Помощь в написании студенческих работ
Антистрессовый сервис

Физико-химические и механические свойства модифицированных низкоплотных углеродных материалов на основе терморасширенного графита

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Основные результаты работы доложены на 5-ой, 6-ой, 7-ой международных конференциях «Углерод: фундаментальные проблемы науки, материаловедение, технология» (Москва, 2006 г.- Троицк, 2009 г.- Суздаль, 2010 г.). 14-ом и 15-ом международных симпозиумах по интеркалированным соединениям (181С-14 Сеул. Южная Корея, 2007 г.- 181С-15 Пекин, Китай, 2009 г.), выставке-семинаре «Новые наноструктурные… Читать ещё >

Физико-химические и механические свойства модифицированных низкоплотных углеродных материалов на основе терморасширенного графита (реферат, курсовая, диплом, контрольная)

Содержание

  • Список основных сокращений
  • Список основных обозначений
  • 1. Литературный обзор
    • 1. 1. Графит. Структура и физико-химические свойства
      • 1. 1. 1. Структура графита
      • 1. 1. 2. Физико-механические свойства графита
      • 1. 1. 3. Теплофизические свойства графита
      • 1. 1. 4. Электропроводность графита
    • 1. 2. Интеркалированные соединения графита
      • 1. 2. 1. Синтез интеркалированных соединений графита
      • 1. 2. 2. Строение и свойства ИСГ
    • 1. 3. Низкоплотные углеродные материалы
      • 1. 3. 1. Получение терморасширенного графита (ТРГ)
      • 1. 3. 2. Свойства ТРГ и низкоплотных углеродных материалов на его основе
      • 1. 3. 3. Основные области применения ТРГ и ГФ
    • 1. 4. Объемное уплотнение пиролитическим углеродом
      • 1. 4. 1. Методы осаждения пироуглерода из газовой фазы
      • 1. 4. 2. Пиролитический углерод, получаемый осаждением из газовой фазы: формы, структура, свойства
      • 1. 4. 3. Механизм осаждения пироуглерода из газовой фазы методом импульсного СУ
    • 1. 5. Получение углеродных пленок разложением полимеров
    • 1. 6. Защита углеродных материалов от окисления
  • 2. Методическая часть
    • 2. 1. Исходные вещества и материалы
    • 2. 2. Получение графита различной степени зольности
    • 2. 3. Синтез интеркалированных соединений графита и их гидролиз
      • 2. 3. 1. Синтез нитрата графита 2 ступени и его гидролиз
      • 2. 3. 2. Синтез бисульфата графита 1 ступени и его гидролиз
    • 2. 4. Получение терморасширенного графита и графитовой фольги
    • 2. 5. Модифицирование графитовой фольги пиролитическим углеродом
    • 2. 6. Модифицирование графитовой фольги продуктами термолиза полимеров
      • 2. 6. 1. Синтез полимеров
      • 2. 6. 2. Модифицирование графитовой фольги
    • 2. 7. Получение терморасширенного графита и графитовой фольги, модифицированных оксидом бора
    • 2. 8. Методы исследования
      • 2. 8. 1. Рентгенофазовый анализ
      • 2. 8. 2. Термогравиметрический анализ
      • 2. 8. 3. Определение механических характеристик графитовой фольги
      • 2. 8. 5. Определение удельной поверхности и объема пор
      • 2. 8. 6. Измерение удельного электрического сопротивления
      • 2. 8. 7. Рентгеновская фотоэлектронная спектроскопия
      • 2. 8. 8. Сканирующая электронная микроскопия и локальный рентгеноспектральный анализ
      • 2. 8. 9. Элементный анализ
      • 2. 8. 10. Определение удельной теплоемкости
      • 2. 8. 11. Измерение теплопроводности
      • 2. 8. 12. Спектроскопия комбинационного рассеяния
  • 3. Результаты и их обсуждение
    • 3. 1. Механические и электрофизические свойств графитовой фольги
      • 3. 1. 1. Механические свойства графитовой фольги
      • 3. 1. 2. Влияние примесей в исходном природном графите на физико-механические свойства гибкой графитовой фольги
      • 3. 1. 3. Тепло- и электрофизические свойства графитовой фольги
    • 3. 2. Изменение физико-механических и химических свойств графитовой фольги при уплотнении пиролитическим углеродом
      • 3. 2. 1. Динамика уплотнения графитовой фольги в зависимости от ее плотности
      • 3. 2. 2. Особенности структуры модифицированной графитовой фольги
      • 3. 2. 3. Механические свойства графитовой фольги модифицированной ПУ
      • 3. 2. 4. Электропроводность модифицированной графитовой фольги
      • 3. 2. 5. Удельная поверхность и пористость графитовой фольги, модифицированной пироуглеродом
      • 3. 2. 6. Исследование кинетики окисления модифицированных образцов фольги
    • 3. 3. Модифицирование графитовой фольги путем термолиза полимеров ряда поли (гидрокарбина) в матрице ТРГ
      • 3. 3. 1. Получение и идентификация поли (гидрокарбина) (ПГК) и поли (нафталингидрокарбина) (ПНГК)
      • 3. 3. 2. Модифицирование графитовой фольги с использованием полимеров ПГК и ПНГК
    • 3. 4. Модифицирование графитовой фольги оксидом бора
      • 3. 4. 1. Состав и структура графитовой фольги, модифицированной В
      • 3. 4. 2. Свойства ГФ, модифицированной оксидом бора

Актуальность темы

.

Получение первого в мире чисто двумерного кристалла — графена и открытие у него целого ряда рекордных значений физических свойств (прочности, теплопроводности, идеальной прозрачности для электромагнитного излучения, баллистической проводимости на субмикронных расстояниях даже при комнатной температуре и др.) в очередной раз привлекло внимание исследователей к интеркалированным соединениям графита, оксиду графита и терморасширенному графиту, как к потенциальным прекурсорам для изготовления графена [1, 2. 3].

Следует отметить, что терморасширенный графит (ТРГ), получаемый, как правило, термической деструкцией гидролизованных интеркалированных соединений графита (ИСГ) с рядом сильных кислот Бренстеда, достаточно давно вызывают интерес у химиков, физиков и материаловедов. Такое внимание к ТРГ обусловлено его интересными физико-химическими свойствами (большая удельная поверхность, достаточно высокая термическая и химическая стойкости, низкая теплопроводность, высокая пористость и др.). Одним из важных свойств ТРГ является способность при холодной прокатке без связующего образовывать гибкую графитовую фольгу (ГФ), которая находит широкое применение в качестве уплотнительного материала, экранов от электромагнитного излучения [4], резистивных элементов в гибких электрических нагревателях [5], газодиффузионных слоях и биполярных пластинах в водородно-воздушных топливных элементах [6].

Несмотря на многочисленные области применения графитовой фольги в научной литературе отсутствуют сведения о ее физико-химических свойствах при плотностях р>1,3 г/см3. Более того, в немногочисленных статьях часто исследуются либо промышленные образцы ГФ («Grafoil» — Union Carbide, «Раруех» — Carbon Lorraine, «Графлекс» — НПО Унихимтек), либо образцы ГФ неизвестного генезиса. Поэтому несомненный интерес представляет проведение работ по комплексному исследованию микроструктуры и физико-химических свойств графитовой фольги и модифицированной ГФ, полученных в строго контролируемых условиях на основе гидролизованных ИСГ определенного химического, фракционного состава, номеров ступени (номер ступени интеркалированного соединения графита (N) -число углеродных слоев между ближайшими слоями иптеркалата (внедренного вещества)). Кроме того, необходимо учитывать и то, что развитие современной науки, техники и промышленности немыслимо без создания новых многофункциональных материалов с более высокими эксплуатационными параметрами (температура, давление, прочность и т. д.). Таким образом, создание новых модифицированных углеродных материалов на основе терморасширенного графита несомненно является актуальной задачей.

Работа выполнена на кафедре химической технологии и новых материалов Химического факультета МГУ имени М. В. Ломоносова и является частью планового исследования кафедры по теме «Разработка и физико-химические исследования новых функциональных материалов» (номер Государственной регистрации 1 200 809 621). Цель работы.

Разработка методов модифицирования графитовой фольги, изготовленной из терморасширенного графита, позволяющих получать новые многофункциональные углеродные материалы с заданными механическими, электрофизическими и физико-химическими свойствами.

Для достижения поставленной цели были поставлены следующие задачи:

• разработать метод модифицирования графитовой фольги пиролитическим углеродом (ПУ) путем импульсного пиролиза метана. Проследить изменения физико-механических (электропроводность, сжимаемость, предел прочности на разрыв, упругость, модуль Юнга) и химических (окисление на воздухе) свойств полученного материала от массового содержания пироуглерода;

• синтезировать полимеры ряда полигидрокарбина (поли (гидрокарбин) и поли (нафталингидрокарбин)). Модифицировать гибкую графитовую фольгу продуктами термолиза полученных полимеров и исследовать ее механические свойства;

• модернизировать известный способ защиты углеродных материалов от окисления путем введения оксида бораполучить модифицированный материал (ТРГ и ГФ), изучить распределение антипиреновой добавки в ГФ и исследовать ее влияние на термоустойчивость к окислению на воздухе и механические свойства графитовой фольги;

• исследовать зависимость механических, теплои электрофизических ифизико-химических свойств графитовой фольги (ГФ) в широком диапазоне 2 плотностей (0,5−1,8 г/см) от содержания примесей, фракционного состава природного графита, условий получения, номера ступени исходного ИСГ. Объекты исследования: терморасширенный графитграфитовая фольгауглерод-углеродные композиционные материалымодифицированная ГФ.

Методы исследования: РФА (дифрактометр ARL X’TRA термический анализ (термоанализатор NETZSCH STA 449С Jupiter), сканирующая электронноя микроскопия (микроскоп Jeol JEM-5510 с приставкой для рентгеновского микроанализа INCA), спектроскопия комбинационного рассеяния (KP, микроскоп Renishaw InVia, длина волны лазера 514 нм), элементный анализ (лазерный масс-спектрометр ЭМАЛ 2), определение удельной поверхности методом низкотемпературной адсорбции азота (приборы Qsurf Surface Area Analyzer 9600 и Sorptomaticl99o), механических характеристик (универсальная испытательная машина Hoiinsfieid H100K-S) и др.

Научная новизна и положения, выносимые на защиту.

Установлено, что на начальной стадии пироуплотнения осаждение ПУ происходит равномерно по всему объему графитовой фольги, а скорость его осаждения линейно растет с увеличением удельной поверхности исходной ГФ.

Показано, что введение уже ~ 3 масс.% ПУ приводит к резкому увеличению предела прочности и модуля Юнга (~2,5 раза), повышению электропроводности на 25% и существенному уменьшению удельной поверхности графитовой фольги.

Впервые показано, что экспериментальные результаты термогравиметрических исследований по окислению на воздухе ГФ и модифицированной ПУ графитовой фольги хорошо описываются в рамках формальной кинетики уравнением «сокращающейся плоскости» и уравнением Праута-Томпкинса соответственно.

Методом спектроскопии комбинационного рассеяния впервые установлено, что продукт разложения полимеров в графитовой фольге также как и пироуглерод, образующийся в результате пиролиза метана, представляет собой разупорядоченную наноразмерную графитоподобную структуру.

Предложены два новых способа модифицирования ГФ оксидом бора и показано, что это приводит к существенному повышению термостабильности ГФ на воздухе (ДТ-150 К) и увеличению ее механической прочности при растяжении.

Впервые показано, что у графитовой фольги предел прочности при растяжении (а"р), модуль Юнга (Е), работа разрушения (А) в диапазоне плотностей (р) 0,5 г/см — 1,8 г/см имеет два линейных участка: от р = 0,5 г/см до 1,3 г/см" 5 и от.

2 о р = 1,4 г/см до 1,8 г/см, причем угловой коэффициент в уравнениях <7&bdquo-Др), Е (р) и А (р) на втором участке в 2−3 раза больше, чем на первом.

Прочность графитовой фольги линейно уменьшается с увеличением концентрации примесей (х), при этом угловой коэффициент в уравнениях <�т"р (х) не зависит от номера ступени интеркалированного соединения графита и типа интеркалата, на основе которых получена ГФ. В тоже время сжимаемость, восстанавливаемость, упругость, удельное сопротивление и теплопроводность графитовой фольги практически не зависят от содержания минеральных примесей.

Достоверность основных выводов диссертации подтверждается большим статистическим объемом экспериментальных данных, их хорошей воспроизводимостью, выбором апробированных экспериментальных методик и применением современного научно-исследовательского оборудования.

Практическая значимость работы.

Полученные в работе результаты по исследованию физико-химических и механических свойств графитовой фольги могут быть использованы для усовершенствования производства уплотнительной продукции на основе ГФ, расчета параметров и условий эксплуатации узлов герметизации. Экспериментальные данные послужили основой для создания высокоэффективных электроконтактных материалов, в частности электроконтактных шайб для соединения графитируемых углеродных заготовок в печах регулируемого сопротивления (метод Кастнера). На основе данных об изменении химических, механических, теплои электрофизических свойств ГФ при модифицировании пироуглеродом были разработаны биполярные пластины для водород-воздушных топливных элементов, теплоотражающие экраны, нагревательные элементы для высокотемпературных электропечей. При модификации ГФ оксидом бора происходит существенное увеличение ее термической стабильности, что может быть использовано для получения уплотнительных изделий с увеличенным сроком эксплуатации при высоких температурах в присутствии окислителей.

Апробация работы.

Основные результаты работы доложены на 5-ой, 6-ой, 7-ой международных конференциях «Углерод: фундаментальные проблемы науки, материаловедение, технология» (Москва, 2006 г.- Троицк, 2009 г.- Суздаль, 2010 г.). 14-ом и 15-ом международных симпозиумах по интеркалированным соединениям (181С-14 Сеул. Южная Корея, 2007 г.- 181С-15 Пекин, Китай, 2009 г.), выставке-семинаре «Новые наноструктурные и углеродные материалы» (Братислава, Словакия, 2007 г.), XV, XVI и XVII международных научных конференциях студентов, аспирантов и молодых ученых «Ломоносов» (Москва, 2008 г.- 2009 г.- 2010 г.), первом международном форуме по нанотехнологиям (Москва. 2008 г.), ежегодной международной конференции по углероду (Клемсон, США, 2010 г.).

Публикации.

По теме диссертации опубликовано 4 статьи в журналах из перечня ВАК РФ, 17 тезисов докладов, получено 5 патентов РФ. Полный список публикаций приведен в конце диссертации.

Личный вклад автора.

Автором лично выполнены синтетическая часть работы, измерения электропроводности при комнатной температуре, исследованы механические свойства полученных образцов, собрана литература по теме диссертации, проведено обобщение и анализ полученных данных, написана диссертация.

Объем и структура работы.

Диссертация состоит из введения, обзора литературы, экспериментальной части, результатов и обсуждения, выводов, списка литературы (251 наименование). Работа изложена на 152 страницах печатного текста и содержит 73 рисунков и 17 таблиц.

Основные результаты диссертации опубликованы в следующих работах:

1. Афанасов И. М., Савченко Д. В., Ионов С. Г., Русаков Д. А., Селезнев А. Н., Авдеев В. В. Теплофизические и механические свойства терморасширенного графита. // Неорганические материалы. 2009. Т. 45. № 5. С. 540−544.

2. Савченко Д. В., Ионов С. Г., Сизов А. И. Свойства углерод-углеродных композитов на основе терморасширенного графита. // Неорганические материалы. 2010. Т. 46. № 2. С. 170−176.

3. Savchenko D.V., Ionov S.G. Physical properties of carbon composite materials with low percolation threshold. // Journal of Physics and Chemistry of Solids. V. 71.1. 4. 2010. P. 548−550.

4. Sorokina N.E., Savchenko D.V., Ionov S.G., Tikhomirov A.S., Nikol’skaya I.V., Avdeev V.V. Low-dense carbon material modified with pyrolytic carbon. // Journal of Physics and Chemistry of Solids V. 71.1. 4. 2010. P. 499−502.

5. Авдеев B.B., Селезнев A.H., Афанасов И. М., Годунов И. А., Сорокина Н. Е., Савченко Д. В. Теплоотражающий экран. Патент РФ на полезную модель № 77 674 от 27.10.2008.

6. Ионов С. Г., Павлов A.A. Савченко Д. В., Селезнев А. Н., Авдеев В. В., Фокин.

B.П., Обыденная Н. П. Способ получения электроконтактной прокладки (варианты). Патент РФ на изобретение № 2 343 112 от 10.01.2009.

7. Павлов A.A., Меркушев В. И., Бучнев JI.M., Архангельский И. В., Ионов С. Г., Авдеев В. В., Савченко Д. В. Способ изготовления биполярной пластины для топливного элемента и биполярная пластина, полученная указанным способом. Патент РФ на изобретение № 2 346 361 от 10.02.2009.

8. Матвеев А. Т., Свиридов A.A., Ионов С. Г., Савченко Д. В., Селезнев А. Н., Павлов A.A., Козлов A.B., Сорокина Н. Е., Авдеев В. В. Способ непрерывного пиролитического насыщения пористого длинномерного материала и устройство для его осуществления. Патент РФ на изобретение № 2 366 606 от 10.09.2009.

9. Авдеев В. В., Савченко Д. В., Афанасов И. М., Свиридов A.A., Сорокина Н. Е., Матвеев А. Т., Селезнев А. Н., Годунов И. А., Ионов С. Г. Способ получения электронагревательного элемента и электронагревательный элемент. Патент РФ на изобретение № 2 387 106 от 20.04.2010.

Ю.Савченко Д. В., Котосонов A.C., Кульбачинский В. А., Кречетов A.B., Ионов.

C.Г. Электрофизические свойства фольги из терморасширенного графита. // Материалы конференции. Пятая Международная конференция «Углерод: фундаментальные проблемы пауки, материаловедение, технология». 2006. Москва. С. 157.

П.Савченко Д. В., Сердан A.A., Ионов С. Г. Механические свойства фольги из терморасширенного графита. // Материалы конференции. Пятая Международная конференция «Углерод: фундаментальные проблемы науки, материаловедение, технология». 2006. Москва. С. 159.

12.Savchenko D.V., Kotosonov A.S., Kulbachinskii V.A., Krechetov A.V., Ionov S.G. Electrical conductivity of graphite foils. // Материалы конференции. ISIC'14. 14th International Symposium on Intercalation Compounds. 2007. Seoul. Korea. P. 118.

13.Саввин C.H., Дунаев A.B., Савченко Д. В. Новые углеграфитовые нанокомпозиты на основе низкоплотпой графитовой фольги. // Материалы конференции. Выставка-семинар «Новые наноструктурные и углеродные материалы». 2007. Братислава. Словакия. С. 29.

14.Efimova Е., Syrtsova D., Shornikova О., Savchcnko D. Gas separation properties of foils based on exfoliated graphite. // Membrane science and technologies conference of visegrad countries. Siofok. Hungary. September 2−6. 2007. P.46.

15.Савченко Д. В. Электрофизические и механические свойства углерод-углеродных композиционных материалов на основе терморасширенного графита. // Материалы конференции. XV Международная конференция студентов, аспирантов и молодых ученых «ЛОМОНОСОВ-2008». Секция «Химия». 2008. Москва. С. 406.

16.Савченко Д. В., Ионов С. Г., Авдеев В. В. Электрофизические и теплофизические свойства композиционных материалов на основе наноуглеродных слоев с низким порогом перколяции. // Материалы конференции. Rusnanotech'08. Международный форум по нанотехнологиям.

2008. Москва. Т.1. С. 379−381.

17.Савченко Д. В., Ионов С. Г. Авдеев В.В. Механические и электрофизические свойства нанокомпозитов на основе терморасширенного графита. // Материалы конференции. Rusnanotech'08. Международный форум по нанотехнологиям. 2008. Москва. Т.1. С. 518−520.

18.Савченко Д. В. Грачев М.Е. Графитовая фольга, модифицированная антиоксидантами. // Материалы конференции. XVI Международная конференция студентов, аспирантов и молодых ученых «JIOMOHOCOB-2009». Секция «Химия». 2009. Москва. С. 406.

19.Savchenko D.V., Grachev М.Е., Sorokina N.E., Ionov S.G. Graphite foil with antioxidative properties. // Материалы конференции. ISIC'15. 15th International Symposium on Intercalation Compounds. 2009. Beijing. China. P. 70.

20.Sorokina N.E., Savchenko D.V. Ionov S.G., Tikhomirov A.S., Nikol’skaya I.V., Avdeev V.V. Low-dense carbon material modified with pyrolitic carbon. // Материалы конференции. ISIC'15. 15th International Symposium on Intercalation Compounds. 2009. Beijing. China. P. 88.

21.Savchenko D.V., Sizov A.I., Ionov S.G. The obtaining of carbon-carbon composites based on expanded graphite and preceramic polymers. // Материалы конференции. ISIC'15. 15th International Symposium on Intercalation Compounds.

2009. Beijing. China. P. 90.

22.Savchenko D.V., Ionov S.G. Physical properties of carbon composite mayerials with low percolation threshold. // Материалы конференции. ISIC'15. 15th.

International Symposium on Intercalation Compounds. 2009. Beijing. China. P. 126.

23.Савченко Д. В., Сизов А. И., Булычев Б. М. Модификация низкоплотных углеродных материалов продуктами термолиза поли (гидрокарбинов). // Материалы конференции. Шестая Международная конференция «Углерод: фундаментальные проблемы науки, материаловедение, технология». 2009. Троицк. С. 200.

24.Савченко Д. В. Сердан А.А. Электропроводность и теплопроводность гетерогенных систем стеарин — углеродный наполнитель. // Материалы конференции. XVII Международная конференция студентов, аспирантов и молодых ученых «ЛОМОНОСОВ-2010». Секция «Химия». 2010. Москва.

25.Gabelchenko A.I., Savchenko D.V., Ionov S.G. Chemical and physical properties of expanded graphite modified by boron oxide. // Материалы конференции. Carbon2010. The Annual World Conference on Carbon. 2010. USA. Clemson. ID 262.

26.Gabelchenko А.1., Savchenko D.V., Sizov A.I., Ionov S.G. Physical and chemical properties of carbon-carbon composite based on expanded graphite. // Материалы конференции. Carbon2010. The Annual World Conference on Carbon. 2010. USA. Clemson. ID 264.

Показать весь текст

Список литературы

  1. S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva 1.V., Firsov A.A. Electric field effect in atomically thin carbon films. // Science. 2004. V.306. N.5696. P.666−669.
  2. Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. // Reviews of Modern Physics. 2009. V.81. P. 109−162.
  3. C.B., Новоселов К. С., Гейм A.K. Электронный транспорт в графене. // Успехи Физических Наук. 2008. Т. 178. №.7. С.776−780.
  4. Chung D.D.L. Flexible graphite for gasketing, adsorption, electromagnetic interference shielding, vibration damping, electrochemical applications, and stress sensing. // J. Mat. Eng. Perf. 2000. V.9. N.2. P.161−163.
  5. Chugh R., Chung D.D.L. Flexible graphite as a heating element. // Carbon. 2002. V.40. N.13. P.2285−2289.
  6. Fu Y., Hou M., Liang D., Yan X., Fu Y" Shao Z., Hou Z., Ming P., Yi B. The electrical resistance of flexible graphite as flowfield plate in proton exchange membrane fuel cells. //Carbon. 2008. V.46. N.l. P. 19−23.
  7. Heimann R.B., Evsykov S.E., Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hydridization // Carbon. 1997. V.35. N.10−11. P.1654−1658.
  8. Bernal J.D. The structure of graphite. // Proc. of the Royal Soc. of London. Series A. 1924. V.106. P.749−773.
  9. O.B., Яминский И. В. Зондовая микроскопия поверхности графита с атомным разрешением. // Успехи химии. 2006. Т.75. № 1. С.27−35.
  10. Paredes J.I., Martynez-Alonso A., Tascon J.M.D. Triangular versus honeycomb structure in atomic-resolution STM images of graphite // Carbon. 2001. V.39. P.476−479.
  11. A.P., Льюис Ф. А. Графит и его кристаллические соединения. М.: Мир. 1965.256с.
  12. Spain I.L. Electronic transport properties of graphite, carbons and related materials. // Chem. Phys. Carbon. 1981. V. 16. P. 1−86.
  13. Свойства конструкционных материалов на основе углерода. Под ред. СоседоваВ.П. М.: Металлургия. 1975. 336с.
  14. Bayot V., Piraux L" Michenaud J.-P., Issi J.-P., Lelaurain M., Moor A. Two-dimensional weak localization in partially graphitic carbon. // Phys. Rev. B, 1990. V.41. N.17. P. l 1770−11 779.
  15. Simonis P., Goffaux C. Thiry P.A., Biro L.P., Lambin Ph., Meunier V. STM study of a grain boundary in graphite // Surface Science. 2002. V.511. P.319−322.
  16. C.B. Физика углеродных материалов. Челябинск: Металлургия. 1990. 336с.
  17. Moore A.W. Highly oriented pyrolytic graphite. // Chem. Phys. of Carbon. 1973. V.ll.P.69−187.
  18. Dolling G., Brockhouse B.N. Lattice vibration in pyrolytic graphite// Phys. Rev. 1962. V.128B. N.3. P. l 120−1123.
  19. DeSorbo W., Tyler W.W. The specific heat of graphite from 13 to 300 K. // J. Chem. Phys. 1953. V.21. P.1660−1663.
  20. Nelson J.B. Riley D.P. The thermal expansion of graphite from 15 to 800° C. Part I. Experimental. // Proc. Phys. Soc. 1945. V.57. N.6. P.477−486.
  21. Bailey A.C. Yates B. Anisotropic thermal expansion of pyrolytic graphite at low temperatures. // J. Appl. Phys. 1962. V.41. N.13. P.5088−5091.
  22. И.М. О тепловых свойствах цепных и слоистых структур при низких температурах. //ЖЭТФ. 1952. Т.22. №.4. С.475−483.
  23. Primak W., Fuchs L. H. Electrical conductivities of natural graphite crystals. // Phys. Rev. 1954. V.95. P.22−30.
  24. Primak W. Fuchs L. H. Radiation damage to the electrical conductivities of natural graphite crystals. // Phys. Rev. 1956. V.103. P.541−544.
  25. Dutta A.K. Electrical conductivity of single crystals of graphite. // Phys. Rev. 1953. V.90. P. 187−192.
  26. B.C., Виргильев Ю. С., Костиков В. И., Шипков H.H. Искусственный графит. М.: Металлургия. 1986. 272с.
  27. А.С. Электропроводность углеродных материалов со структурой квазидвумерного графита. // ФТТ. 1989. Т.31. С. 146−152.
  28. Wallace P.R. The band theory of graphite. // Phys. Rev. 1947. V.71. N.9. P.622−634
  29. Rudorf U. Graphite intercalation compounds. // Adv. in Inorg. Chem. and Radiochem. 1959. V.l. P.223−266.
  30. Janot R., Conard., Marassi R., Tossici R., Sklovsky D., Guerard D. Synthesis of superdence lithium-GIC by ball-milling. // 11th International symposium on intercalation compounds. Moscow. Russia. 2001. P.67.
  31. Ю.Н., Вольпин M.B. Слоистые соединения графита со щелочными металлами. //Успехи химии. 1971. Т.49. № 9. С.1568−1592.
  32. Fischer J.E., Kim H.J., Cajipe V.B. Neutron-diffraction studies of BaC6: c-axis compressibility, carbon-carbon bond length, and charge transfer. // Phys. Rev. B. 1987. V.36. N.8. P.4449−4451.
  33. Herold A. Crystallo-chemistry of carbon intercalation compounds. // Intercalated Layer Mat. 1979. V.6. P.321−328.
  34. Herold A. Rechereches sur les composes d’insertion du graphite. // Bull. Soc. Chim. France. 1955. V.l. P.999−1012.
  35. Billaud D., Herold A. Nouvelle methode de preparation de composes graphitelithium. // Carbon. 1979. V.17. P.183.
  36. Avdeev V.V., Monyakina L.A., Nikol’skaya I.V. The Potentiometrie investigations of graphite hydrogensulfate chemical synthesis (oxidizer-(NH4)2S208). // Carbon. 1994. V.32. N.3. P.541−542.
  37. Avdeev V.V., Monyakina L.A., Nikol’skaya I.V., Sorokina N.E., Semenenko K.N. The choice of oxidizers for graphite hydrogenosulfate chemical synthesis. // Carbon. 1992. V.30. N.6. P.819−823.
  38. B.B., Сорокина H.E., Никольская И. В. Монякина JI.A., Воронкина A.B. Синтез соединений внедрения в системе графит—HN03-H2S04 // Неорган. Мат. 1997. Т.ЗЗ. N.6. С.699−702.
  39. Avdeev V.V., Martynov I.U., Nikol’skaya I.V., Monyakina L.A., Sorokina N.E. Investigation of the Graphite-H2S04-gaseous oxidizer (Cl2, 03, S03) system. // J. Phys. Chem. Solids. 1996. V.57. N.6−8. P.837−840.
  40. Rudorf W., Hoffman U. Uber graphitsaltse. // Z. Anorg. Allg. Chemie. 1938. V.238. P. l-50.
  41. Scharff P. Elektrochemische untersuchngen an graphitsalzen mit HN03, НСЮ4, HRe04 und halogenierten essigsauren. // Z. Naturlorsh. B. 1989. V.44. N.7. P.772−777.
  42. Martin Rodriguez A., Valerga Jimenez P. S. Some new aspects of graphite oxidation at 0 °C in a liquid medium. A mechanism proposal for oxidation to graphite oxide. // Carbon. 1986. V.24. N.2. P.163−167.
  43. B.B. Соединения внедрения в графит и новые углеродные материала на их основе: синтез, физико-химические свойства, применение. // Диссертация на соискание ученой степени доктора хим. наук. Химический фак-т МГУ. Москва. 1996. 403с.
  44. Yazami R., Touzain P. A reversible graphite-lithium negative electrode for electrocemical generators. // J. Power Sources. 1983. V.9. P.365−371.
  45. Safran S.A. Cooperative effects and staging in graphite intercalation compounds. // Synthetic Metals. 1980. V.2. P. 1−15.
  46. Safran S.A., Hamann D.R. Electrostatic interaction and staging in graphite intercalation compounds. //Phis. Rev. 1980. V.22. P.606−612.
  47. Safran S.A., Hamann D.R. Self-consistent charge densities, band structures and staging energies of graphite intercalation compounds. // Phis. Rev. 1981. V.23. P.565−574.
  48. Daumas N., Herold A. On the relation between phases and reactions mechanisms in intercalated graphites. // CR Acad. Sei. 1969. V. C268. P.373−375.
  49. И.М. Структурные особенности бисульфата графита. // Химия твердого топлива. 1989. Т.5. С. 136 139.
  50. Aronson S., Lemont S., Weiner J. Determination of the H2S04: HS04″ and HC104: C104~ rations in graphite lamelar compounds. // Inorg. Chem. 1971. V.10. P.1296−1298.
  51. Shioama H., Fujii R. Electrochemical reactions of stage 1 sulfuric acid graphite intercalation compounds. // Carbon. 1987. V.25. P.771−774.
  52. A.B., Макарова Jl.B., Чуйко A.A. О взаимодействии графита с пероксодисерной кислотой. // Ж. Неорг. Химии. 1989. Т.34. С.351−357.
  53. Touzain P. Orientation of nitric acid molecules in graphite nitrate. // Synthetic Metals. 1979. V.l. P.3−11.
  54. Foley G.M.T., Zeller C., Falardeau E.R., Vogel F.L. Room temperature electrical conductivity of a highly two dimensional synthetic metal: AsF5-graphite. // Solid State Commun. 1977. V.24. P.371−375.
  55. Vogel F.L. In plane electrical resistivity of nitric acid intercalated graphite. // Carbon. 1979. V. l7. P.255−257.
  56. Savoskin M.V., Yaroshenko A.P., Whyman G.E., Mestechkin M.M., Mysyk R.D., Mochalin V.N. Theoretical study of stability of graphite intercalation compounds with Brensted acids. // Carbon. 2003. V.41. P.2757−2760.
  57. Inagaki M. On the formation and decomposition of graphite-bisulfate. // Carbon. 1969. V.4. P.137−141.
  58. Herold A. Reflections sur la synthese des composes lamellaires mater. // Sci. Eng. 1977. V.31. P. l-16.
  59. H.E., Мудрецова C.H., Майорова А. Ф., Авдеев В. В., Максимова Н. В. Термические свойства соединений внедрения HN03 в графит. // Неорг. Мат. 2001. Т.37. № 2. С.203−206.
  60. Ubbelohde A.R. Problems of electrovalency of graphite. // Carbon. 1964. V.2. P.23−26.
  61. Savoskin M.V., Jaroshenko A.P. New kinetic model for graphite nitrate hydrolyses. // 9th International symposium on intercalation compounds. Bordo. France. 1997. P.19.
  62. Titelman G.I., Gelman V.N., Isaev Yu.V., Novikov Yu.N. Investigation of the exfoliation of the hydrolysis products of the graphite bisulfate and nitrate. // Mat. Sci. Forum. Intercalation Compounds ISIC-6. 1992. V.91−93. P.213−218.
  63. W. // German Patent No 66 804. 1891.
  64. Aylesworth J.W. Expanded graphite and composition thereof. // US Patent 1 137 373. 1916.
  65. Ubbelohde A.R. Electrical properties and phase transformations of graphite nitrates //Proc. of the Royal Soc. of London. Series A. 1968. V.304. P.25−43.
  66. Chung D.D.L. Review. Exfoliation of graphite. // J. Mater. Sci. 1987. V.22. P.4190−4198.
  67. Inagaki M., Kang F., Toyoda M. Exfoliation of graphite via intercalation compounds. // Chem. Phys. Carbon. 2004. V.29. P. 1−69.
  68. Martin W.H., Brocklehurst J.E. The thermal expansion behaviour of pyrolytic graphite-bromine residue compounds. // Carbon. 1964. V.l. P.133−134.
  69. Mazieres C., Colin G., Jegoudez J., Setton R. Mobility of bromine in its graphite and pyroearbon residue compounds. // Carbon. 1975. V.13. P.289−292.
  70. Anderson S.H., Chung D.D.L. Exfoliation of intercalated graphite. // Carbon. 1984. V.22.P. 253−263.
  71. Anderson S.H., Chung D.D.L. Exfoliation of single crystal graphite and graphite fibers intercalated with halogens. // Synth. Met. 1983. V.8. N.3−4. P.343−349.
  72. Dowell M.B. In exfoliation of intercalated graphites. Part I. Effect of graphite crystallinity. // 12th Biennial Conferences on Carbon. Pittsburgh. USA. 1975. P.31.
  73. Higashida Y., Kamada K. Mechanism of flaking in pyrolytic graphite on ion bombardments — 1. Stress fields around a penny-shaped crack in the sub-surface layer. // J. Nucl. Mater. 1978. V.73. N.l. P.30−40.
  74. Furdin G. Exfoliation process and elaboration of new carbonaceous materials. // Fuel. 1998. V.77. N.6. P.479185.
  75. Thorny A., Ousset J.C., Furdin G., Pelletier J.M., Vannes A.B. Exfoliation du graphite par traitement laser d’un compose intercalaire. // J. de Physique Colloque Cl. 1987. V.48.P.115−118.
  76. Sorokina N.E., Redchitz A.V., Ionov S.G., Avdeev V.V. Different exfoliated graphite as a base of sealing materials. // J. of Phys. Chem. Solids. 2006. V.67. P. 12 021 204.
  77. Kang F., Zheng Y.P., Wang H.W., Nishi Y., Inagaki M. Effect of preparation conditions on the characteristics of exfoliated graphite. // Carbon. 2002. V.40. N.9. P.1575−1581.
  78. Inagaki M., Tashiro R., Washino Y., Toyoda M. Exfoliation process of graphite via intercalation compounds with sulfuric acid. // J. Phys. Chem. Solids. 2004. V.65. P.133−137.
  79. Chung D.D.L., Wong L.W. Electromechanical behavior of graphite intercalated with bromine. // Carbon. 1986. V.24. P.639−647.
  80. Hirschvogel A., Zimmermann H. Exfoliation of intercalated graphite using laser and infrared radiation. // European Patent EP87489. 1983.
  81. Kwon O.-Y., Choi S.-W., Park K.-W., Kwon Y.-B. The preparation of exfoliated graphite by using microwave. // J. Ind. Eng. Chem. 2003. V.9. N.6. P.743−774.
  82. Falcao E.H.L., Blair R.G., Mack J .J., Viculis L.M., Kwon C.-WBendikov M., Kaner R.B., Dunn B.S., Wudl F. Microwave exfoliation of a graphite intercalation compound. // Carbon. 2007. V.45. P.1364−1369.
  83. Tryba B., Morawski A.W., Inagaki M. Preparation of exfoliated graphite by microwave irradiation. // Carbon. 2005. V.43. P.2417−2419.
  84. Kuga Y, Oyama T., Wakabayashi T., Chiyoda H., Takeuchi K. Laser-assisted exfoliation of potassium-ammonia-graphite intercalation compounds. // Carbon. 1993. V.31. N.l. P.201−204.
  85. Herold A., Petitjean D., Furdin G., Klatt M. Exfoliation of graphite intercalation compounds: classification and discussion of the processes from new experimental data relative to graphite-acid compounds. // Mat. Sci. Forum. 1994. V.152−153. P.281−288.
  86. Inagaki M., Iwashita N., Hishiyama Y. Criteria for the Intercalation of sulfuric acid. // Mol. Cryst. Liq. Cryst. 1994. V.244. P.89−94.
  87. Yoshida A. Hishiyama Y., Inagaki M. Exfoliated graphite from various intercalation compounds. // Carbon. 1991. V.29. N.8. P.1227−1231.
  88. Shane J.H., Russel R.J., Bochman R.A. Flexible graphite material of expanded particles compressed together. // Patent US3404061. 1968.
  89. Klatt M., Furdin G., Herold A., Dupont-Pavlovsky N. Etude de l’exfoliation des composes d’insertion graphite-trioxyde de soufre. // Carbon. 1986. V.24. N.6. V.731−735.
  90. Petitjean D., Klatt M., Furdin G., Herold A. Exfoliation exothermique des composes d’insertion du carbone contenant de l’acide perchlorique. // Carbon. 1994. V.32. N.3.P.461−467.
  91. Berger D., Maire J. Proprietes physiques du graphite expanse recomprime. // J. Mater. Sci. Eng. 1977. V.31. P.335−339.
  92. Wang Z.D., Inagaki M. Formation of metal chloride-graphite intercalation compounds in molten salts. // Synth. Met. 1988. V.25. N.2. P. 181−187.
  93. Soneda Y., Inagaki M. Formation and stability of new FeCl3-graphite intercalation compounds. // Solid State Ionics. 1993. V.63−65. P.523−527.
  94. Zhang Z., Lerner M.M. Preparation, characterization, and exfoliation of graphite perfluorooctanesulfonate. // Chem. Mat. 1996. V.8. N.l. P.257−263.
  95. Messaoudi A., Inagaki M., Beguin F. Reactions of metal chloride-graphite intercalation compound with hydrazine at room temperature. // Mater. Sci. Forum. 1992. V.91−93. P.811−816.
  96. И.Г., Карпов И. И., Приходько В. П., Шай В.М. Физико-химические свойства графита и его соединений. Киев: Наукова Думка. 1990. 200с.
  97. Inagaki M., Nakashima M. Graphite exfoliated at room temperature and its structural annealing. // Carbon. 1994. V.32. N.7. P.1253−1257.
  98. Bockel C., Thomy A. Adsorption properties of exfoliated graphite’s prepared by dissociation of different intercalation compounds. //Carbon. 1981. V.19. P.142−147.
  99. Inagaki M., Suwa T. Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs. // Carbon. 2001. V.39. N.6. P.915−920,
  100. Patrick J.W. Porosity in Carbons. London: Arnold Publishing. 1995. 403p.
  101. Nishi Y., Iwashita N., Sawada Y., Inagaki M. Evaluation of pore structure by mercury porosimeter. // TANSO. 2002. V.201. P.31−34.
  102. Celzard A., Mareche J.F., Furdin G. Surface area of compressed expanded graphite. // Carbon. 2002. V.40. P.2713−2718.
  103. Celzard A., Marechee J.F., Furdin G. Modeling of exfoliated graphite. // Progress in Mat. Sci. 2005. V.50. P.93−179.
  104. Bonnissel M., Luo L., Tondeur D. Compacted exfoliated natural graphite as heat conduction medium. // Carbon. 2001. V.39. P.2151−2161.
  105. Olives R., Mauran S. A highly conductive porous medium for solid-gas reactions: Effect of the dispersed phase on the thermal tortuosity. // Transport in Porous Media. 2001. V.43. P.377−394.
  106. Py X., Olives R., Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. // Int. J. of Heat and Mass Transfer. 2001. V.44. P.2727−2737.
  107. Cesa S.A., Improvements in or relating to the extinction of metal fires. // Patent UK1588876. 1981.
  108. Zhang Z., Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material. // Energy Conversion and Management. 2006. V.47.N.3. P.303−310.
  109. Furdin G., Mareche J.F., Herold A. Graphite micronique plat, procede pour sa preparation et ses applications. // Patent FR91−12 663. 1991.
  110. Celzard A., McRae E" Mareche J.F., Furdin G., Dufort M., Deleuze C. Composites based on micro-sized exfoliated graphite particles: electrical conduction, critical exponents and anisotropy. // J. Phys. Chem. Solids. 1996. V.57. N.6−8. P.715−718.
  111. Toyoda M., Inagaki M. Heavy oil sorption using exfoliated graphite: New application of exfoliated graphite to protect heavy oil pollution. // Carbon. 2000. V.38. N.2. P.199−210.
  112. Zheng Y.-P., Wang H.-N., Kang F.-Y., Wang L.-N., Inagaki M. Sorption capacity of exfoliated graphite for oils-sorption in and among worm-like particles. // Carbon. 2004. V.42. P.2603−2607.
  113. Shen W.C., Wen S.Z., Cao N.Z., Zheng L., Zhou W., Liu Y.G., Gu J.L. Expanded graphite a new kind of biomedical material. // Carbon. 1999. Y.37. N.2. P.356−358.
  114. Luo X., Chung D.D.L. Vibration damping using flexible graphite. // Carbon. 2000. V.38. N.10.P.1510−1512.
  115. Yazici M.S., Krassowski D., Prakash J. Flexible graphite as battery anode and current collector. //J. of Power Sources. 2005. V.141. P. 171−176.
  116. Mitra S., Sampath S. Electrochemical capacitors based on exfoliated graphite electrodes. // Electrochemical and Solid-State Letters. 2004. V.7. N.9. P. A264-A268.
  117. Ramesh P., Suresh G.S., Sampath S. Selective determination of dopamine using unmodified, exfoliated graphite electrodes. // J. of Electroanalytical Chemistry.2004. Y.561. P.173−180.
  118. Xu Y., Yan X.-T. Chemical vapour deposition an integrated engineering design for advanced materials. London: Springer-Verlag Limited. 2010. 352p.
  119. Spear K.E. Principles and applications of chemical vapour deposition. // Pure Appl Chem. 1982. V.54. P.1297−1311.
  120. Bickerdike R.L. Brown A.R.G. Hughes G. Ranson H. The deposition of pyrolytic carbon in the pores of bonded and unbounded carbon powders. // Proceedings of 5th conference on carbon. 1962. V.l. New York: Pergamon. P.575−583.
  121. Jenkins W.C. Method of depositing metals and metallic compounds throughout the pores of a porous body. // Patent US3160517. 1964.
  122. Bokros J. C. Deposition, structure and properties of pyrolytic carbon. // Chem. Phys. Carbon. 1969. V.5. P. l-118.
  123. Bokros J.C., La Grange L.D., Schoen F.J. Control of structure of carbon for use in bioengineering. // Chem. Phys. Carbon. 1973. V. 9. P. 103−172.
  124. Kotlensky W.V. Deposition of pyrolytic carbon in porous solid. // Chem. Phys. Carbon. 1973. V.9 P. 173−262.
  125. Fitzer E, Fritz W, Schoch G. The chemical vapor impregnation of porous solids, modeling of the CYI-process. // J. de Physique IV. 1991. V.2. N.2. P. 143−150.
  126. Besmann T.M., Sheldon B.W., Lowden R.A., Stinton D.P. Vapor-phase fabrication and properties of continuous-filament ceramic composites. // Science. 1991. V.253.P.1104−1109.
  127. Christin F. Design, fabrication and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites. // Adv. Eng. Mater. 2002. V.4. P.903−912.
  128. Morgan P. Carbon fibres and their composites. London: Taylor&Francis.2005. 565p.
  129. Gupte S.M., Tsamopoulos J. A. Densification of porous materials by chemical vapor infiltration. // J. Electrochem. Soc. 1989. V.136. P.555−561.
  130. Caputo A.J., Lackey W.J. Fabrication of fibre-reinforced ceramic composites by chemical vapor infiltration. // Ceram. Eng. Sci. Proc. 1984. V.5. P.654−667.
  131. Biyant W.A. Producing extended area deposits of uniform thickness by a new chemical vapour deposition technique. // J. Cryst. Growth. 1976. V.35. P.257−261.
  132. Sugiyama K., Nakamura T. Pulse CVI of porous carbon. // J. Mater. Sci. Lett. 1987. V.6.P.331−333.
  133. Naslain R.R., Pailler R., Bourrat X., Bertrand S., Heurtevent F., Dupel P., Lamouroux F. Synthesis of highly tailored ceramic matrix composites by pressure-pulsed CVI. // Solid State Ionics. 2001. V. 141−142. P.541−548.
  134. Lieberman M.L., Pierson H.O. Effect of gas phase conditions on resultant matrix pyrocarbons in carbon/carbon composites. // Carbon. 1974. V.12. N.3. P.233−241.
  135. Oberlin A. Review. Pyrocarbons. // Carbon. 2002. V. 40, N. 1. P.7−24.
  136. Oberlin A. High-resolution TEM studies of carbonization and graphitization. // Chem. Phys. Carbon. 1989. V.22. P. l-143.
  137. Loll P., Delhaes P., Pacault A., Pierre A. Diagramme d’existence et proprietes de composites carbone-carbone. // Carbon. 1977. V.15. N.6. P.383−390.
  138. Becker A., Huttinger K.J. Chemistry and kinetic of chemical vapor deposition of pyrocarbon IV: pyrocarbon deposition from methane in the low temperature regime. // Carbon. 1998. V.36. N.3. P.213−224.
  139. Becker A., Hu Z.J., Huttinger K.J. A hydrogen inhibition model of deposition from hydrocarbon. // Fuel. 2000. V.79. P.1573−1580.
  140. Huttinger K.J. CVD in hot wall reactors. The interaction between homogeneous gas-phase and heterogeneous surface reactions. // Adv. Mater. CVD. 1998. V.44. P.151−158.
  141. Delhaes P. Fibers and Composites. World of Carbon. London: Taylor&Francis. 2003. 245p.
  142. Frenklach M., Wang H. Detailed mechanism and modeling of soot particle formation. // Springer Series in Chemical Physics. 1994. V.59. P. 162−190.
  143. Marinov H., Pitz W., Westbrook C.K., Castaldi M.J., Senkan S.M. Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixedmethane and ethane flames. // Combustion Sci. and Tech. 1996. V. l 16−117. P.211−218.
  144. Sarofim A.F., Longwell J.P., Wornat M.J., Mukherjee J. The role of biaryl reactions in PAH and soot formation. // Springer Series in Chemical Physics. 1994. V.59. P.485−500.
  145. Benzinger W., Becker A., Huttinger K. Chemistry and kinetic of chemical vapour deposition of pyrocarbon: I. Fundamentals of kinetics and chemical reaction engineering. // Carbon. 1996. V.34. N.8. P.957−966.
  146. Benzinger W., Huttinger K.J. Chemical vapour infiltration of pyrocarbon: I. Some kinetic considerations. // Carbon. 1996. V.34. N.12. P.1465−1471.
  147. Dupel P, Bourrat X, Pailler R. Stucture of pyrocarbon infiltration by pulse-CVI. // Carbon. 1995. V.33. P. l 193−1204.
  148. Hoffman W.P., Vastola F.J., Walker P.L. Pyrolysis of propylene over carbon active sites. I: Kinetics. // Carbon. 1985. V.23. N.2. P. 151−161.
  149. Dupel P., Pailler R., Langlais F. Pulse chemical vapour deposition and infiltration of pyrocarbon in model pores with rectangular cross-sections. Part I. Study of the pulsed process of deposition. //J. of Mat. Sci. 1994. V.29. P.1341−1347.
  150. Dupel P., Pailler R., Bourrat X., Naslain R. Pulse chemical vapour deposition and infiltration of pyrocarbon in model pores with rectangular cross-sections. Part II. Study of the infiltration. // J. of Mat. Sci. 1994. V.29. P. 1056−1066.
  151. Chen С. J., BackM.H. The simultaneous measurement of the rate of formation of carbon and of hydrocarbon products in the pyrolysis of methane. // Carbon. 1979. V.17.N.2. P.175−180.
  152. Wynne K.J., Rice R.W. Ceramic via polymer pyrolysis. // Ann. Rev. Mater. Sci. 1984. V.14. P.297−334.
  153. Gmelin. Handbook of Inorganic Chemistry. Silicon. Berlin: Springer. 1986. B3.P.15.
  154. Weiss J. Silicon nitride ceramics: composition, fabrication parameters, and properties. //Ann. Rev. Mater. Sci. 1981. V.ll. P.381−384.
  155. В.И., Щур Д.В. Тарасов Б. П., Шульга Ю. М., Черногоренко А. В., Пищук В. К., Загинайченко С. Ю. Фуллерены основа материалов будущего. Киев: АДЕФ. 2001. 147с.
  156. Bianconi Р.А., Joray S.J., Aldrich B.L., Sumranjit J., Duffy D.J., Long D.P., Lazorcik J.L., Raboin L., Keams J.K., Smulligan S.L., Babyak J.M. Diamond and diamond-like carbon from a preceramic polymer. // J. Am. Chem. Soc. 2004. V.126. P.3191−3202.
  157. Visscher G.T., Nesting D.C., Badding J.V., Bianconi P.A. Poly (phenylcarbyne): a polymer precursor to diamond-like carbon. // Science. 1993. V.260. P. 1496−1499.
  158. Visscher G.T., Bianconi P.A. Synthesis and characterization of polycarbynes, a new class of carbon-based network polymers. // J. Am. Chem. Soc. 1994. V.116. РД805−1811.
  159. Sun Z., Shi X., Tay B.K., Flynn D., Wang X., Zheng Z., Sun Y. Low pressure polymer precursor process for synthesis of hard glassy carbon and diamond films. // Diamond Relat. Mater. 1997. V.6. P.230−234.
  160. Huang S.M., Lu Y.F., Sun Z., Fuo X.F. Diamond-like films formed by pulsed laser irradiation of phenylcarbyne polymer // Surf. Coat. Technol. 2000. V.125. P.25−29.
  161. В.К., Кучеров А. В., Сизов А. И., Звукова Т. М., Булычев Б. М., Бабаев В. Г., Гусева М. Б. Синтез различных модификаций углерода при термолизе поли(гидрокарбина). // Сверхтвердые материалы. 2007. № 4. С.30−34.
  162. Кучеров А. В, Генчель В. К., Сизов А. И., Звукова Т. М., Булычев Б. М., Бабаев В. Г. Гусева М.Б. Синтез карбина термолизом поли (гидрокарбина). // XVIII Менделеевск. Съезд. Москва. 2007. T.I. С. 299.
  163. .М., Генчель В. К., Звукова Т. М., Сизов А.И., Александров
  164. A.Ф., Коробов Ю. А., Большаков А. П., Герасименко В. А., Канзюба М. В., Седов
  165. .М., Звукова Т. М., Сизов А. И., Александров А. Ф., Коробов Ю. А., Канзюба М. В., Хомич А. В. Поли(нафтилгидрокарбин): синтез, изучение и применение для получения тонких алмазных пленок. // Известия РАН. Сер.хим. 2010. № 9. С.227−228.
  166. McKee D.W. Review. Oxidation protection of carbon materials. // Chem. Phys. Carbon. 1991. V.23. P.173−222.
  167. Johnson H.V. Oxidation resisting carbon article. // Patent US1948382. 1934.
  168. Fisher J.C. Winter L. L Oxidation resistant carbon refractory articles. // Patent US3174872. 1965.
  169. Weil W.M. Increased oxidation resistance of carbon. // Patent FR1446038.1966.
  170. Lu W., Chung D.D.L. Oxidation protection of carbon materials by acid phosphate impregnation. // Carbon. 2002. V.40. P. 1249−1254.
  171. Wallouch R.W. Oxidation resistant graphite and carbon bodies. // Patent US3351477. 1966.
  172. Strife J.R., Sheehan J.E. Ceramics coatings for carbon-carbon composites. // Ceramic Bull. 1988. V.67. P.369−374.
  173. McKee D.W., Siemers P.A. Oxidation behavior of particulate and fibrous silicon carbide. // Int. J. High Tech. Ceramics. 1988. V.4. P. 11−29.
  174. Janes M., Taylor S.A. Oxidation-resistant graphite article and method. // Patent US3065088. 1962.
  175. Nissan Chemical Ind. A process of coating elemental carbon with silicon carbide.//Patent BR913 577. 1962.
  176. Galasso R.D., Veltri R.D. CVD SiC pretreatment for carbon-carbon composites. // Patent US4425407. 1984.
  177. McCrary J.W., Post R.C., Aylwin J.J. Silicon carbide coating on graphite bores of heat exchanger. // Patent US3391016. 1968.
  178. Zhu Q., Qiu X., Ma C. Oxidation resistant SiC coating for graphite materials. //Carbon. 1999. V.37. P. 1475−1484.
  179. Sugiyama K., Yamamoto E. Reinforcement and antioxidizing of carbon by pulse CVI of SiC. // J. Mat. Sci. 1989. V.24. P.3756−3759.
  180. Konno H., Kinomura Т., Habazaki H., Aramata M. Formation of oxidation resistant graphite flakes by ultrathin silicone coating. // Surface & Coatings Technology. 2005. V.194.P.24−30.
  181. Бурыкина A. JL, Дубовик T.B., Евтушок T.M., Краснов A.FI. Покрытия из нитрида люиминия на графите. // Теплофизика высоких температур. 1965. Т.З. №.6. С.940−942.
  182. Itoh PI., Kato М., Sugiyama К. Oxidation resistance of AIN coated graphite prepared by plasma enhanced CVD. // Yogyo Kyokai Shi. 1986. Y.94. N.l. P.135−140.
  183. Olstowski F. Oxidation resistant graphite compositions. // Patent US3719608.1973.
  184. McKee D.W., Spiro C.L., Lamby E.J. The effects of boron additives on the oxidation behavior of carbons. // Carbon. 1984. V.22. P. 507−511.
  185. Kondo T. Ishiguro J. Watanabe N. Antioxidant for carbonaceous material and method. // Patent US4301026. 1979.
  186. Gutzeit C.L. Carbon fibers and method. // Patent US3351484. 1967.
  187. Nechepurenko A., Samuni S. Oxidation protection of graphite by BN coatings. // J. of Solid State Chemistry. 2000. V.154. P. 162−164.
  188. McKee D.W. Borate treatment of carbon fibers and carbon/carbon composites for improved oxidation resistance. // Carbon. 1986. V.24. N.6. P.737−741.
  189. Hannache H., Quenisset J.M., Naslain R. L. Fleraud. Composite materials made from a porous 2D-carbon-carbon preform densified with boron nitride by chemical vapour infiltration. // J. Mat. Sci. 1984. V.19. P.202−212.
  190. Hannache H., Naslain R., Bernard C. Boron nitride chemical vapour infiltration of fibrous materials from BCI3-NH3-FI2 or BF3-NH3 mixtures: A thermodynamic and experimental approach. // J. Less-Common Met. 1983. V.95. N.2. P.221−246.
  191. Woodley R.E. The oxidation of boronated graphite. // Carbon. 1968. V.6. N.5. P.617−626.
  192. Woodley R.E. The reaction of boronated graphite with water vapor. // Carbon. 1969. V.7. N.5. P.609−613.
  193. McKee D.W. Oxidation behavior and protection of carbon/carbon composites. // Carbon. 1987. V.25. N.4. P.551−557.
  194. Ehrburger P., Baranne P., Lahaye J. Inhibition of the oxidation of carboncarbon composite by boron oxide. // Carbon. 1986. V.24. N.4. P.495−499.
  195. McKee D.W. Spiro C.L. The effects of chlorine prctreatment on the reactivity of graphite in air. // Carbon. 1985. V.23. N.4. P.437−444.
  196. McKee D.W. Effect of adsorbed phosphorus oxychloride on the oxidation behavior of graphite. // Carbon. 1972. V.10. N.4. P.491−497.
  197. Hippo E.J., Murdie N., Kovvbel W. The effect of acid treatments on subsequent reactivity of carbon-carbon composites. // Carbon. 1989. V.27. N.3. P.331−336.
  198. Luthra K.L. Oxidation of carbon/carbon composites a theoretical analysis. // Carbon. 1988. V.26. N.2. P.217−224.
  199. Dollimore D., Heal G.R. The analysis of gas adsorption data to determine pore structure. // Surface Technology. 1978. V.6. N.4. P.231−258.
  200. Dowell M.B., Howard R.A. Tensile and compressive properties of flexible graphite foils. // Carbon. 1986. V.24. N.3. P.311−323.
  201. Ionov S.G., Avdeev V.V., Kuvshinnikov S.V., Pavlova E.P. Physical and chemical properties of flexible graphite foils. // Mol. Cryst. Liq. Cryst. 2000. V.340. N.l. P.349−354.
  202. Leng Y., Gu J., Cao W., Zhang T.-Y. Influences of density and flake size on the mechanical properties of flexible graphite. // Carbon. 1998. V.36. N.7−8. P.875−881.
  203. Persson B.N.J., Albohr O., Tartaglino U., Volokitin A.I., Tosatti E. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. // J. of Phycics: Condensed Matter. 2005. V.17. N.l. P. R1-R62.
  204. Popov V.L. Contact mechanics and friction. Physical principles and applications. Berlin: Springer-Verlag Heidelberg. 2010. 362p.
  205. А.Э., Попов В. Л. Эффект скачкообразного изменения площади контакта между поверхностями со случайными шероховатостями. // Письма в ЖТФ. 2005. Т.31. №.17. С.35−41.
  206. .В., Абрикосова И. И., Лифшиц Е. М. Молекулярное притяжение конденсированных тел. // Успехи Физических Наук. 1958. Т.64. №.3. С.493−528.
  207. Sen D., Novoselov K.S., Reis P.M., Buehler M.J. Tearing graphene sheets from adhesive substrates produces tapered nanoribbons. // Small. 2010. V.6. N.10. P.1108−1116.
  208. Viana R., Godfrin H., Lerner E., Rapp R. Unusual specific-heat contribution in exfoliated graphite. // Phys. Rev. B. 1994. V.50. N.7. P.4875−4877.
  209. Г. В. Пористые углеродные материалы типа сибунита. // Химия в интересах устойчивого развития. 2001. №.9. С.609−620.
  210. В.М., Удинцев П. Г., Ершова А. Н., Бушуев М. В. Перспективы применения углеродных композиционных материалов в химическом аппаратостроении. // Химическая Промышленность. 2003. Т.80. №.3. С.38−47.
  211. Pimenta М.А., Dresselhaus G., Dresselhaus M.S., Cancado L.G., Jorio A., Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. // Physical Chemistry Chemical Physics. 2007. V.9. P.1276−1291.
  212. Bourrat X., Fillion A., Naslain R., Chollon G., Brendle M. Regenerative laminar pyrocarbon. // Carbon. 2002. V.40. P.2931−2945.
  213. Lopez-Honorato E., Meadows P.J., Xiao P., Marsh G., Abram T.J. Structure and mechanical properties of pyrolytic carbon produced by fluidized bed chemical vapor deposition. //Nuclear Engineering and Design. 2008. V.238. P.3121−3128.
  214. Standard test method for compressibility and recovery of gasket materials. ASTM F36 09. 2009. 4p.
  215. Ahmed S., Back M. H, Roscoe J.M. A kinetic model for the low temperature oxidation of carbon: I. // Combustion and Flame. 1987. V.70. P. 1−16.
  216. Dupont-Pavlovsky N., Magne P. Krypton adsorption as a probe for surface characterization of exfoliated graphite progressively oxidized. // Carbon. 1986. V.24. N.2. P.203−209.
  217. Hahn J.R., Kang H., Lee S.M., Lee Y.H. Mechanistic study of defect-induced oxidation of graphite. // J. Phys. Chem. B. 1999. V.103. N.45. P.9944−9951.
  218. Jiang W., Nadeau G., Zaghib K., Kinoshita K. Thermal analysis of the oxidation of natural graphite effect of particle size. // Thermochimica Acta. 2000. V.351. P.85−93.
  219. Stanmore B.R., Brilhac J.F., Gilot P. The oxidation of soot: a review of experiments, mechanisms and models. // Carbon. 2001. V.39. P.2247−2268.
  220. Standard test method for arrhenius kinetic constants for thermally unstable materials. ASTM E698 05. 2005. 8p.
  221. Ozawa T. New method of analysing thermogravimetric data. // Bull. Chem. Soc. Japan. 1965. V.38, P.1881−1886.
  222. Flynn J.H., Wall L.A. A quick, direct method for the determination of activation energy from thermogravimetric data. // J. of Polymer Science Part B: Polymer Letters. 1966. V.4. N.5. P.323−328.
  223. Benoit P.M.D., Ferrillo R.G., Granzow A.H. Kinetic applications of thermal analysis a comparison of dynamic and isothermal methods. // J. of Thermal Analysis. 1985. V.30. N.4. P.869−877.
  224. Radovic L.R., Walker P.L., Jr. Jenkins R.G. Importance of carbon active sites in the gasification of coal chars. // Fuel. 1983. V.62. N.7. P.849−856.
  225. Sun Z., Shi X., Tay B.K., Flynn D., Wang X., Zheng Z., Sun Y. Low pressure polymer precursor process for synthesis of hard glassy carbon and diamond films. // Diamond Relat. Mater. 1997. V.6. P.230−234.
  226. Zhu Q., Qiu X., Ma C. Oxidation resistant SiC coating for graphite materials. //Carbon. 1999. V.37. P.1475−1484.
  227. Liu Y., Treadwell D.R., Kannisto M.R., Mueller B.L., Laine R.M. Titanium nitride/carbon coatings oil graphite fibers. // J. Am. Ceram. Soc. 1997. V.80. N.3. P.705−716.
  228. Hashishin T., Murashita J., Joyama A., Kaneko Y. Oxidation-resistant coating of carbon fibers with Ti02 by sol-gel method. // J. Ceram. Soc. Jpn. 1998. V.106. P. 1−5.
  229. Zhu Y.-C., Ohtani S., Sato Y., Iwamoto N. Formation of a functionally gradient (Si3N4 plus SiC) /carbon layer for the oxidation protection of carbon-carbon composites. // Carbon. 1999. V.37. N.9. P.1417−1423.
  230. Kobayashi K., Maeda K., Sano H., Uchiyama Y. Formation and oxidation resistance of the coating formed on carbon materials composed of B4C-SiC powders. // Carbon. 1995. V.33. N.4. P.397−403.
  231. Yamamoto O., Sasamoto T., Inagaki M. Antioxidation of carbon-carbon composites by SiC concentration gradient and zircon overcoating. // Carbon. 1995.V.33. N.4. P.359−365.
  232. Parashar V.K., Raman V., Bahl O.P. Oxidation resistant material for carbon/carbon composites by the sol-gel process. // J. Mater. Sci. Lett. 1997. V.16. N.6. P.479−481.
  233. Kawabata K., Yoshimatsu H., Fujiwara K., Mihashi H., Hiragushi K., Osaka A. Oxidation resistance of graphite powders coated with Al203-based oxides. // J. Ceram. Soc. Jpn. 1999. V.107. P.832−837.
  234. Tsou H.T., Kowbel W. Design of multilayer plasma-assisted CVD coatings for the oxidation protection of composite materials. // Surf. Coat. Technol. 1996. V.79. N. 1−3. P. 139−50.
  235. Allardice D.J., Walker Jr. P.L. The effect of substitutional boron on the kinetics of the carbon-oxygen reaction. // Carbon. 1970. V.8. N.3. P.375−385.
  236. Zhong D.H., Sano H., Uchiyama Y., Kobayashi K. Effect of low-level boron doping on oxidation behavior of polyimide-derived carbon films. // Carbon. 2000. V.38. P. l 199−1206.
  237. Lee Y.-J., Radovic L.R. Oxidation inhibition effects of phosphorus and boron in different carbon fabrics. // Carbon. 2003. V.41. P.1987−1997.
  238. Fergus J.W., Worrell W.L. Silicon-carbide/boron-containing coatings for the oxidation protection of graphite. // Carbon. 1995. V.33. N.4. P.537−543.
  239. McKee D.W., Spiro C.L., Lamby E.J. The inhibition of graphite oxidation by phoaphorus additives. // Carbon, V. 22, N. 3, 1984, p. 285−290.
  240. Wu X., Radovic L.R. Inhibition of catalytic oxidation of carbon/carbon composites by phosphorus. // Carbon. 2006. V.44. P.141−151.
  241. Chesneau M., Beguin F., Conard J., Erre R., Thebault J. The antioxidation effect of boron oxide on a pyrocarbon. // Carbon. 1992. V.30. N.4. P.714−716.
  242. Sogabe T., Okada O., Kuroda K., Inagaki M. Improvement in properties and air oxidation resistance of carbon materials by boron oxide impregnation. // Carbon. 1997. V.35. N.l. P.67−72.
  243. Moon O.M., Kang B.-C., Lee S.-B., Boo J.-H. Temperature effect on structural properties of boron oxide thin films deposited by MOCVD method. // Thin Solid Films. 2004. V.464−165. P.164−169.
  244. Cermignani W., Paulson T.E., Onneby C., Pantano C.G. Synthesis and characterization of boron-doped carbons. // Carbon. 1995. V.33. N.4. P.367−374.
  245. Jacques S., Guette A., Bourrat X., Langlais F., Guimon C., Labrugere C. LPCVD and characterization of boron-containing pyrocarbon materials. // Carbon. 1996. V.34.N.9. P. l 135−1140.
  246. Jacobsohn L.G., Schulze R.K., Maia da Costa M.E.H., Nastasi M. X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering. // Surface Science. 2004. V.572. P.418−424.
  247. Thomas J.M. Microscopic studies of graphite oxidation. // Chem. Phys. Carbon. 1965. V.l.P.1−121.
Заполнить форму текущей работой