papes D., Brown S.C., et al. Genome size and base composition of seven Quercus species: inter- and intra-population variation // Genome. 1998. — V. 41. -P. 162−168.
  185. Zoldos V., Papes D., Gerbah M., et al. Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species // Theoretical and Applied Genetics. -1999.-V. 99. P. 969−977.
  186. В.Ф. Дендрология // Учебное пособие, Академия. 2009. — С. 368.
  187. Ю.П. Аллозимная гетерозиготность, скорость полового созревания и продолжительность жизни // Генетика. 1998. — Т. 34. — № 7. — С. 908−919.
  188. Ю.П. Балансирующий отбор как фактор поддержания аллозимного полиморфизма // Успехи современной биологии. 1989, вып. 3. — С.323−340.
  189. Ю.П. Внутривидовое генетическое разнообразие: мониторинг и принципы сохранения // Генетика. 1995. — Т. 31. — С. 1333−1357.
  190. Ю.П., Крутовский К. В., Духарев В. А. и др. Биохимическая генетика популяций лесных древесных растений // Матер, межд. симп. «Лесная генетика, селекция и физиология древесных растений» М.: 1989. — С. 222 — 226.
  191. В. Г. Лесоводство и дендрология // Учебник для техникумов.— М: Лесная промышленность. 1982. — С. 368.
  192. Ю., Янбаев Ю. А., Деген Б., Габитова А. А. Динамика генетического разнообразия во времени в изолированной популяции дуба черешчатого Quercus robur L. (Fagaceae) // Генетика. 2012. — Т. 48. — № 1. — С. 135−137.
  193. П. Л. История развития растительности Урала. Свердловское книжное издательство, 1953. — С. 144.
  194. П.Л. Основные проблемы фитогеографии Урала. Свердловск, 1969.-С. 286.
  195. П.Л. Растительность и ботанико-географическое деление Башкирской СССР // Определитель высших растений Башкирской АССР. М.: Наука, 1988.-С. 5−13.
  196. П.Л. Широколиственные леса и их место в растительном покрове Южного Урала. М.: Наука, 1972. — С. 147.
  197. Л.А. Показатель сходства популяций по полиморфным признакам // Журнал общей биологии. 1979. — Т. 40 — № 4. — С. 587−602.
  198. Л.А. Популяционная биометрия. М.: Наука, 1991.— 271 с.
  199. Д. И., Падутов В. Е. Генетическая структура и геногеография дубрав юга Беларуси // Известия Национальной академии наук Беларуси. 2010. — № 4. -С. 16−19.
  200. И.П., Тайчинов С. Н. Условия почвообразования на территории Башкирии и его провинциальные черты // Почвы Башкортостана. Уфа, 1973. — 'Г. 1, — С. 7−15.
  201. .П. Леса Челябинской области // Леса СССР. М.: Наука, 1969. -Т. 4.-С. 125−156.
  202. И.М. Общие физико-географические условия Башкирской АССР, определяющие характер и распределение растительности // Природные ресурсы Башкирской АССР.-М.-1941. Т.1. — С. 7−18.
  203. И.М. Основные пути развития растительности Южного Урала в связи с палеографией Северной Евразии в плейстоцене и голоцене // Советская ботаника. 1939. -N. 6−7.- С.67−99.
  204. И.М., Кучеровская-Рожанец С.Е. Растительность Башкирской АССР // Природные ресурсы Башкирской АССР. M.-JL, издательство АН СССР. — 1941.
  205. , А.Н. Исследование внутривидовой изменчивости дуба обыкновенного и его лесоводственное значение // Автореферат диссертации к. с-х.н.-Харьков. 1972. С. — 20.
  206. Е.В., Щелокова Л. Г. Наперстянка крупноцветковая на Урале и ее рациональное использование. Уфа: Изд-во БФАН СССР, 1987. 124 с.
  207. Е.В. Генетика изоферментов растений. Новосибирск: Наука. — 1986. -С, 144.
  208. Р. Генетические основы эволюции. Москва: Мир. — 1978. — С.351.
  209. Лесной фонд России // Справочник. Москва: ВНИИЦ лесресурс. — 1999.
  210. , И.Н. Генетическая структура популяций дуба как условие развития селекции / И. Н. Лигачев // Лесная геоботаника и биология древесныхрастений,-Брянск. -1986.-С. 77−81.
  211. , В.Б. Внутривидовая изменчивость дуба черешчатого в центральной лесостепи / В. Б. Лукьянец. Воронеж: Издат. ВГУ. — 1979. — С. 212 .
  212. И.С. Лесоведение // Учебник для вузов. -М.: МГУЛ. 2002. — С.398.
  213. Молекулярная генетика: учеб.-метод. пособие / под ред C.B. Боронниковой- Перм. ун-т. Пермь. — 2007. — С. 150.
  214. А.Х. Введение в изучение биогеоценозов Южного Урала. -Уфа, 1986.-С. 132.
  215. А.Х. Горно-лесные почвы Башкирской АССР. М.: Наука, 1982. -С. 148.
  216. Д.В. Применение молекулярных маркеров в лесном хозяйстве для идентификации, инвентаризации и оценки генетического разнообразия лесных ресурсов // Лесохозяйственная информация. 2008. — № 3−4. — С. 24−27.
  217. Г. В. Леса Башкирии. Уфа, Башк. кн. изд-во, 1980. — С. 144.
  218. Г. В. Основные этапы формирования растительного покрова Башкирского Предуралья в свете анализа реликтовых и эндемичных элементов флоры // Дикорастущие и интродуцируемые полезные растения в Башкирии. -Уфа. 1971.-С. 254−273.
  219. H.H., Муллагулов Р. Ю., Акилов Р. З. и др. ГГопуляционная структура пиона гибридного в Башкирском Зауралье // Известия Оренбургского аграрного университета. 2008. — С. 45−47.
  220. H.H., Муллагулов Р. Ю., Янбаев Ю. А., и др. Высокая пространственная структурированность аллозимных генотипов в изолированной популяции дуба черешчатого Quercus robur L. (Fagaceae) II Генетика. 2008. — Т. 44 .-№ 8,-C.1141−1144.
  221. Т.П. Развитие растительности Башкирского Предуралья в голоцене // Научные доклады высшей школы (биологические науки). 1965. — № 1.
  222. Л.Ф. Популяционная структура дуба черешчатого (Quercus robur L.) // Исследование форм внутривидовой изменчивости растений. Москва, Наука.-1981.-С. 25−51.
  223. С. Я. Quercus robur L. Дуб черешчатый // Деревья и кустарники1. СССР. 1952. — Т 2.
  224. С.Г., Санников С. Н., Петрова И. В., Янбаев Ю. А. О фенологической и генетической дифференциации разновысотных популяций сосны обыкновенной на Южном Урале // Деп. в ВИНИТИ 27.12.91, № 4775-В91.
  225. Е.К., Салина Е.А. SNP-маркеры: методы анализа, способы разработки и сравнительная характеристика на примере мягкой пшеницы // Генетика. -2006. Т.42. — С. 725−736.
  226. В.В. Внутривидовая изменчивость дуба бореального в интродукционных насаждениях Северо-Западного Кавказа. Автореферат к.с.-х.н. Майкоп. — 2006.
  227. С.Г. Опыт использования старых фотоснимков для изучения смены лесной растительности на верхнем пределе ее произрастания // Флористические и геоботанические исследования на Урале. Свердловск, 1983. — С. 76−109.
  228. A.M. Биоразнообразие дуба черешчатого и его использование в селекции и лесоразведении // A.M. Шутяев. Воронеж. 2000. — С. 336.
  229. И.А., Гемери Д., Пауле Л., Стародубцева В. В. Генетическая изменчивость дуба черешчатого (Quercus robur L.) в левобережной части республики Марий Эл // Генетика. 1999. — Т. 35. — № 7. — С. 925−932.
  230. И. А., Клейншмит Й. Генетическая дифференциация дуба черешчатого {Quercus robur L.) в европейской части России на основе RAPD-маркеров // Генетика. 2002. — Т. 38. — № 2. — С. 207−215.
  231. Ю.А. Эколого-популяционные аспекты адаптации лесообразующих видов к условиям природной и техногенной среды // Автореф. дисс. доктора биол. наук. Тольятти: ИЭВБ РАН. — 2002. — С.35.
  232. Ю.А., Габитова A.A., Бушбом Ю., и др. Естественное возобновление дуба черешчатого на северо-восточной границе ареала // Аграрная Россия. 2009. -№ 12. — С. 16−17.
  233. Ю.А., Косарев М. Н., Бахтиярова P.M. и др. Генетические аспекты сохранения биологического разнообразия. Уфа: БГУ. — 2000. — С. 108.
Заполнить форму текущей работой