Генетическая модификация штаммов Escherichia coli, направленная на получение продуцентов бутирата и бутанола
Диссертация
Такой двухстадийный процесс обеспечивает клетки АТФ как во время интенсивного роста культуры, так и при подготовке к споруляции, однако значительно затрудняет промышленное производство бутанола и делает его нерентабельным, по сравнению с производством из нефтяного сырья. Кроме того, С. acetobutylicum является строгим анаэробом и обладает низкими показателями роста, что приводит к его низкой… Читать ещё >
Список литературы
- Huang, H., Liu, H., and Gan, Y. R. (2010) Genetic modification of criticalenzymes and involved genes in butanol biosynthesis from biomass, Biotechnol Adv 28, 651−657.
- Qureshi, N., Ezeji, Т. C., Ebener, J., Dien, B. S., Cotta, M. A., and Blaschek, H. P. (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber, Bioresour Technol 99, 5915−5922.
- Lee, J. Y., Yang, K. S., Jang, S. A., Sung, В. H., and Kim, S. C. (2010) Engineering butanol-tolerance in escherichia coli with artificial transcription factor libraries, Biotechnol Bioeng, 28.
- Gu, Y., Jiang, Y., Wu, H., Liu, X., Li, Z., Li, J., Xiao, H., Shen, Z., Dong, H., Yang, Y., Li, Y., Jiang, W., and Yang, S. (2011) Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer, Biotechnol J 6, 1348−1357.
- Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. В., and Keasling, J. D. (2012) Microbial engineering for the production of advanced biofuels, Nature 488, 320−328.
- Zheng, Y. N., Li, L. Z., Xian, M., Ma, Y. J., Yang, J. M., Xu, X., and He, D. Z. (2009) Problems with the microbial production of butanol, J Ind Microbiol Biotechnol 36, 1127−1138.
- Inui, M., Suda, M., Kimura, S., Yasuda, K., Suzuki, H., Toda, H., Yamamoto, S., Okino, S., Suzuki, N., and Yukawa, H. (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli, Appl Microbiol Biotechnol 77, 1305−1316.
- Atsumi, S., and Liao, J. C. (2008) Metabolie engineering for advanced biofuels production from Escherichia coli, Curr Opin Biotechnol 19, 414 419.
- Rutherford, B. J., Dahl, R. H., Price, R. E., Szmidt, H. L., Benke, P. I., Mukhopadhyay, A., and Keasling, J. D. (2010) Functional genomic study of exogenous n-butanol stress in Escherichia coli, Appl Environ Microbiol 76, 1935−1945.
- Keis, S., Bennett, C. F., Ward, V. K., and Jones, D. T. (1995) Taxonomy and phylogeny of industrial solvent-producing Clostridia, Int J Syst Bacteriol 45, 693−705.
- Dabrock, B., Bahl, H., and Gottschalk, G. (1992) Parameters Affecting Solvent Production by Clostridium pasteurianum, Appl Environ Microbiol 58, 1233−1239.
- Vasconcelos, I., Girbal, L., and Soucaille, P. (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol, J Bacteriol 176, 14 431 450.
- Yan, R. T., Zhu, C. X., Golemboski, C., and Chen, J. S. (1988) Expression of Solvent-Forming Enzymes and Onset of Solvent Production in Batch Cultures of Clostridium beijerinckii («Clostridium butylicum»), Appl Environ Microbiol 54, 642−648.
- Maddox, I. S. (1989) The acetone-butanol-ethanol fermentation: recent progress in technology, Biotechnol Genet Eng Rev 7, 189−220.
- Maddox, I. S., Steiner, E., Hirsch, S., Wessner, S., Gutierrez, N. A., Gapes,
- J. R., and Schuster, K. C. (2000) The cause of «acid-crash» and «acidogenic88fermentations» during the batch acetone-butanol-ethanol (ABE-) fermentation process, JMol Microbiol Biotechnol 2, 95−100.
- Hartmanis, M. G., and Gatenbeck, S. (1984) Intermediary Metabolism in Clostridium acetobutylicum: Levels of Enzymes Involved in the Formation of Acetate and Butyrate, Appl Environ Microbiol 47, 1277−1283.
- Ballongue, J., Amine, J., Masion, E., Petitdemange, H., and Gay, R. (1986) Role of acetate and butyrate in the induction of NADH: rubredoxin oxidoreductase in Clostridium acetobutylicum., Biochimie 68, 575−580.
- Wiesenborn, D. P., Rudolph, F. B., and Papoutsakis, E. T. (1989) Phosphotransbutyrylase from Clostridium acetobutylicum ATCC 824 and its role in acidogenesis, Appl Environ Microbiol 55, 317−322.
- Sullivan, L., and Bennett, G. N. (2006) Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and SpoOA strain variants, J Ind Microbiol Biotechnol 33, 298−308.
- Papoutsakis, E. T., and Bennett, G. N. (1993) Cloning, structure, and expression of acid and solvent pathway genes of Clostridium acetobutylicum, Biotechnology 25, 157−199.
- Welch, R. W., Rudolph, F. B., and Papoutsakis, E. T. (1989) Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824), Arch Biochem Biophys 273, 309 318.
- Wiesenborn, D. P., Rudolph, F. B., and Papoutsakis, E. T. (1989) Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids, Appl Environ Microbiol 55, 323−329.
- Jones, D. T., and Woods, D. R. (1986) Acetone-butanol fermentation revisited, Microbiol Rev 50, 484−524.
- Bahl, H., Gottwald, M., Kuhn, A., Rale, V., Andersch, W., and Gottschalk, G. (1986) Nutritional Factors Affecting the Ratio of Solvents Produced by Clostridium acetobutylicum, Appl Environ Microbiol 52, 169−172.
- Mermelstein, L. D., Welker, N. E., Bennett, G. N., and Papoutsakis, E. T. (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824, Biotechnology (N Y) 10, 190−195.
- Green, E. M., and Bennett, G. N. (1996) Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824, Appl Biochem Biotechnol 57−58, 213−221.
- Green, E. M., Boynton, Z. L., Harris, L. M., Rudolph, F. B., Papoutsakis, E. T., and Bennett, G. N. (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824, Microbiology 142 (Pt 8), 2079−2086.
- Harris, L. M., Welker, N. E., and Papoutsakis, E. T. (2002) Northern, morphological, and fermentation analysis of spoOA inactivation and overexpression in Clostridium acetobutylicum ATCC 824, J Bacteriol 184, 3586−3597.
- Heap, J. T., Pennington, O. J., Cartman, S. T., Carter, G. P., and Minton, N. P. (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium, J Microbiol Methods 70, 452−464.
- Feustel, L., Nakotte, S., and Durre, P. (2004) Characterization and development of two reporter gene systems for Clostridium acetobutylicum, Appl Environ Microbiol 70, 798−803.
- Quixley, K. W., and Reid, S. J. (2000) Construction of a reporter gene vector for Clostridium beijerinckii using a Clostridium endoglucanase gene, J Mol Microbiol Biotechnol 2, 53−57.
- Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., and Jung, K. S. (2008) Fermentative butanol production by Clostridia, Biotechnol Bioeng 101, 209−228.
- Senger, R. S., and Papoutsakis, E. T. (2008) Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis, Biotechnol Bioeng 101, 1036−1052.
- Tummala, S. B., Welker, N. E., and Papoutsakis, E. T. (2003) Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum, J Bacteriol 185, 1923−1934.
- Jiang, Y., Xu, C., Dong, F., Yang, Y., Jiang, W., and Yang, S. (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio, Metab Eng 11, 284 291.
- Baer, S. H., Bryant, D. L., and Blaschek, H. P. (1989) Electron Spin Resonance Analysis of the Effect of Butanol on the Membrane Fluidity of Intact Cells of Clostridium acetobutylicum, Appl Environ Microbiol 55, 2729−2731.
- Chen, C. K., and Blaschek, H. P. (1999) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101, Appl Microbiol Biotechnol 52, 170−173.
- Rao, G., and Mutharasan, R. (1987) Altered Electron Flow in Continuous Cultures of Clostridium acetobutylicum Induced by Viologen Dyes, Appl Environ Microbiol 53, 1232−1235.
- Yan, Y., and Liao, J. C. (2009) Engineering metabolic systems for production of advanced fuels, JInd Microbiol Biotechnol 36, 471−479.
- Atsumi, S., Hanai, T., and Liao, J. C. (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels, Nature 451, 86−89.
- Smith, K. M., Cho, K. M., and Liao, J. C. (2010) Engineering Corynebacterium glutamicum for isobutanol production, Appl Microbiol Biotechnol 87, 1045−1055.
- Chen, X., Nielsen, K. F., Borodina, I., Kielland-Brandt, M. C., and Karhumaa, K. (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism, Biotechnol Biofuels 4, 21.
- Higashide, W., Li, Y., Yang, Y., and Liao, J. C. (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose, Appl Environ Microbiol 77, 2727−2733.
- Atsumi, S., Higashide, W., and Liao, J. C. (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde, Nat Biotechnol 27, 11 771 180.
- Huo, Y. X., Cho, K. M., Rivera, J. G., Monte, E., Shen, C. R., Yan, Y., and Liao, J. C. (2011) Conversion of proteins into biofuels by engineering nitrogen flux, Nat Biotechnol 29, 346−351.
- Li, H., Opgenorth, P. H., Wernick, D. G., Rogers, S., Wu, T. Y., Higashide, W., Malati, P., Huo, Y. X., Cho, K. M., and Liao, J. C. (2012) Integrated electromicrobial conversion of C02 to higher alcohols, Science 335, 1596.
- Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., Chou, K. J., Hanai, T., and Liao, J. C. (2008) Metabolic engineering of Escherichia coli for 1-butanol production, Metab Eng 10, 305−311.
- Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., Ouellet, M., and Keasling, J. D. (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol, Microb Cell Fact 7,36.
- Nielsen, D. R., Leonard, E., Yoon, S. H., Tseng, H. C., Yuan, C., and Prather, K. L. (2009) Engineering alternative butanol production platforms in heterologous bacteria, Metab Eng 11, 262−273.
- Berezina, O. V., Zakharova, N. V., Brandt, A., Yarotsky, S. V., Schwarz, W. H., and Zverlov, V. V. (2010) Reconstructing the clostridial n-butanolmetabolic pathway in Lactobacillus brevis, Appl Microbiol Biotechno I 87, 635−646.
- Lan, E. I., and Liao, J. C. (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria, Proc Natl Acad Sei USA 109, 6018−6023.
- Clark, D. P., and Rod, M. L. (1987) Regulatory mutations that allow the growth of Escherichia coli on butanol as carbon source, J Mol Evol 25, 151 158.
- Clark, D. P., and Cronan, J. E., Jr. (1981) Bacterial mutants for the study of lipid metabolism, Methods Enzymol 72, 693−707.
- Overath, P., Pauli, G., and Schairer, H. U. (1969) Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants, Eur J Biochem 7, 559 574.
- Overath, P., and Raufuss, E. M. (1967) The induction of the enzymes of fatty acid degradation in Escherichia coli, Biochem Biophys Res Commun 29, 28−33.
- Pauli, G., and Overath, P. (1972) ato Operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli, Eur J Biochem 29, 553−562.
- Binstock, J. F., Pramanik, A., and Schulz, H. (1977) Isolation of a multienzyme complex of fatty acid oxidation from Escherichia coli, Proc Natl Acad Sei USA 74, 492−495.
- O’Brien, W. J., and Frerman, F. E. (1977) Evidence for a complex of three beta-oxidation enzymes in Escherichia coli: induction and localization, J Bacteriol 132, 532−540.
- Pawar, S., and Schulz, H. (1981) The structure of the multienzyme complex of fatty acid oxidation from Escherichia coli, J Biol Chem 256, 3894−3899.
- Pramanik, A., Pawar, S., Antonian, E., and Schulz, H. (1979) Five different enzymatic activities are associated with the multienzyme complex of fatty acid oxidation from Escherichia coli, JBacteriol 137, 469−473.
- Klein, K., Steinberg, R., Fiethen, B., and Overath, P. (1971) Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants, Eur J Biochem 19, 442 450.
- Clark, D., and Cronan, J. E., Jr. (1980) Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase, J Bacteriol 141, 177−183.
- Baer, S. H., Blaschek, H. P., and Smith, T. L. (1987) Effect of Butanol Challenge and Temperature on Lipid Composition and Membrane Fluidity of Butanol-Tolerant Clostridium acetobutylicum, Appl Environ Microbiol 53, 2854−2861.
- Borden, J. R., and Papoutsakis, E. T. (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum, Appl Environ Microbiol 73, 3061−3068.
- Vollherbst-Schneck, K., Sands, J. A., and Montenecourt, B. S. (1984) Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824, Appl Environ Microbiol 47, 193−194.
- Knoshaug, E. P., and Zhang, M. (2009) Butanol tolerance in a selection of microorganisms, Appl Biochem Biotechnol 153, 13−20.
- Desmond, C., Fitzgerald, G. F., Stanton, C., and Ross, R. P. (2004) Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338, Appl Environ Microbiol 70, 5929−5936.
- Fiocco, D., Capozzi, V., Goffin, P., Hols, P., and Spano, G. (2007) Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum, Appl Microbiol Biotechnol 77, 909−915.
- Matsumoto, M., Mochiduki, K., and Kondo, K. (2004) Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria, J Biosci Bioeng 98, 344−347.
- Tomas, C. A., Beamish, J., and Papoutsakis, E. T. (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum, J Bacteriol 186, 2006−2018.
- Ingram, L. O., and Buttke, T. M. (1984) Effects of alcohols on microorganisms, Adv Microb Physiol 25, 253−300.
- Kabelitz, N., Santos, P. M., and Heipieper, H. J. (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus, FEMS Microbiol Lett 220, 223−227.
- Bowles, L. K., and Ellefson, W. L. (1985) Effects of butanol on Clostridium acetobutylicum, Appl Environ Microbiol 50, 1165−1170.
- Ingram, L. O. (1990) Ethanol tolerance in bacteria, Crit Rev Biotechnol 9, 305−319.
- Sikkema, J., de Bont, J. A., and Poolman, B. (1995) Mechanisms of membrane toxicity of hydrocarbons, Microbiol Rev 59, 201−222.
- Doremus, M. G., Linden, J. C., and Moreira, A. R. (1985) Agitation and pressure effects on acetone-butanol fermentation, Biotechnol Bioeng 27, 852−860.
- Liyanage, H., Young, M., and Kashket, E. R. (2000) Butanol tolerance of Clostridium beijerinckii NCIMB 8052 associated with down-regulation of gldA by antisense RNA, J Mol Microbiol Biotechnol 2, 87−93.
- Alsaker, K. V., Spitzer, T. R., and Papoutsakis, E. T. (2004) Transcriptional analysis of spoOA overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress, J Bacteriol 186, 1959−1971.
- Narberhaus, F., Giebeler, K., and Bahl, H. (1992) Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene, JBacteriol 174, 3290−3299.
- Hermann, M., Fayolle, F., Marchal, R., Podvin, L., Sebald, M., and Vandecasteele, J. P. (1985) Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum, Appl Environ Microbiol 50, 1238−1243.
- Aono, R., Tsukagoshi, N., and Yamamoto, M. (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12, J Bacteriol 180, 938−944.
- Aono, R., and Kobayashi, H. (1997) Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12, Appl Environ Microbiol 63, 3637−3642.
- Bae, W., Xia, B., Inouye, M., and Severinov, K. (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators, Proc Natl AcadSci USA 97, 7784−7789.
- Zingaro, К. A., and Terry Papoutsakis, E. (2012) GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns, Metab Eng.
- Atsumi, S., Wu, T. Y., Machado, I. M., Huang, W. C., Chen, P. Y., Pellegrini, M., and Liao, J. C. (2010) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli, Mol Syst Biol 6, 449.
- Reyes, L. H., Almario, M. P., and Kao, К. C. (2011) Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli, PLoS One 6, el7678.
- Миллер, Д. (1979) Эксперименты в молекулярной генетике, Мир.
- Osipov, G. A., Parfenov, A. I., and Bogomolov, Р. О. (2001) Comparative study of chromatography-mass spectrography of microorganism’s chemical markers in blood and intestinal mucosa bioptats., Ross Gastroenterol Zh, 5469.
- Sambrook, J., E.F., F., and Т., M. (1989) Molecular cloning: a laboratory manual 2nd ed ed., Cold Spring Harbor Lab, New York.
- Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc Natl AcadSci USA 97, 6640−6645.
- Sanger, F., Nicklen, S., and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors, Proc Natl Acad Sci USA 74, 5463−5467.
- Horton, С. E., and Bennett, G. N. (2006) Ester production in E. coli and C. acetobutylicum, Enzyme and Microbial Technology 38, 368−376.
- Nunn, W. D., Giffin, K., Clark, D., and Cronan, J. E., Jr. (1983) Role for fadR in unsaturated fatty acid biosynthesis in Escherichia coli, J Bacteriol 154, 554−560.
- Salanitro, J. P., and Wegener, W. S. (1971) Growth of Escherichia coli on short-chain fatty acids: nature of the uptake system, J Bacteriol 108, 893 901.
- Vanderwinkel, E., Furmanski, P., Reeves, H. C., and Ajl, S. J. (1968) Growth of Escherichia coli on fatty acids: requirement for coenzyme A transferase activity, Biochem Biophys Res Commun 33, 902−908.
- Kaga, N., Umitsuki, G., Clark, D. P., Nagai, K., and Wachi, M. (2002) Extensive overproduction of the AdhE protein by rng mutations depends on mutations in the era gene or in the Cra-box of the adhE promoter, Biochem Biophys Res Commun 295, 92−97.
- Lutz, R., and Bujard, H. (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/Il-I2 regulatory elements, Nucleic Acids Res 25, 1203−1210.
- Causey, T. B., Shanmugam, K. T., Yomano, L. P., and Ingram, L. O. (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate, Proc Natl Acad Sei USA 101, 2235−2240.
- Eiteman, M. A., and Altman, E. (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations, Trends Biotechnol 24, 530−536.
- Hiraoka, S., Matsuzaki, H., and Shibuya, I. (1993) Active increase in cardiolipin synthesis in the stationary growth phase and its physiological significance in Escherichia coli, FEBS Lett 336, 221−224.
- Asako, H., Nakajima, H., Kobayashi, K., Kobayashi, M., and Aono, R. (1997) Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli, Appl Environ Microbiol 63, 1428−1433.
- Hayashi, S., Aono, R., Hanai, T., Mori, H., Kobayashi, T., and Honda, H. (2003) Analysis of organic solvent tolerance in Escherichia coli using gene expression profiles from DNA microarrays, J Biosci Bioeng 95, 379−383.
- Nikaido, H. (2003) Molecular basis of bacterial outer membrane permeability revisited, Microbiol Mol Biol Rev 67, 593−656.
- Farr, S. B., and Kogoma, T. (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium, Microbiol Rev 55, 561−585.
- Trent, M. S. (2004) Biosynthesis, transport, and modification of lipid A, Biochem Cell Biol 82, 71−86.
- Zhu, K., Zhang, Y. M., and Rock, C. O. (2009) Transcriptional regulation of membrane lipid homeostasis in Escherichia coli, J Biol Chem 284, 3 488 034 888.
- Ames, G. F., Spudich, E. N., and Nikaido, H. (1974) Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations, JBacteriol 117, 406−416.
- Koplow, J., and Goldfine, H. (1974) Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli, J Bacteriol 117, 527−543.
- Schnaitman, C. A., and Klena, J. D. (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria, Microbiol Rev 57, 655−682.
- Lugtenberg, B., Peters, R., Bernheimer, H., and Berendsen, W. (1976) Influence of cultural conditions and mutations on the composition of the outer membrane proteins of Escherichia coli, Mol Gen Genet 147, 251−262.
- Ensign, S. A. (2006) Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation, Mol Microbiol 61, 274−276.
- Kim, Y., Ingram, L. O., and Shanmugam, K. T. (2007) Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes, Appl Environ Microbiol 73, 17 661 771.
- Bermejo, L. L., Welker, N. E., and Papoutsakis, E. T. (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification, Appl Environ Microbiol 64, 10 791 085.
- Kidwell, J., Valentin, H. E., and Dennis, D. (1995) Regulated expression of the Alcaligenes eutrophus pha biosynthesis genes in Escherichia coli, Appl Environ Microbiol 61, 1391−1398.
- Sato, S., Nomura, C. T., Abe, H., Doi, Y., and Tsuge, T. (2007) Poly®-3-hydroxybutyrate. formation in Escherichia coli from glucose through an enoyl-CoA hydratase-mediated pathway, JBiosci Bioeng 103, 38−44.
- Dellomonaco, C., Clomburg, J. M., Miller, E. N., and Gonzalez, R. (2011) Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals, Nature 476, 355−359.
- Bond-Watts, B. B., Bellerose, R. J., and Chang, M. C. (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways, Nat Chem Biol 7, 222−227.
- Forst, S., and Inouye, M. (1988) Environmentally regulated gene expression for membrane proteins in Escherichia coli, Annu Rev Cell Biol 4, 21−42.