Помощь в написании студенческих работ
Антистрессовый сервис

Физические модели воздействия лазерного излучения на конденсированные вещества в лазерной технологии получения материалов

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В Главе 4 моделируются процессы селективного лазерного спекания/плавления. Селективное лазерное спекание/плавление — это процесс послойного аддитивного изготовления деталей из порошка, который локально связываеся сканирующим лазерным лучом. Процессы переноса лазерного излучения и тепла в порошковых слоях описываются моделями, предложенными в Главе 2. Лазерное излучение проникает вглубь… Читать ещё >

Физические модели воздействия лазерного излучения на конденсированные вещества в лазерной технологии получения материалов (реферат, курсовая, диплом, контрольная)

Содержание

  • ВВЕДЕНИЕ.б
  • 1. СИЛЬНЫЕ ИСПАРЕНИЕ И КОНДЕНСАЦИЯ
    • 1. 1. Состояние проблемы
      • 1. 1. 1. Количество газодинамических граничных условий испарения/ конденсации
      • 1. 1. 2. Тангенциальная составляющая скорости при испарении и конденсации
      • 1. 1. 3. Задача в полупространстве для газовой смеси
      • 1. 1. 4. Простейшие аналитические аппроксимации
    • 1. 2. Испарение/конденсация однокомпонентного газа
      • 1. 2. 1. Модель
      • 1. 2. 2. Численный метод
  • Равновесное дискретное распределение
  • Дискретизация пространства и времени
  • Граничные условия
    • 1. 2. 3. Результаты и обсуждение
  • Испарение
  • Конденсация
    • 1. 2. 4. Применение к лазерной абляции
    • 1. 3. Степень ионизации при сильном испарении металлов
    • 1. 3. 1. Насыщенный пар
    • 1. 3. 2. Модель
  • Кинетические уравнения
  • Граничные условия
    • 1. 3. 3. Численный метод
  • Уравнение для нейтралов
  • Уравнение для ионов
    • 1. 3. 4. Результаты и обсуждение
    • 1. 4. Выводы
  • 2. ПРОЦЕССЫ ПЕРЕНОСА В ПЛОТНЫХ ДИСПЕРСНЫХ СИСТЕМАХ
    • 2. 1. Эффективная теплопроводность порошковых слоев
      • 2. 1. 1. Состояние проблемы
      • 2. 1. 2. Модель дискретных тепловых сопротивлений
  • Регулярная упаковка одинаковых сфер
  • Случайная упаковка одинаковых сфер
    • 2. 1. 3. Тепловое сопротивление контакта между двумя частицами
  • Теплообмен через газовый зазор
  • Предел малой теплопроводности газа
  • Малая теплопроводность газа при точечных контактах между частицами
  • Численный расчёт
    • 2. 1. 4. Анализ экспериментальных данных
  • Зависимость от давления газа
  • Зависимость от типа газа
  • Зависимость от размера частиц
  • Особенности порошковых слоев
    • 2. 2. Перенос излучения в многофазных гетерогенных средах
    • 2. 2. 1. Состояние проблемы
    • 2. 2. 2. Векторная модель УПИ
  • Эффективные коэффициенты экстинкции и рассеяния
  • Матричная фазовая функция рассеяния
    • 2. 2. 3. Предельные случаи
  • Упакованные слои непрозрачных частиц
  • Гетерогенные смеси непрерывных прозрачной и непрозрачной фаз
  • Малая доля дискретной фазы
    • 2. 2. 4. Упакованные слои полупрозрачных частиц
  • Сравнение векторной модели УПИ с моделированием методом
  • Монте-Карло
  • Экспериментальная идентификация радиационных свойств с помощью векторной модели УПИ
    • 2. 3. Выводы
  • 3. МОДЕЛИРОВАНИЕ НАНОСЕКУНДНОЙ ЛАЗЕРНОЙ АБЛЯЦИИ
    • 3. 1. Тепловая модель
      • 3. 1. 1. Состояние проблемы
      • 3. 1. 2. Математическая модель
  • Теплоперенос в мишени
  • Газовая динамика
  • Граничные условия
    • 3. 1. 3. Численный метод
    • 3. 1. 4. Результаты и обсуждение
  • Свойства конденсированной фазы
  • Динамика наносекундного импульсного лазерного испарения
  • Эффективность абляции
    • 3. 2. Формирование потоков пара
    • 3. 2. 1. Состояние проблемы
    • 3. 2. 2. Математическая модель
  • Начальная стадия
  • Заключительная стадия
  • Энергетические и угловые распределения
  • Численные методы
    • 3. 2. 3. Результаты и обсуждение
  • Абляция в вакууме
  • Абляция в буферном газе
  • Сравнение с экспериментами
    • 3. 3. Образование кластеров в продуктах абляции
    • 3. 3. 1. Состояние проблемы
    • 3. 3. 2. Математическая модель
  • Химическая кинетика
  • Начальные условия
  • Динамика расширения
  • Термодинамические свойства
  • Сечения столкновений
    • 3. 3. 3. Результаты и обсуждение
    • 3. 4. Выводы
  • 4. МОДЕЛИРОВАНИЕ СЕЛЕКТИВНОГО ЛАЗЕРНОГО СПЕКАНИЯ
    • 4. 1. Перенос излучения в порошковых слоях
      • 4. 1. 1. Состояние проблемы
      • 4. 1. 2. Модель
  • Эффективные радиационные свойства порошкового слоя
  • Численный метод
  • Одномерное приближение
    • 4. 1. 3. Результаты и обсуждение
  • Коэффициент поглощения оптически толстых порошковых слоев
  • Коэффициент поглощения порошкового слоя на подложке
  • Влияние радиального профиля падающего луча
  • Влияние коэффициента отражения твёрдой фазы
    • 4. 2. Совместный перенос излучения и тепла при селективном лазерном плавлении
    • 4. 2. 1. Состояние проблемы
    • 4. 2. 2. Перенос излучения
    • 4. 2. 3. Перенос тепла
    • 4. 2. 4. Тепловые и оптические свойства
    • 4. 2. 5. Оценка выделения лазерной энергии
    • 4. 2. 6. Результаты и обсуждение
    • 4. 3. Взаимное влияние кинетики спекания и теплопереноса в порошковых слоях
    • 4. 3. 1. Состояние проблемы
    • 4. 3. 2. Экспериментальная техника
    • 4. 3. 3. Результаты
    • 4. 3. 4. Компьютерное моделирование
  • Теплоперенос
  • Теплопроводность порошка
  • Кинетика спекания
  • Плавление порошка
  • Результаты моделирования
    • 4. 3. 5. Обсуждение
  • Механизмы теплопереноса
  • Механизмы связывания порошка
  • Влияние параметров порошка
  • Баллинг-эффект
    • 4. 4. Выводы

Технический прогресс требует получения материалов с определёнными свойствами, так как материалы фактически служат основой всех остальных отраслей техники. С одной стороны, возникает потребность в новых материалах с улучшенными свойствами, либо в материалах с заданными значениями физических параметров, которые раньше вообще не нормировались. С другой стороны, более широкому внедрению уже известных материалов способствует совершенствование технологии их получения.

Лазеры стали применяться в технологии материалов практически с момента их возникновения, так как они предоставляют уникальные возможности, включая экстремальные значения плотности потока энергии, пространственной точности обработки и времени воздействия. Немалое значение играет и лёгкость управления лазерным инструментом, что благоприятно для компьютеризации и автоматизации. Поэтому сейчас интенсивно развивается направление лазерной технологии материалов. Теоретические основы тепловых процессов, подобных тем что возникают при взаимодействии лазерного излучения с конденсированной фазой, были заложены в работах Рыкалина [1] ещё до открытия лазеров. Характерные физические процессы рассматривались в монографиях Зельдовича и Райзера [2], Анисимова, Имаса, Романова и Ходыко [3], Рэди [4], Вейко и Либенсона [5], Рыкалина Углова и Кокоры [6].

Современные представления о взаимодействии излучения с веществом в процессах лазерной обработки материалов анализируются в монографиях Рыкалина, Углова, Зуева и Кокоры [7], Веденова и Гладуша [8], Григорьянца [9] Углова, Смурова, Лашина и Гуськова [10], Стина [И], Гладуша и Смурова [12], коллективных монографиях под редакцией Гарнова и Самохина [13], Панченко [14] и других. Постоянно развиваются физические модели лазерной плазмы, например в работах Мажукина с соавторами [15], и модели взаимодействия высокоэнергетических лазеров с конденсированной фазой [16]. В последнее время возникло много новых технологий получения и обработки материалов, основанных на применении лазеров, например, нашедших отражение в монографиях Вейко и Метева [17], Шишковского [18], Ддройцева [19], Булгакова и др. [20].

Технология лазеров сама по себе — относительно новая и быстро развивающаяся отрасль, поэтому в применении лазеров для получения и обработки материалов часто возникают нестандартные ситуации, требующие понимания физики взаимодействия лазерного излучения с веществом. Поэтому тема диссертационной работы является актуальной.

Работа выполнена в Лаборатории лазерной обработки материалов ИМЕТ им. А. А. Байкова РАН при поддержке: грантов РФФИ 08−08−238-а «Сопряжённые задачи механики и физики лазерного излучения в процессах быстрого прототипирования трёхмерных металлообъектов» и 09−08−90 412-Укрфа «Моделирование процессов тепло-и массообмена в ванне расплава, парогазовом канале и плазменном факеле при лазерной сварке металлов с глубоким проплавлением» и международных проектов ИНТ АС 03−514 206 «Улучшенные нанокомпозитные трибо-адаптивные покрытия для самолётостроения», 99−1559 «Получение высококачественных зубных протезов селективным лазерным спеканием», 93−3676 и 93−3676ех1 «Лазерно-плазменный и плазменно-дуговой синтез и обработка порошковых материалов в химически активной атмосфере» .

Цель работы — теоретическое исследование воздействия лазерного излучения на конденсированные вещества, необходимое для создания физических основ лазерной технологии получения материалов с определенными свойствами.

Разработка физических и математических моделей процессов взаимодействия лазерного излучения с веществом ведётся давно, но появление новых лазерных источников и их применение к новым материалам требует постоянного совершенствования этих моделей. Работа посвящена в основном двум направлениям лазерной технологии материалов, в которых сейчас ведутся интенсивные научные исследования. Это физика взаимодействия наносекундных импульсов с конденсированной фазой (Главы 1 и 3) и физика взаимодействия лазерного излучения с гетерогенными материалами (Главы 2 и 4). В Главах 1 и 2 рассматриваются основные механизмы этого взаимодействия, а в Главах 3 и 4 — приложения к технологии материалов.

В Главе 1 рассматриваются вопросы постановки граничных условий на границе конденсированной и газовой фаз при математическом моделировании лазерного воздействия. Эти высокотемпературные граничные условия требуют учёта интенсивных испарения и конденсации, а также ионизации газа. Основной метод исследования в этой главе — численное решение задачи для системы уравнений Больцмана в полупространстве, описывающей слой Кнудсена. Течения пара вблизи границы с его конденсированной фазой при нормальной компоненте скорости, сравнимой со скоростью звука в паре, называются сильным испарением, либо сильной конденсацией, в зависимости от направления течения. Приведены результаты численных расчётов сильной конденсации в широком интервале температурных отношений от 0.1 до 10 и аналитические модели граничных условий, пригодные для использования в указанном интервале, в том числе при моделировании наносекундной лазерной абляции, и результаты совместных численных расчётов кнудсеновского слоя и плазменной оболочки при сильном испарении металлов, дающие степень ионизации и температуры электронов и тяжёлых частиц образующегося пара, выявившие повышение степени ионизации по сравнению с равновесной.

В Главе 2 формулируется математическое описание процессов переноса в многофазных гетерогенных средах. Рассматриваются модели переноса излучения и тепла в композиционных материалах в условиях, типичных для лазерного воздействия на эти материалы. Анализ проводится в несколько этапов. Сначала выделяются типичные морфологические элементы структуры композиционного материала. Затем строится физическая модель для отдельного элемента. На завершающем этапе анализируется статистическая модель суперпозиции структурных элементов и выводятся осреднённые математические уравнения вместе с коэффициентами, описывающими осреднённые свойства переноса. Выведена система уравнений переноса излучения в многофазной гетерогенной среде на основе модели многофазного уравнения переноса, в которой излучение характеризуется набором значений его интенсивности, усреднённой в каждой фазе по отдельности, пригодная в том числе для моделирования переноса лазерного излучения в порошковых слоях. В рамках модели дискретных тепловых сопротивлений разработана методика расчёта эффективной теплопроводности порошковых слоёв по пористости, координационному числу и сопротивлению отдельного контакта между двумя частицами, не использующая подгоночные параметры.

В Главе 3 приводятся результаты моделирования наносекундной лазерной абляции. Используется тепловая модель, в которой уравнения Эйлера для газовой фазы и уравнение теплопроводности для мишени связаны граничными условиями испарения/конденсации, полученными в Главе 1. На основе сравнения моделирования с экспериментом рассматриваются вопросы энергетической эффективности лазерной абляции, влияния окружающей атмосферы, энергетического и углового распределений эжектированного материала, а также гомогенной нуклеации и роста кластеров при расширении образовавшегося при абляции пара. Разработана модель образования кластеров при быстром расширении пара с учётом детальной химической кинетики газофазных реакций в условиях отсутствия теплового равновесия между внутренними и поступательными степенями свободы, выявившая значительную разницу между поступательной и внутренней температурами кластеров в факеле наносекундной лазерной абляции.

В Главе 4 моделируются процессы селективного лазерного спекания/плавления. Селективное лазерное спекание/плавление — это процесс послойного аддитивного изготовления деталей из порошка, который локально связываеся сканирующим лазерным лучом. Процессы переноса лазерного излучения и тепла в порошковых слоях описываются моделями, предложенными в Главе 2. Лазерное излучение проникает вглубь порошкового слоя путём многократного отражения/преломления на границах частиц порошка. Даже в случае непрозрачных частиц многократное отражение в системе открытых пор обеспечивает объёмный тепловой источник в порошковом слое. Консолидация порошка при высокой температуре изменяет его эффективные радиационные и тепловые свойства и оказывает, таким образом, обратное влияние. Разработана вычислительная модель совместного переноса лазерного излучения и тепла при селективном лазерном плавлении, позволяющая оценивать устойчивость процесса и оптимизировать его параметры. Разработана вычислительная модель взаимного влияния кинетики спекания и теплопереноса при селективном лазерном спекании, нашедшая экспериментальное подтверждение для титановых порошков и выявившая механизм повышения устойчивости данного технологического процесса.

Публикации.

Основное содержание диссертации опубликовано в 28 статьях в рецензируемых научных журналах, список которых приведён в конце Введения, выполненных единолично, либо в соавторстве со специалистами ряда научных учреждений и вузов (ИМЕТ им. А. А. Байкова РАН, ИПЛИТ РАН, МИФИ, Юго-Западный государственный университет, Курск, Высшая инженерная школа Сэнт-Этьена, Франция, Католический университет Лёвена, Бельгия, Университет Киото, Япония).

Список публикаций по теме диссертации в рецензируемых журналах.

1. Гнедовец А. Г., Гусаров А. В., Углов А. А. Образование и рост наночастиц при наносекундном лазерном воздействии в атмосфере инертного газа // ФизХОМ. 2000. № 4. С. 26.

2. Gusarov A.V., Gnedovets A.G., Smurov I. Gas dynamics of laser ablation: Influence of ambient atmosphere // J. Appl. Phys. 2000. V. 88. P. 4352.

3. Gusarov A.V., Smurov I. Target-vapour interaction and atomic collisions in pulsed laser ablation // J. Phys. D. 2001. V. 34. P. 1147.

4. Gusarov A.V., Smurov I. Gas-dynamic boundary conditions of evaporation and condensation: Numerical analysis of the Knudsen layer // Phys. Fluids. 2002. V. 14. P. 4242.

5. Gusarov A.V., Laoui T., Froyen L., Titov V.I. Contact thermal conductivity of a powder bed in selective laser sintering // Int. J. Heat Mass Transfer. 2003. V. 46. P. 1103.

6. Tolochko N.K., Arshinov M.K., Gusarov A.V., Titov V.I., Laoui T., Froyen L. Mechanisms of selective laser sintering and heat transfer in Ti powder // Rapid Prototyping J. 2003. V. 9. P. 314.

7. Gusarov A.V., Smurov I. Near-surface laser-vapour coupling in nanosecond pulsed laser ablation // J. Phys. D. 2003. V. 36. P. 2962.

8. Rombouts M., Froyen L., Gusarov A.V., Bentefour E.H., Glorieux С. Photopyroelectric measurement of thermal conductivity of metallic powders // J. Appl. Phys. 2005. V. 97. P. 24 905.

9. Gusarov A.V., Smurov I. Thermal model of nanosecond pulsed laser ablation: Analysis of energy and mass transfer // J. Appl. Phys. 2005. V. 97. P. 14 307.

10. Gusarov A.V., Kruth J.-P. Modelling of radiation transfer in metallic powders at laser treatment // Int. J. Heat Mass Transfer. 2005. V. 48. P. 3423.

11. Gusarov A.V., Titov V.I., Scharff W. Gas-kinetic simulation of carbon vapour molecular composition at nanosecond laser ablation of graphite in vacuum // J. Phys. D. 2005. V. 38. P. 2881.

12. Gusarov A.V., Aoki K. Ionization degree for strong evaporation of metals // Phys. Plasmas. 2005. V. 12. P. 83 503.

13. Rombouts M., Froyen L., Gusarov A.V., Bentefour E.H., Glorieux С. Light extinction in metallic powder beds: Correlation with powder structure // J. Appl. Phys. 2005. V. 98. P. 13 533.

14. Gusarov A.V., Bentefour E.H., Rombouts M., Froyen L., Glorieux С., Kruth J.-P. Normal-directional and normal-hemispherical reflectances of micronand submicron-sized powder beds at 633 and 790 nm // J. Appl. Phys. 2006. V. 99. P. 113 528.

15. Gusarov A.V., Yadroitsev I., Bertrand Ph., Smurov I. Heat transfer modelling and stability analysis of selective laser melting // Appl. Surf. Sci. 2007. V. 254. P. 975.

16. Gusarov A.V. Homogenization of radiation transfer in two-phase media with irregular phase boundaries // Phys. Rev. B. 2008. V. 77. P. 144 201.

17. Gusarov A.V., Smurov I. Two-dimensional numerical modelling of radiation transfer in powder beds at selective laser melting // Appl. Surf. Sci. 2009. V. 255. P. 5595.

18. Гусаров A.B. Модель осредненного переноса излучения в двухфазной гетерогенной среде // ТВТ. 2009. Т. 47. С. 396.

19. Гусаров А. В., Ковалев Е. П. Эффективная теплопроводность свободнонасыпанных и слабоспечённых порошков. I. Модель // ФизХОМ. 2009. № 1. С. 70.

20. Гусаров А. В., Ковалев Е. П. Эффективная теплопроводность свободнонасыпанных и слабоспечённых порошков. II. Анализ экспериментальных данных // ФизХОМ. 2009. № 2, С. 66.

21. Gusarov A.V., Yadroitsev I., Bertrand Ph., Smurov I. Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting // J. Heat Transfer. 2009. V. 131. P. 72 101.

22. Gusarov A.V., Kovalev E.P. Model of thermal conductivity in powder beds // Phys. Rev. B. 2009. V. 80. P. 24 202.

23. Gusarov A.V. Model of radiative heat transfer in heterogeneous multiphase media // Phys. Rev. B. 2010. V. 81. P. 64 202.

24. Гусаров А. В. Перенос излучения в слоях металлических порошков при лазерном формовании," КЭ 40, 451 (2010).

25. Гусаров А. В. Моделирование образования кластеров при наносекундной лазерной абляции графита // ФизХОМ. 2010. № 5. С. 10.

26. Yadroitsev I., Gusarov A., Yadroitsava I., Smurov I. Single track formation in selective laser melting of metal powders // J. Mater. Processing Technology. 2010. V. 210. P. 1624.

27. Рыжков E.B., Павлов М. Д., Гусаров A.B., Артёменко Ю. А., Васильцов В. В. Образование трещин при селективном лазерном спекании керамики // ФизХОМ. 2011. № 1, С. 77.

28. Gusarov A.V. Differential approximations to the radiation transfer equation by Chapman-Enskog expansion // J. Heat Transfer. 2011. V. 133. P. 82 701.

4.4. Выводы.

В рамках рассмотренной модели переноса излучения коэффициент поглощения оптически толстого слоя порошка непрозрачного материала является универсальной функцией коэффициента поглощения твёрдой фазы и не зависит от морфологии частиц и пористости. Эта тенденция подтверждена экспериментально.

Общий коэффициент поглощения системы, состоящей из слоя порошка и подложки из того же материала, на которую этот порошок нанесен, возрастает с оптической толщиной слоя и с коэффициентом поглощения твердой фазы. Доля падающего излучения, поглощенная подложкой, уменьшается с оптической толщиной поверхностного слоя порошка и может достигать локального максимума в зависимости от коэффициента поглощения твердой фазы.

Радиальный перенос лучистой энергии, возникающий из-за рассеяния падающего лазерного луча порошком, может существенно снизить энерговыделение по центру луча. Уширение радиального профиля выделенной энергии невелико. Ожидается, что максимальная температура, достигаемая вблизи центра луча, должна снижаться из-за радиального переноса излучения, а соответствующее увеличение температуры за пределами проекции луча будет недостаточным для каких-либо фазовых или структурных изменений.

Суммарная энергетическая эффективность лазерной обработки и нагрев подложки уменьшаются с ростом коэффициента отражения материала, поэтому высокий коэффициент отражения обычно нежелателен. Тем не менее, при большем коэффициенте отражения порошковый слой прогревается равномернее.

Предложенная модель взаимодействия лазерного луча с порошковым слоем в процессе СЛП заключается во взаимосвязанном переносе излучения и тепла в тонком слое порошка, нанесённом на плотную подложку. При рассмотренных толщине порошкового слоя ~50 рш и размере порошка ~ 20 рт лазерное излучение может проникать в порошок по открытой системе пор до самой подложки, что создаёт в нём объёмный тепловой источник. Ванна расплава, формирующаяся вокруг лазерного луча, контактирует с подложкой только своей центральной частью. Рассчитанная сложная форма поверхности расплава может деформироваться под действием сил поверхностного натяжения. Предполагается, что боковые части ванны расплава отрываются от прилегающего порошка и образуют закруглённую свободную поверхность, что понижает поверхностную энергию. Таким образом, формируется цилиндрический переплавленный объём, прилегающий к подложке, находящийся в середине значительно более широкой полосы, свободной от порошка. Ширину этой свободной от порошка зоны, как и ширину контакта между переплавленным материалом и подложкой, можно оценить по тепловой модели, пренебрегающей течением расплава. Баллинг-эффект при высоких скоростях сканирования (выше ~20 см/с в рассмотреных условиях) можно объяснить капиллярной неустойчивостью жидкого цилиндра Плато-Рэлея. С возрастанием скорости сканирования два фактора понижают устойчивость процесса: возрастание отношения длины ванны расплава к её обхвату и уменьшение ширины её контакта с подложкой.

Облучение свободнонасыпанного титанового порошка лучём Ш: УАО лазера (А, = 1.06 мкм) с диаметром 2.7−5.3 мм и мощностью 10−100 Вт в течение 10 с в вакууме приводит к образованию приблизительно полусферических спечённых образцов диаметром от «2.5 до «10 мм. Обычно образец состоит из переплавленной сердцевины и слабоспечённой зоны с относительным размером перешейков меньше «0.1, где наиболее вероятные механизмы спекания — твердофазная объёмная и поверхностная диффузия. При низких мощностях лазера переплавление не наблюдается. В некоторых случаях между переплавленной и слабоспечённой областями различима зона инфильтрации.

Численное моделирование взаимосвязанных процессов теплопереноса и спекания в порошке показывает, что от лазерного пятна распространяется почти полусферический температурный фронт. В области а-титана сразу за фронтом размер перешейков меньше 0.005 и теплоперенос определяется тепловым излучением, которое, в свою очередь, определяет скорость распространения фронта. Заметное спекание начинается, когда а-титан переходит в р-титан, который составляет большую часть спечённого образца во время действия лазерного луча. Теплоперенос в Р-титане контролируется контактной теплопроводностью.

Влияние параметров порошка объясняется конкуренцией следующих факторов: возрастание контактной теплопроводности с плотностью порошка, возрастание радиационной теплопроводности с размером частиц и возрастание теплоёмкости на единицу объёма с плотностью. В рассматриваемых условиях вклад первого механизманаименьший, а последнего — наибольший, так что размеры спечённой и переплавленной зон уменьшаются с плотностью порошка.

Баллинг-эффект — образование капель расплава, не наблюдается в настоящем эксперименте благодаря относительно «мягким» условиям лазерного облучения, когда температура растёт постепенно и расплав появляется внутри первоначально спечённого порошка, который сопротивляется его поверхностному натяжению.

ЗАКЛЮЧЕНИЕ

.

1. На основе численных и аналитических расчетов слоя Кнудсена рассмотрены газодинамические граничные условия при сильных испарении и конденсации на поверхности раздела пара и его конденсированной фазы, необходимые для моделирования лазерной абляции. Получены новые численные результаты, описывающие сильную конденсацию при температурных отношениях, значительно отличающихся от единицы и сильное испарение с образованием ионизованного газа. Впервые получены аналитические модели газодинамических граничных условий, удовлетворительно описывающие сильную конденсацию в указанных условиях. Впервые теоретически оценена степень ионизации пара металла, образующегося при сильном испарении, что позволило впервые составить полную систему газодинамических граничных условий для сильного испарения с образованием ионизованного газа.

2. В рамках многофазной модели переноса излучения впервые получено явное выражение для векторого уравнения переноса излучения в двухфазной гетерогенной среде. Рассмотрены предельные случаи и проведено сравнение с другими теоретическими моделями. Предложенная векторная модель необходима, когда обе фазы прозрачны или полупрозрачны, а их объёмные доли сравнимы, так как в этом случае отсутствуют удовлетворительные математические модели. Проиллюстрировано применение разработанной модели для экспериментальной идентификации радиационных свойств.

3. Для оценки эффективной теплопроводности порошковых слоев применена модель дискретных тепловых сопротивлений. Впервые предложена формула, связывающая эффективную теплопроводность с пористостью, координационным числом и тепловым сопротивлением отдельного контакта. Предложена оригинальная методика расчёта теплового сопротивления контакта между частицами, учитывающая перенос через газовый зазор, позволившая построить модель, не содержащую эмпирических параметров. Анализ экспериментальных данных показал, что разработанная модель удовлетворительно их описывает.

4. Разработана тепловая модель лазерной абляции, оригинальность которой заключается в применении строгих газодинамических граничных условий конденсации, полученных численными расчётами кнудсеновского слоя. Эта модель позволила проанализировать эффективность наносекундной лазерной абляции и влияние буферного газа на угловое и энергетическое распределения эжектированного материала на основе сравнения расчётных результатов с литературными экспериментальными данными. Результаты применимы для разработки и оптимизации технологий обработки материалов лазерной абляцией и импульсного лазерного осаждения.

5. Впервые предложена модель газофазной химической кинетики в паре углерода, не предполагающая равновесия между поступательными и внутренними степенями свободы молекул, позволившая проанализировать механизмы синтеза малых углеродных молекул при наносекундной лазерной абляции.

6. Построены вычислительные модели совместного переноса лазерного излучения и тепла при селективном лазерном плавлении и взаимного влияния кинетики спекания и теплопереноса при селективном лазерном спекании, позволяющие теоретически оценивать устойчивость этих процессов. Впервые теоретически получена универсальная зависимость коэффициента поглощения оптически толстого слоя порошка непрозрачного материала от коэффициента поглощения твёрдой фазы. Разработанные модели подтверждены экспериментально. Результаты применимы для разработки и оптимизации технологий быстрого прототипирования и изготовления функциональных металлических деталей сложной формы.

Показать весь текст

Список литературы

  1. Н.Н. Рыкалин, Расчёты тепловых процессов при сварке, МАШГИЗ, Москва, 1951, 296 с.
  2. Я.Б. Зельдович, Ю. П. Райзер, Физика ударных волн и высокотемпературных гидродинамических явлений, Наука, Москва, 1966, 688 с.
  3. С.И. Анисимов, Я. А. Имас, Г. С. Романов, Ю. В. Ходыко, Действие излучения большой мощности на металлы, Наука, Москва, 1970, 272 с.
  4. J.F. Ready, Effects of high-power laser radiation, Academic Press, New York, 1971, 433 p.
  5. В.П. Вейко, M.H. Либенсон, Лазерная обработка, Лениздат, Ленинград, 1973, 190 с.
  6. Н.Н. Рыкалин, А. А. Углов, А. Н. Кокора, Лазерная обработка материалов, Машиностроение, Москва, 1975, 296 с.
  7. Н.Н. Рыкалин, А. А. Углов, И. В. Зуев, А. Н. Кокора, Лазерная и электронно-лучевая обработка материалов: Справочник, Машиностроение, Москва, 1985, 496 с.
  8. А.А. Веденов, Г. Г. Гладуш, Физические процессы при лазерной обработке материалов, Энергоатомиздат, Москва, 1985, 208 с.
  9. А.Г. Григорьянц, Основы лазерной обработки материалов, Машиностроение, Москва, 1989,304 с.
  10. А.А. Углов, И. Ю. Смуров, A.M. Лашин, А. Г. Гуськов, Моделирование теплофизических процессов импульсного лазерного воздействия на металлы, Наука, Москва, 1991,287 с.
  11. W.M. Steen, Laser material processing, Springer, London, 1991, 266 p.
  12. G.G. Gladush, I. Smurov, Physics of laser materials processing: theory and experiment, Springer, Berlin, 2011, 490 p.
  13. Действие лазерного излучения на поглощающие среды, под ред. С. В. Гарнова, А. А. Самохина, Наука, Москва, 2004, 155 с.
  14. Лазерные технологии обработки материалов: современные проблемы фундаментальных исследований и прикладных разработок, под ред. В. Я. Панченко, ФИЗМАТЛИТ, Москва, 2009, 704 с.
  15. V.I. Mazhukin, А.А. Samarskii, «Mathematical modeling in the technology of laser treatments of materials,» Surveys on Mathematics for Industry 4, 85 (1994).
  16. A.B. Зайцев, О. Б. Ковалев, A.M. Оришич, B.M. Фомин, «Численный анализ влияния типа поляризации ТЕМ00 моды излучения на форму поверхности реза при лазерной резке толстых листов металла,» КЭ 35, 200 (2005).
  17. V.P. Veiko, S.M. Metev. Laser assisted microtechnology, Springer, Heidelberg, 1994.
  18. И.В. Шишковский, Лазерный синтез функционально-градиентных мезоструктур и объёмных изделий, Физматлит, Москва, 2009,422 с.
  19. I. Yadroitsev, Selective laser melting: Direct manufacturing of 3D-objects by selective laser melting of metal powders, Lap Lambert, Saarbrucken, 2009, 280 p.
  20. М.Н. Коган, Н. К. Макашев, «О роли слоя Кнудсена в теории гетерогенных реакций и в течениях с реакциями на поверхности», Изв. АН СССР, Механика жидкости и газа № 6, 3−11 (1971).
  21. Л.Д. Ландау, Е. М. Лифшиц, Гидродинамика (Наука, Москва, 1986).
  22. Y. Sone, S. Takata, F. Golse, «Notes on the boundary conditions for fluid-dynamic equations on the interface of a gas and its condensed phase», Phys. Fluids 13, 324−334 (2001).
  23. P.D. Crout, «An application of kinetic theory to the problems of evaporation and sublimation of monatomic gases», J. Math. Phys. 15,1−54 (1936).
  24. С.И. Аписимов, «Об испарении металла, поглощающего лазерное излучение», ЖЭТФ 54, 339−342 (1968).
  25. К. Aoki, Y. Sone, and Т. Yamada, «Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory», Phys. Fluids A 2,1867 (1990).
  26. О. Кнаке, И. Н. Странский, «Механизм испарения», УФН 68, 261−305 (1959).
  27. Н. М. Mott-Smith, «The solution of the Boltzmann equation for a shock wave,» Phys. Rev. 82,885 (1951).
  28. T. Ytrehus, «Theory and experiments on gas kinetics in evaporation,» in Rarefied Gas Dynamics, edited by J.L. Potter (AIAA, New York, 1977), pp. 1197−1212.
  29. C. J. Knight, «Theoretical modeling of rapid surface vaporization with back pressure,» AIAA Journal 17, 519 (1979).
  30. T. Bergstrom and T. Ytrehus, «Gas motion in front of a completely absorbing wall,» Phys. Fluids. 27, 583 (1984).
  31. T. Ytrehus and J. Alvestad, «A Mott-Smith solution for nonlinear condensation,» in Rarefied Gas Dynamics, edited by S. S. Fisher (AIAA, New York, 1981), pp. 330−345.
  32. A. P. Kryukov, «Strong subsonic and supersonic condensation on a plane surface,» in Rarefied Gas Dynamics, edited by A. Beylich (VCH Verlagsgesellschaft, Weinheim, 1991), pp. 1278−1284.
  33. M. N. Kogan and A. A. Abramov, «Direct simulation solution of the strong evaporation and condensation problem,» in Rarefied Gas Dynamics, edited by A. Beylich (VCH Verlagsgesellschaft, Weinheim, 1991), pp. 1251−1257.
  34. D. Sibold and H. Urbassek, «Monte Carlo study of Knudsen layers in evaporation from elemental and binary media,» Phys. Fluids A 5, 243 (1993).
  35. Y. Sone and H. Sugimoto, «Strong evaporation from a plane condensed phase,» in Adiabatic Waves in Liquid-Vapor Systems, edited by G.E.A. Meier and P.A. Thompson (Springer, Berlin, 1990), pp. 293−304.
  36. A.V. Gusarov and I. Smurov, «Target-vapour interaction and atomic collisions in pulsed laser ablation,» J. Phys. D 34, 1147 (2001).
  37. P. L. Bhatnagar, E. P. Gross and M. Krook, «A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,» Phys. Rev. 94, 511 (1954).
  38. J. H. Ferziger and H. G. Kaper, Mathematical theory of transport processes in gases (Amsterdam: North-Holland, 1972).
  39. J. E. Broadwell, «Shock structure in a simple discrete velocity gas,» Phys. Fluids 7, 1243 (1964).
  40. X. He and L-S. Luo, «Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation,» Phys. Rev. E 56, 6811 (1997).
  41. R. Gatignol, «Theorie cinetique des gaz a repartition discrete des vitesses,» Lecture Notes in Physics 36 (Springer-Verlag, 1975).
  42. F. G. Tcheremissine, «Conservative evaluation of Boltzmann collision integral in discrete ordinates approximation,» Comput. Math. Appl. 35,215 (1998).
  43. F. G. Tcheremissine, «Solution of Boltzmann equation for arbitrary molecular potentials,» in Rarefied Gas Dynamics, edited by R. Brun et al. (Cepadues, Toulouse, 1999), Vol. II, pp. 165−172.
  44. A. V. Bobylev, «Relationships between discrete and continuous kinetic theories,» in Rarefied Gas Dynamics, edited by R. Brun et al. (Cepadues, Toulouse, 1999), Vol. I, pp. 19−30.
  45. P. Charrier, B. Dubroca, and L. Mieussens, «Discrete velocity BGK model and implicit scheme for computing rarefied gas flows,» in Rarefied Gas Dynamics, edited by R. Brun et al. (Cepadues, Toulouse, 1999), Vol. I, pp. 95−102.
  46. A. E. Beylich, «Solving the kinetic equation for all Knudsen numbers,» Phys. Fluids 12, 444 (2000).
  47. A. V. Bobylev, A. Palczewski, and J. Schneider, «On approximation of the Boltzmann equation by discrete velocity models,» C. R. Acad. Sci. Paris, Serie 1 320, 639 (1995).
  48. A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, «Uniformly high order accurate essentially non-oscillatory schemes, III,» J. Comput. Phys. 131, 3 (1997).
  49. V. I. Mazhukin, P. A. Prudkovskii, and A. A. Samokhin, «About gas-dynamical boundary conditions on evaporation front,» Mathematical Modeling 5, 3 (1993).
  50. R. Kelly and A. Miotello, «Laser-pulse sputtering of atoms and molecules. Part II. Recondensation effects,» Nucl. Instr. Meth. B 91, 682 (1994).
  51. Y. Sone, «Kinetic theory of evaporation and condensation Linear and nonlinear problems,» J. Phys. Soc. Jpn. 45, 315 (1978).
  52. M. N. Kogan, «Evaporation/condensation kinetics,» in Rarefied Gas Dynamics, edited by J. Harvey and G. Lord (Oxford University Press, Oxford, 1995), pp. 253−262.
  53. Y. Onishi and Y. Sone, «Kinetic theory of slightly strong evaporation and condensation: Hydrodynamic equation and slip boundary condition for finite Reynolds number,» J. Phys. Soc. Japan 47,1676(1979).
  54. S. H. Jeong, R. Greif, and R. E. Russo «Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,» J. Phys. D. 32, 2578 (1999).
  55. T. Kerdja, S. Abdelli, D. Ghobrini, and S. Malek, «Dynamics of laser-produced carbon plasma in an inert atmosphere,» J. Appl. Phys. 80, 5365 (1996).
  56. C. J. Knight, «Transient vaporization from a surface into vacuum,» AIAA Journal 20, 950 (1982).
  57. P. V. Breslavsky and V. I. Mazhukin, Mathematical modeling of the process of surface vaporization by laser radiation in the atmosphere with back pressure (Institute of Mathematical Modeling, Russian Academy of Sciences, Moscow, 1992).
  58. J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, «Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,» J. Appl. Phys. 78, 4696 (1995).
  59. A.V. Gusarov, A.G. Gnedovets, I. Smurov, «Gas dynamics of laser ablation: Influence of ambient atmosphere,» J. Appl. Phys. 88, 4352 (2000).
  60. T.D. Bennet, C.P. Grigoropoulos, D.J. Krajnovich, «Near-threshold laser sputtering of gold,» J. Appl. Phys. 77, 849 (1995).
  61. L.V. Gurvich, I.V. Veitz, V.A. Medvedev et al., Thermodynamic properties of substances. Handbook (Nauka, Moscow, 1978).
  62. M.N. Kogan, N.K. Makashev, «Role of the Knudsen layer in the theory of heterogeneous reactions and in flows with surface reactions,» Izv. Akad. Nauk SSSR, Mech. Zhidk. i gasa, № 6, 3 (1971). See also: Fluid Dyn. 6, 913 (1971).
  63. A.V. Butkovsky, Blockage effect at strong condensation. Preprint TsAGI N2 10 (TsAGI, Moscow, 1990).
  64. Ya.B. Zel’dovich, Yu.P. Raiser, Physics of shock waves and high-temperature hydrodynamic phenomena (New York, Acad. Press., 1967).
  65. D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, H. Hugel, «Shadowgraphic and interferometric investigations on Nd: YAG laser-induced vapor/plasma plumes for different processing wavelengths,» Appl. Phys. A 69, S505 (1999).
  66. E.G. Gamaly, A.V. Rode and B. Luther-Davies, «Ultrafast ablation with high-pulse-rate lasers. Part I: Theoretical considerations,» J. Appl. Phys. 85, 4213 (1999).
  67. V. Yu. Fominski, V.N. Nevolin, R.I. Romanov, and I. Smurov, «Ion-assisted deposition of MoSx films from laser-generated plume under pulsed electric field,» J. Appl. Phys. 89, 1449 (2001).
  68. V.I. Mazhukin, V.V. Nossov, M.G. Nickiforov, and I. Smurov, «Optical breakdown in aluminum vapor induced by ultraviolet laser radiation,» J. Appl. Phys. 93, 56 (2003).
  69. T. Tokonami and T. Makabe, «Modeling of physical etching based on the two-dimensional velocity distributions of ions and fast neutrals using the Boltzmann equation,» J. Appl.1. Phys. 72, 3323 (1992).
  70. N. Sternberg and V.A. Godyak, «Approximation of the bounded plasma problem by the plasma and the sheath models,» Physica D 97,498 (1996).
  71. K.-U. Riemann, «The influence of collisions on the plasma sheath transition,» Phys. Plasmas 4,4158 (1997).
  72. R.N. Franklin and J. Snell, «The plasma-sheath transition with a constant mean free path model and the applicability of the Bohm criterion,» Phys. Plasmas 8, 643 (2001).
  73. A.V. Vasenkov and B.D. Shizgal, «Numerical study of a direct current plasma sheath based on kinetic theory,» Phys. Plasmas 9, 691 (2002).
  74. A.V. Vasenkov and B.D. Shizgal, «Self-consistent kinetic theory of a plasma sheath,» Phys. Rev. E 65, 46 404 (2002).A.V. Gusarov and I. Smurov, Phys. of Fluids 14, 4242 (2002).
  75. A.V. Gusarov, I. Smurov, «Gas-dynamic boundary conditions of evaporation and condensation: Numerical analysis of the Knudsen layer,» Phys. Fluids 14, 4242 (2002).
  76. Y. Sone, Kinetic theory and fluid dynamics (Boston, Birkhauser, 2002).
  77. Y. Sone, «Kinetic theoretical studies of the half-space problem of evaporation and condensation,» Transp. Theory Stat. Phys. 29, 227 (2000).
  78. A.V. Bobylev, R. Grzhibovskis, and A. Heintz, «Entropy inequalities for evaporation/ condensation problem in rarefied gas dynamics,» J. Stat. Phys. 102,1151 (2001).
  79. A. Frezzotti, «Kinetic theory description of the evaporation of multi-component substances,» in Rarefied Gas Dynamics, edited by C. Shen (Peking University Press, Beijing, 1997), pp. 837−846.
  80. S. Takata, «Half-space problem of weak evaporation and condensation of a binary mixture of vapors,» in Rarefied Gas Dynamics, edited by M. Capitelli (American Institute of Physics, Melville, 2005) (to appear).
  81. Thermodynamic properties of substances, edited by V.P. Glushko (Nauka, Moscow, 1978).
  82. NIST-JANAF thermochemical tables, edited by M.W. Chase (New York, National Institute of Standards and Technology, 1998).
  83. S. Dushman, «Thermionic emission,» Rev. Modem Phys. 2, 381 (1930).
  84. S.M. Sze, The physics of semiconductor devices (New York, Wiley, 1981).
  85. D.E.Gray, American Institute of Physics Handbook (New York, McGraw-Hill, 1972).
  86. S.I. Braginskii, «Transport phenomena in a completely ionized two-temperature plasma,» Soviet Phys. JETP 6, 358 (1958).
  87. B.M. Smirnov, «Tables for cross-sections of the resonant charge exchange process,» Physica Scripta 61, 595 (2000).
  88. L. Mieussens, «Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries,» J. Comput. Phys. 162,429 (2000).
  89. L.D. Landau and E.M. Lifshitz, Statistical Physics (New York, Pergamon Press, 1980).
  90. R. J. Leveque, Numerical Methods for Conservation Laws (Springer, Berlin, 1992).
  91. Batchelor G.K., F.R.S., O’Brien R.W. Thermal or electrical conduction through a granular material // Proc. Roy. Soc. A. 1977. V. 355. P. 313.
  92. Kingery W.D. Introduction to ceramics. New York: Wiley, 1976. 1032 p.
  93. Hu X.-J., Du J.-H., Lei. S.-Y., Wang B.-X. A model for thermal conductivity of unconsolidated porous media based on capillary pressure-saturation relation // Int. J. Heat Mass Transfer. 2001. V. 44, P. 247.
  94. Bruggeman D.A.G. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen //Ann. Phys. 1935. V. 24. P.636.
  95. Meredith R.E., Tobias C.W. Conductivities in emulsions II J. Electrochem. Soc. 1961. V. 108. P. 286.
  96. Luikov A. V, Shashkov A. G., Vasiliev L. L., Fraiman Yu. E. Thermal conductivity of porous systems II Int. J. Heat Mass Transfer. 1968. V. 11. P. 117.
  97. Chiew Y.C., Glandt E. The effect of structure on the conductivity of a dispersion II J. Coll. Interf. Sei. 1983. V. 94. P. 90.
  98. Raghavan V.R., Martin H. Modeling of two-phase thermal conductivity // Chem. Engineering Processing. 1995. V. 34. P. 439.
  99. Lu S.-Y. Effective conductivities of rectangular arrays of aligned spheroids // J. Appl. Phys. 1999. V. 85. P. 264.
  100. Simovski C., He S. Rapidly convergent expansion method for calculating the effective conductivity of three-dimensional lattices of symmetric inclusions // J. Appl. Phys. 1999. V. 86. P. 3773.
  101. Gu G., Liu Z. Effects of contact resistance on thermal conductivity of composite media with a periodic structure // J. Phys. D. 1992. V. 25. P. 249.
  102. Torquato S., Kim I.C., Cule D. Effective conductivity, dielectric constant, and diffusion coefficient of digitized composite media via first-passage-time equations // J. Appl. Phys. 1999. V. 85. P. 1560.
  103. Rombouts M., Froyen L., Gusarov A.V., Bentefour E.H., Glorieux C. Photopyroelectric measurement of thermal conductivity of metallic powders I I J. Appl. Phys. 2005. V. 97. P. 24 905.
  104. H9.Siu W.W.M., Lee S.H.-K. Effective conductivity computation of a packed bed using constriction resistance and contact angle effects // Int. J. Heat Mass Transfer. 2000. V. 43. P. 3917.
  105. Albrecht J.D., Knipp P.A., Reinecke T.L. Thermal conductivity of opals and related composites //Phys. Rev. B. 2001. V. 63. P. 134 303.
  106. Deissler R.G., Boegli J.S. An investigation of the effective thermal conductivities of powders in various gases // Transactions of the ASME. 1958. V. 80. P. 1417.
  107. Swift D.L. The thermal conductivity of spherical metal powders including the effect of an oxide coating // Int. J. Heat Mass Transfer. 1966. V. 9. P. 1061.
  108. Sih S.S. The thermal and optical properties of powders in selective laser sintering. Ph. D. Thesis, University of Texas at Austin, 1996. 244 p.
  109. ЩШишковский И.В., Куприянов H.JI. Тепловые поля в металл-полимерныхпорошковых композициях при лазерной обработке // ТВТ. 1997. Т. 35. С. 722.
  110. Taylor С.М., Childs Т.Н.С. Thermal experiments in direct metal laser sintering // Proceedings of 9 Assises Europeennes du Prototypage Rapide and 10 European Conference on Rapid Prototyping and Manufacturing (EURO RP 2001), Paris, 2001. P. 1.
  111. Gusarov A.V., Kruth J.-P. Modelling of radiation transfer in metallic powders at laser treatment // Int. J. Heat Mass Transfer. 2005. V. 48. P. 342.
  112. Buonnano G., Carotenuto A., Giovinco G., Massarotti N. Experimental and theoretical modelling of the effective thermal conductivity of rough steel spheroid packed beds // J. Heat Transfer. 2003. V. 125. P. 693.
  113. Van de Hulst H.C. Light scattering by small particles. New York: Dover, 1981. 470 p.13 5. Siege I R., Howell J.R. Thermal radiation heat transfer. Washington: Taylor & Francis, 1992. 1072 p.
  114. Cartigny J.D., Yamada Y, Tien C.L. Radiative heat transfer with dependent scattering by particles: Part 1 theoretical investigations // J. Heat Transfer. 1986. V. 108, P. 608.
  115. Drolen B.L., Tien C.L. Independent and dependent scattering in packed-sphere system // J. Thermophysics. 1987. V. 1. P. 63.
  116. Kamiuto K. Correlated radiative transfer in packed-sphere systems // J. Quant. Spectrosc. Radiat. Transfer. 1990. V. 43. P. 39.
  117. Sing h В.P., Kaviany M. Independent theory versus direct simulation of radiation heat transfer in packed beds // Int. J. Heat Mass Transfer. 1991. V. 34. P. 2869.
  118. Singh B.P., Kaviany M. Modelling radiative heat transfer in packed beds // Int. J. Heat Mass Transfer. 1992. V. 35. P. 1397.
  119. Wang X.C., Laoui T., Bonse J., Kruth J.P., Lauwers В., Froyen L. Direct selective laser sintering of hard metal powders: experimental study and simulation // Int. J. Adv. Manuf. Technol. 2002. V. 19. P. 351.
  120. Coquard R., Baillis D. Radiative characteristics of opaque spherical particles beds: a new method of prediction // J. Thermophys. Heat Transfer. 2004. V. 18. P. 178.
  121. Tancrez M., Taine J. Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique // Int. J. Heat Mass Transfer. 2004. V. 47. P. 373.
  122. Zeghondy B., Iacona E., Taine J. Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI) 11 Int. J. Heat Mass Transfer. 2006. V. 49, P. 2810.
  123. Zeghondy B., Iacona E., Taine J. Experimental and RDFI calculated radiative properties of a mullite foam // Int. J. Heat Mass Transfer. 2006. V. 49. P. 3702.
  124. Randrianalisoa J., Baillis D., Pilon L. Improved inverse method for radiative characteristics of closed-cell absorbing porous media // J. Thermophys. Heat Transfer. 2006. V. 20. P. 871.
  125. Gusarov A. V., Bentefour E.H., Rombouts M., Froyen L., Glorieux C., Kruth J.-P. Normal-directional and normal-hemispherical reflectances of micron- and submicron-sized powder beds at 633 and 790 nm // J. Appl. Phys. 2006. V. 99. P. 113 528.
  126. Begley S.M., Brewster M.Q. Radiative properties of M0O3 and A1 nanopowders from light-scattering measurements // J. Heat Transfer. 2007. V. 129. P. 624.
  127. Wang X.C., Kruth J.-P. A simulation model for direct selective laser sintering of metal powders // Computational techniques for materials, composites and composite structures / Ed. Topping B.H.V. Edinburg: Civil-Comp, 2000. p. 57.
  128. Tolochko N.K., Laoui T., Khlopkov Yu.V., Mozzharov S.E., Titov V.I., Ignatiev M.B. Absorptance of powder materials suitable for laser sintering // Rapid Prototyping J. 2000. V. 6. P. 155.
  129. Rombouts M., Froyen L., Gusarov A.V., Bentefour E.H., Glorieux C. Light extinction in metallic powder beds: Correlation with powder structure // J. Appl. Phys. 2005. V. 98. P. 13 533.
  130. Zhao C.Y., Lu T.J., Hodson H.P. Thermal radiation in ultralight metal foams with open cells // Int. J. Heat Mass Transfer. 2004. V. 47. P. 2927.
  131. M.S. Amer, L. Dosser, S. Leclair, J.F. Maguire, «Induced stresses and structural changes in silicon wafers as a result of laser micro-machining,» Appl. Surf. Sci. 187, 291 (2002).
  132. C. Fohl, D. Breitling, F. Dausinger, «Precise drilling of steel with ultrashort pulsed solidstate lasers,» Proceedings of SPIE 5121, 271 (2002).
  133. N. Matsuyama, K. Yukimura, T. Maruyama, «Amorphous diamond-like carbon film prepared by pulsed laser deposition with application of pulsed negative bias voltage,» J. Appl. Phys. 89, 1938 (2001).
  134. C. Grigoriu, M. Hirai, K. Nishiura, W. Jiang, K. Yatsui, «Synthesis of nanosized aluminium nitride powders by pulsed laser ablation,» J. Am. Ceram. Soc. 83, 2631 (2000).
  135. J.W. Elam, D.H. Levy, «Low fluence laser sputtering of gold at 532 nm,» J. Appl. Phys. 81, 539(1997).
  136. T. Kerdja, S. Abdelli, D. Ghobrini, S. Malek, «Dynamics of laser-produced carbon plasma in an inert atmosphere,» J. Appl. Phys. 80, 5365 (1996).
  137. F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, S. Iijima, «Shadowgraphic and emission imaging spectroscopic studies of the laser ablation of graphite in Ar gas atmosphere,» Appl. Phys. A 69, S223 (1999).
  138. I. Horn, M. Guillong, D. Gunther, «Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles implications for LA-ICP-MS,» Appl. Surf. Sci. 182, 91 (2001).
  139. A.V. Bulgakov, N.M. Bulgakova, «Dynamics of laser-induced plume expansion into an ambient gas during film deposition,» J. Phys. D 28, 1710 (1995).
  140. K.R. Chen, J.N. Leboeuf, R.F. Wood, D.B. Geohegan, J.M. Donato, C.L. Liu, and A.A. Puretzky, «Mechanisms affecting kinetic energies of laser-ablated materials,» J. Vac. Sci. Technol. A 14,1111 (1996).
  141. A. V. Bulgakov, N.M. Bulgakova, «Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet,» J. Phys. D. 31, 693 (1998).
  142. I. NoorBatcha, R.R. Lucchese, Y. Zeiri, Effects of gas-phase collisions on particles rapidly desorbed from surfaces," Phys. Rev. B 36, 4978 (1987).
  143. D. Sibold and H. M. Urbassek, «Effect of gas-phase collisions in pulsed-laser desorption: A three-dimensional Monte Carlo simulation study,» J. Appl. Phys. 73, 8544 (1993).
  144. A.V. Gusarov, I. Smurov, «Target-vapour interaction and atomic collisions in pulsed laser ablation,» J. Phys. D 34, 1147 (2001).
  145. T. E. Itina, A. A. Katassonov, W. Marine, and M. Autric, «Numerical study of the role of a background gas and system geometry in pulsed laser deposition,» J. Appl. Phys. 83, 6050 (1998).
  146. R. Kelly, A. Miotello, «Laser-pulse sputtering of atoms and molecules. Part II. Recondensation effects,» Nucl. Instrum. Methods B 91, 682 (1994).
  147. A. Miotello, A. Peterlongo, R. Kelly, «Laser-pulse sputtering of aluminium: gas-dynamic effects with recondensation and reflection conditions at the Knudsen layer,» Nucl. Instrum. Methods B 101, 148 (1995).
  148. J.R. Ho, C.P. Grigoropoulos, J.A.C. Humphrey, «Gas dynamics and radiation heat transfer in the vapor plume produced by pulsed laser irradiation of aluminium,» J. Appl. Phys. 79, 7205 (1996).
  149. V.I. Mazhukin, V.V. Nossov, I. Smurov, «Analysis of laser-induced evaporation of Al target under conditions of vapour plasma formation,» Thin Solid Films 453−454, 353 (2004).
  150. A.V. Gusarov and I. Smurov, «Near-surface laser-vapour coupling in nanosecond pulsed laser ablation,» Journal of Physics D 36, 2962 (2003).
  151. A. Miotello, R. Kelly, «Critical assessment of thermal models for laser sputtering at high fluences,» Appl. Phys. Lett. 67, 3535 (1995).
  152. J.H. Yoo, S.H. Jeong, R. Greif, R.E. Russo, «Explosive change in crater properties during high power nanosecond laser ablation of silicon,» J. Appl. Phys. 88, 1638 (2000).
  153. Thermal constants of substances, edited by V.P. Glushko (VINITI-IVTAN, Moscow, 1973).
  154. C.Y. Ho, R.W. Powell, and P.E. Liley, «Thermal conductivity of the elements,» J. Phys. Chem. Reference Data 1, 279 (1972).
  155. B. Salle, C. Chaleard, V. Detalle, J.L. Lacour, P. Mauchien, C. Nouvellon, and A. Semerok, «Laser ablation efficiency of metal samples with UV laser nanosecond pulses,»
  156. Appl. Surf. Sci. 138−139, 302 (1999).
  157. A. Mechler, P. Heszler, Zs. Marton, M. Kovacs, T. Szorenyi, and Z. Bor, «Raman spectroscopic and atomic force microscopic study of graphite ablation at 193 and 248 nm,» Appl. Surf. Sci. 154−155, 22 (2000).
  158. J. Frenkel, «Zur theorie der elastizitatsgrenze und der festigkeit kristallinscher korper,» Z. Phys. 37, 572 (1926).
  159. R.K. Thareja, R.K. Dwivedi, and K. Ebihara, «Interaction of ambient gas and laser ablated carbon plume: Formation of CN,» Nucl. Instr. Meth. B 192, 301 (2002).
  160. J. Gonzalo, C.N. Afonso, and I. Madariaga, «Expansion dynamics of the plasma produced by laser ablation of BaTi03 in a gas environment,» J. Appl. Phys. 81, 951 (1997).
  161. R. Timm, P.R. Willmott, and J.R. Huber, «Ablation and blow-off characteristics at 248 nm of Al, Sn and Ti targets,» J. Appl. Phys. 80,1794 (1996).
  162. D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hugel, «Shadowgraphic and interferometric investigations on Nd: YAG laser-induced vapor/plasma plumes for different processing wavelengths,» Appl. Phys. A 69, S505 (1999).
  163. T. Kerdja, S. Abdelli, D. Ghobrini, S. Malek, «Dynamics of laser-produced carbon plasma in an inert atmosphere,» J. Appl. Phys. 80, 5365 (1996).
  164. G. Gallies, P. Berger, and H. Hugel, J. Phys. D. 28, 794 (1995).
  165. V. Yu. Fominskii, A. M. Markeev, V. N. Nevolin, V. B. Prokopenko, and A. R. Vrublevskii, Thin solid films 248, 240 (1994).
  166. Yu. A. Bykovskii, V. N. Nevolin, and V. Yu. Fominskii, Ion and laser implantation of metals (Energoatomizdat, Moscow, 1991).
  167. J. Gonzalo, C. N. Afonso, J. M. Ballesteros, A. Grosman, and C. Ortega, J. Appl. Phys. 82, 3129(1997).
  168. D. B. Geohegan and A. A. Puretzky, Appl. Phys. Lett. 67, 197 (1995) — D. B. Geohegan, A. A. Puretzky, and D. J. Rader, Appl. Phys. Lett. 74, 3788 (1999).
  169. R. Bellantone and Y. Hahn, J. Appl. Phys. 76, 1436 (1994) — J. Appl. Phys. 76,1447 (1994).
  170. V. Mazhukin, I. Smurov, and G. Flamant, J. Comput. Phys. 112, 78 (1994).
  171. V. I. Mazhukin, I. Smurov, G. Flamant, Appl. Surf. Sci. 96−98, 89 (1996).
  172. V. Mazhukin, I. Gusev, I. Smurov, G. Flamant, Microchemical Journal: Special Issue «Lasers in Analytical Chemistry», 50, 413 (1994).
  173. T. E. Itina, W. Marine, and M. Autric, J. Appl. Phys. 82, 3536 (1997).
  174. S. Petzoldt, J. Reif, and E. Matthias, Appl. Surf. Sci. 96−98, 199 (1996).
  175. D. Anderson, J. Tannehill, and R. Pletcher, Computational fluid mechanics and heat transfer (Pergamon, New York, 1984).
  176. P. Roache, Computational fluid dynamics (Hermosa publishers, Albuquerque, 1976).
  177. S. K. Godunov and V. S. Ryaben’kii, Difference schemes (Introduction) (Nauka, Moscow, 1977).
  178. O. M. Belotserkovskii, J. Comput. Phys. 5, 587 (1970).
  179. O. M. Belotserkovskii, Numerical simulation in the continuum mechanics (Fizmatlit, Moscow, 1994).
  180. D. Krajnovich, «Laser sputtering of highly oriented pyrolytic graphite at 248 nm,» J. Chem. Phys. 102, 726 (1995).
  181. R. K. Dwivedi and R. K. Thareja, Phys. Rev. B51, 7160 (1995).
  182. D. B. Geohegan, A. A. Puretzky, G. Duscher, and S. J. Pennycook, Appl. Phys. Lett. 72, 2987 (1998) — Appl. Phys. Lett. 73, 438 (1998).
  183. D. B. Geohegan, A. A. Puretzky, and D. J. Rader, Appl. Phys. Lett. 74, 3788 (1999).211 .Clusters of atoms and molecules, edited by H. Haberland (Berlin, Springer, 1994).
  184. D. J. Lichtenwalner, O. Auciello, R. Dat, and A. I. Kingon, J. Appl. Phys. 74, 7497 (1993).
  185. F. Kokai, K. Takahashi, M. Yudasaka, S. Iijima, «Laser ablation of graphite-Co/Ni and growth of single-wall carbon nanotubes in vortexes formed in an Ar atmosphere,» J. Phys. Chem. B 104, 6777 (2000).
  186. K. Sasaki, T. Wakasaki, S. Mtsui, K. Kadota, «Distributions of C2 and C3 radical densities in laser-ablation carbon plumes measured by laser-induced fluorescence imaging spectroscopy,» J. Appl. Phys. 91,4033 (2002).
  187. T. Wakabayashi, T. Momose, T. Shida, «Mass spectroscopic studies of laser ablated carbon clusters as studied by photoionization with 10.5 eV photons under high vacuum,» J. Chem. Phys. 111,6260 (1999).
  188. P.D. Zavitsanos, G.A. Carlson, «Experimental study of the sublimation of graphite at high temperatures,» J. Chem. Phys. 59,2966 (1973).
  189. T. Ohkubo, M. Kuwata, B. Luk’yanchuk, T. Yabe, «Numerical analysis of nanocluster formation within ns-laser ablation plume,» Appl. Phys. A 77, 271 (2003).
  190. B.M. Smirnov, A.Yu. Strizhev, «Cluster formation in expanding vapour,» High Temperature 32, 541 (1994).
  191. A.V. Gusarov and I. Smurov, «Thermal model of nanosecond pulsed laser ablation: Analysis of energy and mass transfer,» J. Appl. Phys. 97, 14 307 (2005).
  192. J. Peric-Radic, J. Romelt, S.D. Peyerimhoff, R.J. Buenker, «Configuration interaction calculation of the potential curves for the C3 molecule in its ground and lowest-lying nu states,» Chem. Phys. Lett. 50, 344−350 (1977).
  193. R.O. Jones, «Density functional study of carbon clusters Cm (2<�»< 16). Structure and bonding in the neutral clusters," J. Chem. Phys. 110, 5189 (1999).
  194. J.M.L. Martin, J. El-Yazal, J.-P. Francois, «Structure and relative energetics of C2"+i (n =2.7) carbon clusters using coupled cluster and hybrid density functional methods,» Chem. Phys. Letters 252, 9 (1996).
  195. E.C. Santos, M. Shiomi, K. Osakada, T. Laoui, «Rapid manufacturing of metal components by laser forming,» Int. J. Machine Tools Manufacture 46,1459 (2006).
  196. A.V. Gusarov, I. Yadroitsev, Ph. Bertrand, I. Smurov, «Heat transfer modelling and stability analysis of selective laser melting,» Appl. Surf. Sci. 254, 975 (2007).
  197. S. Barnes, N. Timms, B. Bryden, I. Pashby, High power diode laser cladding, J. Materials Processing Technology 138,411 (2003).
  198. B. Van der Scheuren, Basic contribution to the development of the selective metal powder sintering process, Ph.D. Thesis, Faculty of Engineering, K.U.Leuven, 1996.
  199. A.V. Gusarov, «Homogenization of radiation transfer in two-phase media with irregular phase boundaries,» Phys. Rev. B 77, 144 201 (2008).
  200. P. Gouttebroze, «Radiative transfer in cylindrical threads with incident radiation,» Astronomy Astrophys. 413, 733 (2004).
  201. I. Yadroitsev, Ph. Bertrand, I. Smurov, «Parametric analysis of the selective laser melting process,» Appl. Surf. Sci. 253, 8064 (2007).
  202. J. Choi, L. Han, Y. Hua, «Modeling and experiments of laser cladding with droplet injection,» J. Heat Transfer 127, 978 (2005).
  203. G. Bugera, M. Cervera, G. Lombera, «Numerical prediction of temperature and density distributions in selective laser sintering processes,» Rapid Prototyping J. 5, 21 (1999).
  204. A.E. Tontowi, T.H.C. Childs, «Density prediction of crystalline polymer sintered parts at various powder bed temperatures,» Rapid Prototyping J. 7,180 (2001).
  205. N.K. Tolochko, M.K. Arshinov, A.V. Gusarov, V.I. Titov T. Laoui, L. Froyen, «Mechanisms of selective laser sintering and heat transfer in Ti powder,» Rapid Prototyping J. 9, 314 (2003).
  206. T. Chen, Y. Zhang, «Numerical simulation of two-dimensional melting and resolidification of a two-component metal powder layer in selective laser sintering process,» Numerical Heat Transfer A 46, 633 (2004).
  207. M. Matsumoto, M. Shiomi, K. Osakada, F. Abe, «Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing,» Int. J. Machine Tools Manufacture 42, 61 (2002).
  208. R.B. Patil, V. Yadava, «Finite element analysis of temperature distribution in single metallic powder layer during metal laser sintering,» Int. J. Machine Tools Manufacture 47, 1069 (2007).
  209. S. Kolossov, E. Boillat, R. Glardon, P. Fisher, M. Locher, «3D FE simulation for temperature evolution in the selective laser sintering process,» Int. J. Machine Tools Manufacture 44, 117 (2004).
  210. R. Morgan, CJ. Sutcliffe, W. O’Neill, «Experimental investigation of nanosecond pulsed Nd: YAG laser re-melted pre-placed powder beds,» Rapid Prototyping J. 7, 159 (2001).
  211. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, «Selective laser melting of iron-based powder,» J. Mater. Processing Technology 149, 616 (2004).
  212. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961.
  213. Bourell, D.L., Marcus, H.L., Barlow, J.-W. and Beaman, J. (1992), «Selective laser sintering of metal and ceramics,» Int. J. Powder Met., Vol. 28 No 4, pp. 369−381.
  214. Agarwala, M., Bourell, D., Beaman, J., Marcus, H. and Barlow, J. (1995), «Direct selective laser sintering of metals», Rapid Prototyping Journal, Vol. 1 No 1, pp. 26−36.
  215. J 246. Tolochko, N.K., Mozzharov, S.E., Sobolenko, N.V., Khlopkov, Yu.V., Yadroitsev, I.A.1and Mikhailov, V.B. (1995), «Main relationship governing laser sintering of loose single-component metallic powders», J. Adv. Mat., Vol. 2 No 2, pp.151−157.
  216. Yasuda, H., Ohnaka, I., Kaziura, H. and Nishiwaki, Y. (2001), «Fabrication of metallic porous media by semisolid processing using laser irradiation», Materials Transactions, Vol. 42 No 2, pp. 309−315.
  217. Gusarov, A.V., Laoui, T., Froyen, L., Titov, V.I. and Tolochko, N.K. (2001), «Numerical simulation of laser solid state sintering of loose titanium powder», Proc. 10th Europ. Conf. on Rapid Prototyping and Manufacturing, Paris, France, June 7−8 2001.
  218. Tolochko, N.K., Mozzharov, S.E., Yadroitsev, I.A., Titov, V.I. and Ignatiev, M.B. (1999), «Structure of sintered materials fabricated by laser beam», Science of Sintering, Vol. 31 No
Заполнить форму текущей работой