ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ свойств Π”ΠΠš-мСтилтрансфСраз систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ BstF5I ΠΈΠ· Bacillus stearothermophilus F5

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, послСдниС Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структуры Π”ΠΠš Ρ†Π΅Π»ΠΎΠ³ΠΎ ряда ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² выявили Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π½Π΅ ΠΎΠ΄Π½ΠΎΠΉ (ΠΊΠ°ΠΊ Ρ€Π°Π½Π΅Π΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡŒ), Π° Ρ†Π΅Π»ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° Π³Π΅Π½ΠΎΠ² Π”ΠΠš-мСтилтрансфСраз, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Π΅Ρ‚ вопрос ΠΎ Ρ€ΠΎΠ»ΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ каскада ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π· для функционирования ΠΊΠ»Π΅Ρ‚ΠΊΠΈ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ кинСтичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π”ΠΠš-мСтилтрансфСразами… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ свойств Π”ΠΠš-мСтилтрансфСраз систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ BstF5I ΠΈΠ· Bacillus stearothermophilus F5 (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • ΠŸΠ Π˜ΠΠ―Π’Π«Π• Π‘ΠžΠšΠ ΠΠ©Π•ΠΠ˜Π―
  • 1. Π’Π’Π•Π”Π•ΠΠ˜Π•
  • 2. Π”ΠΠš-ΠœΠ•Π’Π˜Π› Π’ Π ΠΠ Π‘Π€Π•Π  АЗЫ Π‘ΠΠšΠ’Π•Π Π˜ΠΠ›Π¬ΠΠ«Π₯ Π‘Π˜Π‘Π’Π•Πœ Π Π•Π‘Π’Π Π˜ΠšΠ¦Π˜Π˜-ΠœΠžΠ”Π˜Π€Π˜ΠšΠΠ¦Π˜Π˜ (ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«)
    • 2. 1. Π ΠΠ‘ΠŸΠ ΠžΠ‘Π’Π ΠΠΠ•ΠΠ˜Π• Π‘Π˜Π‘Π’Π•Πœ Π Π•Π‘Π’Π Π˜ΠšΠ¦Π˜Π˜-ΠœΠžΠ”Π˜Π€Π˜ΠšΠΠ¦Π˜Π˜ И Π”ΠΠš-ΠœΠ•Π’Π˜Π›Π’Π ΠΠΠ‘Π€Π•Π ΠΠ— Π’ ΠŸΠ Π˜Π ΠžΠ”Π•
    • 2. 2. ΠšΠ›ΠΠ‘Π‘Π˜Π€Π˜ΠšΠΠ¦Π˜Π― Π Πœ Π‘Π˜Π‘Π’Π•Πœ
      • 2. 2. 1. РМ ΡΠΈΡΡ‚Π΅ΠΌΡ‹ I Ρ‚ΠΈΠΏΠ°
      • 2. 2. 2. РМ ΡΠΈΡΡ‚Π΅ΠΌΡ‹ II Ρ‚ΠΈΠΏΠ°
      • 2. 2. 3. РМ ΡΠΈΡΡ‚Π΅ΠΌΡ‹ III Ρ‚ΠΈΠΏΠ°
      • 2. 2. 4. РМ ΡΠΈΡΡ‚Π΅ΠΌΡ‹ IV Ρ‚ΠΈΠΏΠ°
      • 2. 2. 5. ΠžΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Π΅ Π”ΠΠš-мСтилтрансфСразы ΠΈ ΡΠ½Π΄ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Π·Ρ‹ рСстрикции
    • 2. 3. ЀУНКЦИИ Π€Π•Π ΠœΠ•ΠΠ’ΠžΠ’ Π‘ΠΠšΠ’Π•Π Π˜ΠΠ›Π¬ΠΠ«Π₯ Π Πœ Π‘Π˜Π‘Π’Π•Πœ
      • 2. 3. 1. ΠžΠ±Π΅ΡΠΏΠ΅Ρ‡Π΅Π½ΠΈΠ΅ Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. РСстрикция ΠΈ Π°Π½Ρ‚ирСстрикция
      • 2. 3. 2. УчастиС Π”ΠΠš-мСтилтрансфСраз Π² Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ
      • 2. 3. 3. Π”Ρ€ΡƒΠ³ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ
    • 2. 4. ΠžΠŸΠ•Π ΠžΠΠ« Π Πœ Π‘Π˜Π‘Π’Π•Πœ
      • 2. 4. 1. РасполоТСниС Π³Π΅Π½ΠΎΠ² Π² ΠΎΠΏΠ΅Ρ€ΠΎΠ½Π°Ρ… Π Πœ систСм
      • 2. 4. 2. РСгуляция активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π Πœ систСм II Ρ‚ΠΈΠΏΠ° Π‘-Π±Π΅Π»ΠΊΠ°ΠΌΠΈ
    • 2. 5. ΠšΠ›ΠΠ‘Π‘Π˜Π€Π˜ΠšΠΠ¦Π˜Π― И Π‘ВРУКВУРА Π”ΠΠš-ΠœΠ•Π’Π˜Π›Π’Π ΠΠΠ‘Π€Π•Π ΠΠ—
      • 2. 5. 1. ΠšΠ»Π°ΡΡΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ Π”ΠΠš-мСтилтрансфСраз
      • 2. 5. 2. ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ структура Π”ΠΠš-мСтилтрансфСраз
        • 2. 5. 2. 1. AdoMet-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ Π΄ΠΎΠΌΠ΅Π½
        • 2. 5. 2. 2. ΠšΠ°Ρ‚Π°Π»ΠΈΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ Π΄ΠΎΠΌΠ΅Π½
        • 2. 5. 2. 3. TRD — Π΄ΠΎΠΌΠ΅Π½
    • 2. 6. Π‘ΠŸΠ•Π¦Π˜Π€Π˜Π§ΠΠžΠ‘Π’Π¬ Π”ΠΠš-ΠœΠ•Π’Π˜Π›Π’Π ΠΠΠ‘Π€Π•Π ΠΠ—
      • 2. 6. 1. ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ нСканоничСских сайтов Π”ΠΠš-мСтилтрансфСразами
      • 2. 6. 2. ΠœΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π”ΠΠš-мСтилтрансфСразами ΠΎΠ΄Π½ΠΎΡ†Π΅ΠΏΠΎΡ‡Π΅Ρ‡Π½Ρ‹Ρ… субстратов
      • 2. 6. 3. ΠžΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ условия функционирования Π”ΠΠš-мСтилтрансфСраз
    • 2. 7. ΠœΠ•Π₯ΠΠΠ˜Π—ΠœΠ« Π Π•ΠΠšΠ¦Π˜Π™ ΠœΠ•Π’Π˜Π›Π˜Π ΠžΠ’ΠΠΠ˜Π― Π”ΠΠš
      • 2. 7. 1. ΠœΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ экзоцикличСских Π°ΠΌΠΈΠ½ΠΎΠ³Ρ€ΡƒΠΏΠΏ Π°Π΄Π΅Π½ΠΈΠ½Π° ΠΈ Ρ†ΠΈΡ‚ΠΎΠ·ΠΈΠ½Π°
      • 2. 7. 2. ΠœΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ эндоцикличСского Π‘5 Π°Ρ‚ΠΎΠΌΠ° Ρ†ΠΈΡ‚ΠΎΠ·ΠΈΠ½Π°
      • 2. 7. 3. ΠšΠΈΠ½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства Π”ΠΠš-мСтилтрансфСраз
  • 3. ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
    • 3. 1. ΠœΠΠ’Π•Π Π˜ΠΠ›Π«
    • 3. 2. ΠœΠ•Π’ΠžΠ”Π«
      • 3. 2. 1. Врансформация ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
      • 3. 2. 2. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš
      • 3. 2. 3. ΠœΠ΅Ρ‚ΠΎΠ΄ сСлСктивной супрСссии ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ
      • 3. 2. 4. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ
      • 3. 2. 5. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий мСтилирования Π”ΠΠš-субстратов мСтилтрансфСразами Π Πœ систСмы &S/F5I
      • 3. 2. 6. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ стационарных кинСтичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π”ΠΠš-мСтилтрансфСразами
      • 3. 2. 7. ΠšΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π”ΠΠš ΠΈ Π±Π΅Π»ΠΊΠΎΠ²
  • 4. РЕЗУЛЬВАВЫ И ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•
    • 4. 1. ΠžΠŸΠ Π•Π”Π•Π›Π•ΠΠ˜Π• ΠŸΠžΠ›ΠΠžΠ™ ΠΠ£ΠšΠ›Π•ΠžΠ’Π˜Π”ΠΠžΠ™ ΠŸΠžΠ‘Π›Π•Π”ΠžΠ’ΠΠ’Π•Π›Π¬ΠΠžΠ‘Π’Π˜ ΠžΠŸΠ•Π ΠžΠΠ Π Πœ Π‘Π˜Π‘Π’Π•ΠœΠ« Bst?5l
      • 4. 1. 1. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π° &S7F5IM
      • 4. 1. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΉ Ρ€Π°ΠΌΠΊΠΈ трансляции
      • 4. 1. 3. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π° fo/F5IM
      • 4. 1. 4. ΠšΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π° &sfF5IR
      • 4. 1. 5. РасполоТСниС Π³Π΅Π½ΠΎΠ² Π² ΠΎΠΏΠ΅Ρ€ΠΎΠ½Π΅ Π Πœ систСмы BstFSl Π½Π° ΡΠ΅ΠΊΠ²Π΅Π½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ участкС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ хромосомы
    • 4. 2. Π­ΠšΠ‘ΠŸΠ Π•Π‘Π‘Π˜Π― Π“Π•ΠΠžΠ’ Π”ΠΠš-ΠœΠ•Π’Π˜Π›Π’Π ΠΠΠ‘Π€Π•Π ΠΠ— Π Πœ Π‘Π˜Π‘Π’Π•ΠœΠ« Bst?5 Π’ ΠšΠ›Π•Π’ΠšΠΠ₯ E. col
    • 4. 3. ΠΠΠΠ›Π˜Π— ΠŸΠ•Π Π’Π˜Π§ΠΠ«Π₯ БВРУКВУР Π”ΠΠš-ΠœΠ•Π’Π˜Π›Π’Π ΠΠΠ‘Π€Π•Π ΠΠ—
      • 4. 3. 1. Π”ΠΠš-мСтилтрансфСраза MJ? s/F5I
      • 4. 3. 2. Π”ΠΠš-мСтилтрансфСраза M. ifr/F5I
    • 4. 4. Π˜Π—Π£Π§Π•ΠΠ˜Π• Π‘Π˜ΠžΠ₯Π˜ΠœΠ˜Π§Π•Π‘ΠšΠ˜Π₯ Π‘Π’ΠžΠ™Π‘Π’Π’ Π”ΠΠš-ΠœΠ•Π’Π˜Π›Π’Π ΠΠΠ‘Π€Π•Π ΠΠ—
      • 4. 4. 1. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ†Π΅ΠΏΠΈ, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ M. Bst?
      • 4. 4. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ†Π΅ΠΏΠΈ, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ M. Z?s/F5I-2 ΠΈ M.#s/F5I
      • 4. 4. 3. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ субстратной спСцифичности Π”ΠΠš-мСтилтрансфСраз
      • 4. 4. 4. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
      • 4. 4. 5. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ рН
      • 4. 4. 6. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ ΠΈΠΎΠ½ΠΎΠ² Na+ ΠΈ К+
    • 4. 5. ΠšΠ˜ΠΠ•Π’Π˜Π§Π•Π‘ΠšΠ˜Π• Π₯ΠΠ ΠΠšΠ’Π•Π Π˜Π‘Π’Π˜ΠšΠ˜ Π”ΠΠš-ΠœΠ•Π’Π˜Π›Π’Π ΠΠΠ‘Π€Π•Π ΠΠ—
      • 4. 5. 1. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ стационарных кинСтичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π”ΠΠš-мСтилтрансфСразами Π½Π° ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ Π”ΠΠš
      • 4. 5. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ стационарных кинСтичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π”ΠΠš-мСтилтрансфСразами Π½Π° ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… дуплСксах
      • 4. 5. 3. Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ кинСтичСских характСристик Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Ρ… Π”ΠΠš-мСтилтрансфСраз Π Πœ систСм Z? s/F5I ΠΈ FokI
  • 5. Π’Π«Π’ΠžΠ”Π«

Π€Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π”ΠΠš, осущСствляСмоС сайт-спСцифичСскими Π”ΠΠš-мСтилтрансфСразами (Π² Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅ΠΌ Π”ΠΠš-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Π°ΠΌΠΈ ΠΈΠ»ΠΈ просто ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Π°ΠΌΠΈ) являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ интСрСсных ΠΈ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. Π—Π° ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ врСмя установлСна ваТная Ρ€ΠΎΠ»ΡŒ этой ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ для рСгуляции экспрСссии Π³Π΅Π½ΠΎΠ², процСссов Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΠΈ Π² ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСских ΠΈ ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚иочСских ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°Ρ…, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ участия Π”ΠΠš-ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π· Π² ΡΡ‚ΠΈΡ… процСссах ΠΌΠ°Π»ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½.

Π‘ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΠ³ΠΎ, послСдниС Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структуры Π”ΠΠš Ρ†Π΅Π»ΠΎΠ³ΠΎ ряда ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² выявили Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π½Π΅ ΠΎΠ΄Π½ΠΎΠΉ (ΠΊΠ°ΠΊ Ρ€Π°Π½Π΅Π΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡŒ), Π° Ρ†Π΅Π»ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° Π³Π΅Π½ΠΎΠ² Π”ΠΠš-мСтилтрансфСраз, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Π΅Ρ‚ вопрос ΠΎ Ρ€ΠΎΠ»ΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ каскада ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π· для функционирования ΠΊΠ»Π΅Ρ‚ΠΊΠΈ.

Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π· являСтся составной Ρ‡Π°ΡΡ‚ΡŒΡŽ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ сайт-спСцифичСской систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ (РМ ΡΠΈΡΡ‚Π΅ΠΌΡ‹) Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅ΠΌΡ‹Ρ… ΠΏΠΎ Π²ΠΈΠ΄ΠΎΠ²ΠΎΠΌΡƒ названию ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈ ΡΠΎΡΡ‚оящих, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΈΠ· ΡΠ½Π΄ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Π·Ρ‹ рСстрикции ΠΈ Π”ΠΠš-мСтилтрансфСразы, ΡƒΠ·Π½Π°ΡŽΡ‰ΠΈΡ… ΠΎΠ΄Π½Ρƒ ΠΈ Ρ‚Ρƒ ΠΆΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ². Π Π°Π½Π΅Π΅ Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π Πœ систСма 5sfF5I ΠΈΠ· Bacillus stearothermophilus F5 ΠΈΠΌΠ΅Π΅Ρ‚ сайт узнавания 5'-GGATG-3', Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΉ сайту узнавания Ρ…ΠΎΡ€ΠΎΡˆΠΎ извСстной Π Πœ систСмы Fokl ΠΈΠ· ΡˆΡ‚Π°ΠΌΠΌΠ° Flavobacterium okeanokoites. Однако эндонуклСаза рСстрикции &S/F5I расщСпляСт Π”ΠΠš ΠΈΠ½Π°Ρ‡Π΅, Ρ‡Π΅ΠΌ Fokl, Π° ΠΎΠΏΠ΅Ρ€ΠΎΠ½ Π Πœ систСмы i? sfF5I, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π Πœ систСмы Fokl, содСрТит, ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ, Ρ‚Ρ€ΠΈ Π”ΠΠš-мСтилтрансфСразы. Вакая ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π”ΠΠš-мСтилтрансфСраз с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ субстратной ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π±Ρ‹Π»Π° ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π Πœ систСмы, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ Π΄Π²ΡƒΡ… Π”ΠΠš-мСтилтрансфСраз, Π΄ΠΎ Π½Π°ΡΡ‚оящСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π΅ ΠΎΠΏΠΈΡΠ°Π½Ρ‹ Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅.

ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ явилось дальнСйшСС ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π Πœ систСмы Π²ΠΊΠ»ΡŽΡ‡Π°Ρ установлСниС структуры всСго ΠΎΠΏΠ΅Ρ€ΠΎΠ½Π° Π Πœ систСмы ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС свойств выявлСнных Π”ΠΠš-мСтилтрансфСраз.

Π’ Π·Π°Π΄Π°Ρ‡ΠΈ настоящСго исслСдования Π²Ρ…ΠΎΠ΄ΠΈΠ»ΠΎ:

— ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ структуры ΠΎΠΏΠ΅Ρ€ΠΎΠ½Π° ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Z? s/F5I ΠΈ ΡƒΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠΉ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π³Π΅Π½ΠΎΠ² Π”ΠΠš-мСтилтрансфСраз ΠΈ ΡΠ½Π΄ΠΎΠ½ΡƒΠΊΠ»Π΅Π°Π·Ρ‹ рСстрикции, входящих Π² ΡΡ‚Ρƒ систСму.

— Π­ΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ Π³Π΅Π½ΠΎΠ² Π”ΠΠš-мСтилтрансфСраз систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ #s7F5I Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… E.coli.

— Π£ΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ субстратной спСцифичности всСх Π”ΠΠšΠΌΠ΅Ρ‚ΠΈΠ»Ρ‚Ρ€Π°Π½ΡΡ„Π΅Ρ€Π°Π· систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Z? sJF5I.

— ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий функционирования Π”ΠΠš-мСтилтрансфСраз систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ?s/F5I.

— Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ кинСтичСских свойств Π½ΠΎΠ²Ρ‹Ρ… Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ²Π”ΠΠš-мСтилтрансфСраз систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ &s/F5I.

5. Π’Π«Π’ΠžΠ”Π«.

1. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° полная нуклСотидная ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΎΠΏΠ΅Ρ€ΠΎΠ½Π° систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ i? s?F5I ΠΈΠ· Ρ‚Π΅Ρ€ΠΌΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Bacillus stearothermophilus F5, Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡƒΠ·Π½Π°ΡŽΡ‚ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π”ΠΠš 5'-GGATG-3 '/5 -БАВББ-3'.

2. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ сущСствованиС ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ, Π² ΡΠΎΡΡ‚Π°Π² ΠΎΠΏΠ΅Ρ€ΠΎΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ входят Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π³Π΅Π½Π° Π”ΠΠš-мСтилтрансфСраз ΠΈ Π³Π΅Π½ эндонуклСазы рСстрикции.

3. Показано, Ρ‡Ρ‚ΠΎ систСма рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Z&/F5I Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π΄Π²Π΅ ΠΏΠ°Ρ€Ρ‹ Π”ΠΠš-мСтилтрансфСраз с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ субстратной ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ: M. itoF5I-l ΠΈ M. Bst?5l-3, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ 5 -GGATG-3'- ΠΈ M.&S/F5I-2 ΠΈ M. itoF5I-4, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ 5-БАВББ-3'.

4. Π“Π΅Π½Ρ‹ всСх Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… Π”ΠΠš-мСтилтрансфСраз систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ i? stF5I ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π² ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ конструкции Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Ρ‚Π΅Ρ€ΠΌΠΎΠΈΠ½Π΄ΡƒΡ†ΠΈΠ±Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° pJW2 ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ синтСз ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π”ΠΠš-мСтилтрансфСраз Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π•. coli.

5. УстановлСно, Ρ‡Ρ‚ΠΎ ОРВ-1 для ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Ρ‹ M. i?s?F5I-l содСрТит Π΄Π²Π° стартовых ΠΊΠΎΠ΄ΠΎΠ½Π°, ΠΎΠ΄Π½Π°ΠΊΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ Π±Π΅Π»ΠΎΠΊ синтСзируСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ со Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ATG-ΠΊΠΎΠ΄ΠΎΠ½Π°.

6. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ условия функционирования всСх Π”ΠΠš-мСтилтрансфСраз систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ BstF5I: Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° рН, ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² Na+ ΠΈ К+.

7. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ кинСтичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π”ΠΠš-мСтилтрансфСразами систСмы рСстрикции-ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ BstFSL Для всСх Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ константы ΠœΠΈΡ…Π°ΡΠ»ΠΈΡΠ° — KmsAM ΠΈ -^чпднкэ каталитичСскиС константы кслЬ константы спСцифичности для SAM ΠΈ Π”ΠΠš.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Wilson G.G., Murray N.E. Restriction and modification systems // Annu. Rev. Genet. 1991. V. 25. P. 585−627.
  2. Wilson G.G. Organization of restriction-modification systems // Nucleic Acids Res. 1991. V. 19. No. 10. P. 2539−2566.
  3. Hale W.B., van der Woude M.W., Braaten B.A., Low D.A. Regulation of uropathogenic Escherichia coli adhesin expression by DNA methylation // Mol. Genet. Metab. 1998. V. 65. No. 3. P. 191−196.
  4. Jeltsch A. Circular permutations in the molecular evolution of DNAmethyltransferases // J. Mol. Evol. 1999. V. 49. No. 1. P. 161−164.
  5. Jeltsch A., Pingoud A. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems // J. Mol. Evol. 1996. V. 42. No. 2. P. 91−96.
  6. Heitman J. On the origins, structures and functions of restriction-modification enzymes // Genet. Eng. 1993. V. 15. P. 57−108.
  7. Matveyev A.V., Young K.T., Meng A., Elhai J. DNA methyltransferases of the cyanobacterium Anabaena PCC 7120 // Nucleic Acids Res. 2001. V. 29. No. 7.$ P. 1491−1506.
  8. Palmer B.R., Marinus M.G. The dam and dcm strains of Escherichia coli~a review//Gene. 1994. V. 143. No. l.P. 1−12.
  9. Herman J.G., Modrich P. Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzyme // J. Biol. Chem. 1982. V. 257. No. 5. P. 2605−2612.
  10. Eberhard J., Oza J., Reich N.O. Cloning, sequence analysis and heterologous expression of the DNA adenine-(N (6)) methyltransferase from the human pathogen Actinobacillus actinomycetemcomitans II FEMS Microbiol. Lett. 2001. V. 195. No. 2. P. 223−229.
  11. Torreblanca J., Casadesus J. DNA adenine methylase mutants of Salmonella typhimurium and a novel dam- regulated locus // Genetics. 1996. V. 144. No. 1. P. 15−26.
  12. May B.J., Zhang Q., Li L.L., Paustian M.L., Whittam T.S., Kapur V. Complete genomic sequence of Pasteurella multocida, Pm70 // Proc. Natl. Acad. Sci. U. S. A. 2001. V. 98. No. 6. P. 3460−3465.
  13. Miner Z., Hattman S. Molecular cloning, sequencing, and mapping of the bacteriophage T2 dam gene // J. Bacteriol. 1988. V. 170. No. 11. P. 5177−5184.
  14. Trautner T.A., Pawiek Π’., Behrens Π’., Willert J. Exact size and organization of DNA target-recognizing domains of multispecific DNA-(cytosine-C5)-methyltransferases // EMBO J. 1996. V. 15. No. 6. P. 1434−1442.
  15. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B.C., Herrmann R. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae II Nucleic Acids Res. 1996. V. 24. No. 22. P. 4420−4449.
  16. Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A., Fleischmann R.D., Bult C.J., Kerlavage A.R., Sutton G., Kelley J.M.,. The minimal gene complement of Mycoplasma genitalium II Science. 1995. V. 270. No. 5235. P. 397−403.
  17. Zhang Y., Nelson M., Nietfeldt J., Xia Y., Burbank D., Ropp S., Van Etten J.L. Chlorella virus NY-2A encodes at least 12 DNA endonuclease/methyltransferase genes // Virology. 1998. V. 240. No. 2. P. 366 375.
  18. Vertino P.M. Eukaryotic DNA Methyltransferases // In: S-adenosylmethionine-dependent methyltransferases: structures and functions / Eds. Cheng X., Blumenthal R.M. Singapore: World Scientific, 1999. P. 341−372.
  19. Bickle T.A., Kruger D.H. Biology of DNA restriction // Microbiol. Rev. 1993. V. 57. No. 2. P. 434−450.
  20. Roberts R.J., Macelis D. REBASE-restriction enzymes and methylases // Nucleic Acids Res. 1998. V. 26. No. 1. P. 338−350.
  21. Roberts R.J., Belfort M., Bestor Π’.Н. et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes // Nucleic Acids Res. 2003. V. 31. No. 7. P. 1805−18 012.
  22. Mernagh D.R., Taylor I.A., Kneale G.G. Interaction of the type I methyltransferase M. EcoR24l with modified DNA substrates: sequence discrimination and base flipping // Biochem. J. 1998. V. 336. No. 3. P. 719−725.
  23. Smith M.A., Read C.M., Kneale G.G. Domain structure and subunit interactions in the type I DNA methyltransferase M. iscoR124I // J. Mol. Biol. 2001. V. 314. No. 1. P. 41−50.
  24. Janscak P., Dryden D.T., Firman K. Analysis of the subunit assembly of the typeIC restriction-modification enzyme EcoR24 II Nucleic Acids Res. 1998. V. 26. No. 19. P. 4439−4445.
  25. Powell L.M., Dryden D.T., Willcock D.F., Pain R.H., Murray N.E. DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-L-methionine // J. Mol. Biol. 1993. V. 234. No. 1. P. 60−71.
  26. Kan N.C., Lautenberger J.A., Edgell M.H., Hutchison C.A., III. The nucleotide sequence recognized by the Escherichia coli K12 restriction and modification enzymes // J. Mol. Biol. 1979. V. 130. No. 2. P. 191−209.
  27. Zinkevich V.E., Zograf I., Taniashin V.I. Genes of DNA methylase EcoK: their cloning and expression // Dokl. Akad. Nauk SSSR. 1984. V. 279. No. 6. P. 1493−1496.
  28. Rao D.N., Page M.G., Bickle T.A. Cloning, overexpression and the catalytic propeties of the? coP15I modification methylase from Escherichia coli II J. Mol. Biol. 1989. V. 209. No. 4. P. 599−606.
  29. Bitinaite J., Wah D.A., Aggarwal A.K., Schildkraut I. Fo/d dimerization is required for DNA cleavage // Proc. Natl. Acad. Sci. U. S. A. 1998. V. 95. No. 18. P. 10 570−10 575.
  30. Dryden D.T. Bacterial DNA Methyltransferases // In: S-adenosylmethionine-dependent methyltransferases: structures and functions / Eds. Cheng X., Blumenthal R.M. Singapore: World Scientific, 1999. P. 283−340.
  31. Cheng X., Kumar S., Klimasauskas S., Roberts R.J. Crystal structure of the Hhal DNA methytransferase // Cold Spring Harbor Symp. Quant. Biol. 1993. V. 58. P. 331−338.
  32. Ueno Π’., Ito H., Kimizuka F., Kotani H., Nakajima K. Gene structure and expression of the Mbol restriction-modification system // Nucleic Acids Res. 1993. V. 21.No. 10. P. 2309−2313.
  33. Szybalski W., Kim S.C., Hasan N., Podhajska A.J. Class-IIS restriction enzymes a review // Gene. 1991. V. 100. P. 13−26.
  34. Vanamee E.S., Santagata S., Aggarwal A.K. FokI requires two specific DNA sites for cleavage // J. Mol. Biol. 2001. V. 309. No. 1. P. 69−78.
  35. Kita K., Kotani H., Sugisaki H., Takanami M. The Fokl restriction-modification system. I. Organization and nucleotide sequences of the restriction and modification genes //J. Biol. Chem. 1989. V. 264. No. 10. P. 5751−5756.
  36. Kita K., Suisha M., Kotani H., Yanase H., Kato N. Cloning and sequence analysis of the Stsl restriction-modification gene: presence of homology to Fok I restriction-modification enzymes // Nucleic Acids Res. 1992. V. 20. No. 16. P. 4167−4172.
  37. Lacks S., Greenberg B. A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA // J. Biol. Chem. 1975. V. 250. No. 11. P. 4060−4066.
  38. Janulaitis A., Marcinkeviciene L.Y., Petrusyte M.P. A specific endonuclease from Caulobacter fusiformis that cleaves only methylated DNA. // Dokl. Akad. Nauk SSSR. 1982. V. 262. P. 241−244.
  39. Kong H., Roemer S.E., Waite-Rees P.A., Benner J.S., Wilson G.G., Nwankwo D.O. Characterization of Bcgl, a new kind of restriction-modification system // J. Biol. Chem. 1994. V. 269. No. 1. P. 683−690.
  40. Vitor J.M., Morgan R.D. Two novel restriction endonucleases from Campylobacter jejuni // Gene. 1995. V. 157. No. 1−2. P. 109−110.
  41. Piekarowicz A., Golaszewska M., Sunday A.O., Siwinska M., Stein D.C. The HaeYV restriction modification system of Haemophilus aegyptius is encoded by a single polypeptide // J. Mol. Biol. 1999. V. 293. No. 5. P. 1055−1065.
  42. Degtyarev S.K., Rechkunova N.I., Zernov Y.P., Dedkov V.S., Chizikov V.E., Van Calligan M., Williams R., Murray E. Bsp24l, a new unusual restriction endonuclease//Gene. 1993. V. 131. No. 1. P. 93−95.
  43. Vitkute J., Maneliene Z., Petrusyte M., Janulaitis A. Bpll, a new Z? cgl-like restriction endonuclease, which recognizes a symmetric sequence // Nucleic Acids Res. 1997. V. 25. No. 22. P. 4444−4446.
  44. M.A., Π‘Π΅Π»ΠΈΡ‡Π΅Π½ΠΊΠΎ О. А., Π¨Π΅Π²Ρ‡Π΅Π½ΠΊΠΎ А. Π’., ДСгтярСв Π‘.Π₯. N. Z?s^SE сайт-спСцифичСская Π½ΠΈΠΊΠ°Π·Π° ΠΈΠ· Bacillus stearothermophilus SE-589 // ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ биология. 1996. Π’. 30. β„–. 6. Π‘. 1261−1267.
  45. Xu Y., Lunnen K.D., Kong Н. Engineering a nicking endonuclease N./1/wI by domain swapping // Proc. Natl. Acad. Sci. U. S. A. 2001. V. 98. No. 23. P. 12 990−12 995.
  46. Higgins L.S., Besnier C., Kong H. The nicking endonuclease N. ZforNBI is closely related to type lis restriction endonucleases Mly and Pie I // Nucleic Acids Res. 2001. V. 29. No. 12. P. 2492−2501.
  47. Morgan R.D., Calvet C., Demeter M., Agra R., Kong H. Characterization of the specific DNA nicking activity of restriction endonuclease N.2?, s? NBI // Biol. Chem. 2000. V. 381. No. 11. P. 1123−1125.
  48. Jl.А., ΠŸΠ΅Ρ€Π΅Π²ΡΠ·ΠΎΠ²Π° T.A., ЖСлСзнякова E.H., ΠœΠ°Ρ‚Π²ΠΈΠ΅Π½ΠΊΠΎ Н. И. НСкоторыС свойства сайт-спСцифичСской Π½ΠΈΠΊΠ°Π·Ρ‹ N.Z?.s/?D6I ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π΅Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π΅ Π”ΠΠš // Биохимия. 2002. Π’. 67. β„–. 4. Π‘. 595−600.
  49. Bujnicki J.M. Understanding the evolution of restriction-modification systems: clues from sequence and structure comparisons // Acta Biochim. Pol. 2001. V. 48. No. 4. P. 935−967.
  50. Degtyarev S.K., Rechkunova N.I., Kolyhalov A.A., Dedkov V.S., Zhilkin P.A. II-Q restriction endonucleases new class of type II enzymes // Nucleic Acids Res. 1990. V. 18. No. 19. P. 5807−5810.
  51. C.X., Π–ΠΈΠ»ΠΊΠΈΠ½ П. А., ΠŸΡ€ΠΈΡ…ΠΎΠ΄ΡŒΠΊΠΎ Π“. Π“., Π Π΅ΠΏΠΈΠ½ Π’. Π•., Π Π΅Ρ‡ΠΊΡƒΠ½ΠΎΠ²Π° Н. И. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ субстратной спСцифичности рСстриктазы BpuXQil с Π½Π΅ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΌ сайтом узнавания. // 1989 Π’. 23. Π‘. 11 051−1056.
  52. Stankevicius К., Lubys A., Timinskas A., Vaitkevicius D., Janulaitis А. Cloning and analysis of the four genes coding for BpuQ restriction- modification enzymes // Nucleic Acids Res. 1998. V. 26. No. 4. P. 1084−1091.
  53. Hsieh P.C., Xiao J.P., O’loane D., Xu S.Y. Cloning, expression, and purification of a thermostable nonhomodimeric restriction enzyme, BslI // J. Bacteriol. 2000. V. 182. No. 4. P. 949−955.
  54. Degtyarev S.K., Belichenko O.A., Lebedeva N.A., Dedkov V.S., Abdurashitov M.A. Btrl, a novel restriction endonuclease, recognises the non-palindromic sequence 5'-CACGTC (-3/-3)-3* // Nucleic Acids Res. 2000. V. 28. No. 11. P. E56
  55. D.H., Barcak G.J., Reuter M., Smith H.O. ЕсоШ can be activated to cleave refractory DNA recognition sites // Nucleic Acids Res. 1988. V. 16. No. 9. P. 3997−4008.
  56. Huai Q., Colandene J.D., Chen Y., Luo F., Zhao Y., Topal M.D., Ke H. Crystal structure of Nael-ш evolutionary bridge between DNA endonuclease and topoisomerase//EMBO J. 2000. V. 19. No. 12. P. 3110−3118.
  57. Deibert M., Grazulis S., Sasnauskas G., Siksnys V., Huber R. Structure of the tetrameric restriction endonuclease NgoMlW in complex with cleaved DNA // Nat. Struct. Biol. 2000. V. 7. No. 9. P. 792−799.
  58. Bilcock D.T., Halford S.E. DNA restriction dependent on two recognition sites: activities of the Sfil restriction-modification system in Escherichia coli II Mol. Microbiol. 1999. V. 31. No. 4. P. 1243−1254.
  59. Janulaitis A., Petrusyte M., Maneliene Z., Klimasauskas S., Butkus V. Purification and properties of the EcoSll restriction endonuclease and methylase -prototypes of a new class (type IV) // Nucleic Acids Res. 1992. V. 20. No. 22. P. 6043−6049.
  60. Petrusyte M., Bitinaite J., Menkevicius S., Klimasauskas S., Butkus V., Janulaitis A. Restriction endonucleases of new type // Gene. 1989. V. 74. No. 1. P. 89−91.
  61. Janulaitis A., Vaisvila R., Timinskas A., Klimasauskas S., Butkus V. Cloning and sequence analysis of the genes coding for EcoSll type IV restriction-modification enzymes 11 Nucleic Acids Res. 1992. V. 20. No. 22. P. 6051−6056.
  62. Miyahara M., Nakajima K., Shimada Π’., Mise K. Restriction endonuclease PshAl from Plesiomonas shigelloides with the novel recognition site 5'-GACNN/NNGTC//Gene. 1990. V. 87. No. l.P. 119−122.
  63. Mernagh D., Marks P., Kneale G. Ahdl, a new class of restriction-modification system? // Biochem. Soc. Trans. 1999. 27: A126.
  64. P.Π‘., Мок Y.K. Xcml as a universal restriction enzyme for single-stranded DNA // Gene. 1993. V. 133. No. 1. P. 85−89.
  65. Dryden D.T., Murray N.E., Rao D.N. Nucleoside triphosphate-dependent restriction enzymes // Nucleic Acids Res. 2001. V. 29. No. 18. P. 3728−3741.
  66. Piekarowicz A. Preferential cleavage by restriction endonuclease Hinflll II ActaBiochim. Pol. 1984. V. 31. No. 4. P. 453−464.
  67. Reddy Y.V., Rao D.N. Binding of EcoV5 DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence // J. Mol. Biol. 2000. V. 298. No. 4. P. 597−610.
  68. Rao D.N., Saha S., Krishnamurthy V. ATP-dependent restriction enzymes // Prog. Nucleic Acid Res. Mol. Biol. 2000. V. 64. P. 1−63.
  69. De Backer O., Colson C. Two-step cloning and expression in Escherichia coli of the DNA restriction-modification system iStyLTI of Salmonella typhimurium II J. Bacteriol. 1991. V. 173. No. 3. P. 1321−1327.
  70. Krishnamurthy V., Rao D.N. Interaction of EcoVX modification methylase with S-adenosyl-L-methionine: a UV-crosslinking study // Biochem. Mol. Biol. Intl. 1994. V. 32. P. 623−632.
  71. Kauc L., Piekarowicz A. Purification and properties of a new restriction endonuclease from Haemophilus influenzae Rf// Eur. J. Biochem. 1978. V. 92. No. 2. P. 417−426.
  72. Meisel A., Mackeldanz P., Bickle T.A., Kruger D.H., Schroeder C. Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis // EMBO J. 1995. V. 14. No. 12. P. 2958−2966.
  73. Meisel A., Bickle T.A., Kruger D.H., Schroeder C. Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage // Nature. 1992. V. 355. No. 6359. P. 467−469.
  74. Stewart F.J., Raleigh E.A. Dependence of McrBC cleavage on distance between recognition elements // Biol. Chem. 1998. V. 379. No. 4−5. P. 611−616.
  75. Panne D., Raleigh E.A., Bickle T.A. The McrBC endonuclease translocates DNA in a reaction dependent on GTP hydrolysis // J. Mol. Biol. 1999. V. 290. No. 1. P. 49−60.
  76. Kruger Π’., Wild C., Noyer-Weidner M. McrB: a prokaryotic protein specifically recognizing DNA containing modified cytosine residues // EMBO J. 1995. V. 14. No. 11. P. 2661−2669.
  77. Dila D., Sutherland E., Moran L., Slatko Π’., Raleigh E.A. Genetic and sequence organization of the mcrBC locus of Escherichia coli K-12 // J. Bacteriol. 1990. V. 172. No. 9. P. 4888−4900.
  78. Revel H.R. Restriction of nonglucosylated T-even bacteriophage: properties of permissive mutants of Escherichia coli Π’ and K12 // Virology. 1967. V. 31. No. 4. P. 688−701.
  79. Janosi L., Yonemitsu H., Hong H., Kaji A. Molecular cloning and expression of a novel hydroxymethylcytosine- specific restriction enzyme (PvuRts 11) modulated by glucosylation of DNA // J. Mol. Biol. 1994. V. 242. No. 1. P. 45−61.
  80. Schlagman S.L., Hattman S. Molecular cloning of a functional dam+ gene coding for phage T4 DNA adenine methylase // Gene. 1983. V. 22. No. 2−3. P. 139−156.
  81. Behrens Π’., Noyer-Weidner M., Pawlek Π’., Lauster R., Balganesh T.S., Trautner T.A. Organization of multispecific DNA methyltransferases encoded by temperate Bacillus subtilis phages // EMBO J. 1987. V. 6. No. 4. P. 1137−1142.
  82. Jurica M.S., Stoddard B.L. Homing endonucleases: structure, function and evolution // Cell Mol. Life Sci. 1999. V. 55. No. 10. P. 1304−1326.
  83. Gimble F.S. Invasion of a multitude of genetic niches by mobile endonuclease genes // FEMS Microbiol. Lett. 2000. V. 185. No. 2. P. 99−107.
  84. Belfort M., Perlman P. S. Mechanisms of intron mobility // J. Biol. Chem. 1995. V. 270. No. 51. P. 30 237−30 240.
  85. Webb J.L., King G., Ternent D., Titheradge A.J., Murray N.E. Restriction by EcoKl is enhanced by co-operative interactions between target sequences and is dependent on DEAD box motifs // EMBO J. 1996. V. 15. No. 8. P. 2003−2009.
  86. Modrich P. Methyl-directed DNA mismatch correction // J. Biol. Chem. 1989. V. 264. No. 12. P. 6597−6600.
  87. Polaczek P., Kwan K., Liberies D.A., Campbell J.L. Role of architectural elements in combinatorial regulation of initiation of DNA replication in Escherichia coli// Mol. Microbiol. 1997. V. 26. No. 2. P. 261−275.
  88. Campbell J.L., Kleckner N. E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork // Cell. 1990. V. 62. No. 5. P. 967−979.
  89. Sternberg N., Coulby J. Cleavage of the bacteriophage PI packaging site (рас) is regulated by adenine methylation // Proc. Natl. Acad. Sci. U. S. A. 1990. V. 87. No. 20. P. 8070−8074.
  90. Heithoff D.M., Sinsheimer R.L., Low D.A., Mahan M.J. An essential role for DNA adenine methylation in bacterial virulence // Science. 1999. V. 284. No. 5416. P. 967−970.
  91. Goldman S., Navon Y., Fish F. Phase variation in Bordetella pertussis is accompanied by changes in DNA modification // Microb. Pathog. 1987. V. 2. No. 5. P. 327−338.
  92. Wahnon D.C., Shier V.K., Benkovic S.J. Mechanism-based inhibition of an essential bacterial adenine DNA methyltransferase: rationally designed antibiotics // J. Am. Chem. Soc. 2001. V. 123. No. 5. P. 976−977.
  93. Yoder J.A., Walsh C.P., Bestor Π’.Н. Cytosine methylation and the ecology of intragenomic parasites // Trends Genet. 1997. V. 13. No. 8. P. 335−340.
  94. Walsh C.P., Chaillet J.R., Bestor Π’.Н. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation // Nat. Genet. 1998. V. 20. No. 2. P. 116−117.
  95. Heidmann S., Seifert W., Kessler C., Domdey H. Cloning, characterization and heterologous expression of the Smal restriction-modification system // Nucleic Acids Res. 1989. V. 17. No. 23. P. 9783−9796.
  96. Calvin K., Blumenthal R.M. Characterization of pPvul, the autonomous plasmid from Proteus vulgaris that carries the genes of the PvuW restriction-modification system // Gene. 1995. V. 157. No. 1−2. P. 73−79.
  97. O’Sullivan D.J., Zagula К., Klaenhammer T.R. In vivo restriction by Llal is encoded by three genes, arranged in an operon with //alM, on the conjugative Lactococcus plasmid pTR2030 // J. Bacteriol. 1995. V. 177. No. l.P. 134−143.
  98. Hadi S.M., Bachi Π’., Iida S., Bickle T.A. DNA restriction—modification enzymes of phage PI and plasmid pl5B. Subunit functions and structural homologies//J. Mol. Biol. 1983. V. 165. No. 1. P. 19−34.
  99. Tao Π’., Bourne J.C., Blumenthal R.M. A family of regulatory genes associated with type II restriction- modification systems // J. Bacteriol. 1991. V. 173. No. 4. P. 1367−1375.
  100. Lindroth A.M., Cao X., Jackson J.P., Zilberman D., McCallum C.M., Henikoff S., Jacobsen S.E. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation // Science. 2001. V. 292. No. 5524. P. 20 772 080.
  101. Vijesurier R.M., Carlock L., Blumenthal R.M., Dunbar J.C. Role and mechanism of action of C. PvuW, a regulatory protein conserved among restriction-modification systems // J. Bacteriol. 2000. V. 182. No. 2. P. 477−487.
  102. Vasquez C.C., Saavedra C.P., Pichuantes S.E. Nucleotide sequence of the gene encoding the itoLVI DNA methyltransferase: comparison with other amino-DNA methyltransferases // Curr. Microbiol. 2000. V. 40. No. 2. P. 114−118.
  103. Sohail A., Ives C.L., Brooks J.E. Purification and characterization of Π‘. Π’Π°Ρ‚Π¨, a regulator of the Π’Π°Ρ‚Π¨ restriction-modification system // Gene. 1995. V. 157. No. 1−2. P. 227−228.
  104. Dubey А.К., Roberts R.J. Sequence specific DNA binding by the Mspl DNA methyltransferase // Nucleic Acids Res. 1992. V. 20. No. 12. P. 3167−3173.
  105. Kumar S., Cheng X., Klimasauskas S., Mi S., Posfai J., Roberts R.J., Wilson G.G. The DNA (cytosine-5) methyltransferases // Nucleic Acids Res. 1994. V. 22. No. l.P. 1−10.
  106. Schluckebier G., O’Gara M., Saenger W., Cheng X. Universal catalytic domain structure of AdoMet-dependent methyltransferases // J. Mol. Biol. 1995. V. 247. No. l.P. 16−20.
  107. Malone Th., Blumenthal R.M., Cheng X. Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes // J. Mol. Biol. 1995. V. 253. No. 4. P. 618−632.
  108. Posfai J., Bhagwat A.S., Posfai G., Roberts R.J. Predictive motifs derived from cytosine methyltransferases // Nucleic Acids Res. 1989. V. 17. No. 7. P. 2421−2435.
  109. Bujnicki J.M. Sequence permutations in the molecular evolution of DNA methyltransferases // BMC. Evol. Biol. 2002. V. 2:3.
  110. Timinskas A., Butkus V., Janulaitis A. Sequence motifs characteristic for DNA cytosine-N4. and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases // Gene. 1995. V. 157. No. 1−2. P. 3−11.
  111. Cheng X., Kumar S., Posfai J., Pflugrath J.W., Roberts R.J. Crystal structure of the Hha DNA methyltransferase complexed with S-adenosyl- L-methionine // Cell. 1993. V. 74. No. 2. P. 299
  112. Klimasauskas S., Kumar S., Roberts R.J., Cheng X. Hha methyltransferase flips its target base out of the DNA helix // Cell. 1994. V. 76. No. 2. P. 357−369.
  113. O’Gara M., Zhang X., Roberts R.J., Cheng X. Structure of a binary complex of Hhal methyltransferase with S-adenosyl-L-methionine formed in the presence of a short non-specific DNA oligonucleotide // J. Mol. Biol. 1999. V. 287. No. 2. P. 201−209.
  114. Reinisch K.M., Chen L., Verdine G.L., Lipscomb W.N. The crystal structure of HaeIII methyltransferase convalently complexed to DNA: an extrahelical cytosine and rearranged base pairing // Cell. 1995. V. 82. No. 1. P. 143−153.
  115. Schluckebier G., Kozak M., Bleimling N., Weinhold E., Saenger W. Differential binding of S-adenosylmethionine, S-adenosylhomocysteine and sinefungin to the adenine-specific DNA methyltransferase M. Taql // J. Mol. Biol.1997. V. 265. No. 1. P. 56−67.
  116. Gong W., O’Gara M., Blumenthal R.M., Cheng X. Structure of Pvull DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment//Nucleic Acids Res. 1997. V. 25. No. 14. P. 2702−2715.
  117. Jost J.P., Oakeley E.J., Schwarz S. In: S-adenosylmethionine-dependent methyltransferases: structures and functions / Eds. Cheng X., Blumenthal R.M. Singapore: World Scientific, 1999. P. 373
  118. Vidgren J., Svensson L.A., Liljas A. Crystal structure of catechol O-methyltransferase//Nature. 1994. V. 368. P. 354
  119. Fu Z., Hu Y., Konishi K., Takata Y., Ogawa H., Gomi Π’., Fujioka M., Takusagawa F. Crystal structure of glycine N-methyltransferase from rat liver // Biochemistry. 1996. V. 35. P. 11 985
  120. Djordjevic S., Stock A.M. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine // Structure. 1997. V. 5. No. 4. P. 545−558.
  121. Hodel A.E., Gershon P.D., Quiocho F.A. Structural basis for sequence-nonspecific recognition of 5-capped mRNA by a cap-modifying enzyme // Mol. Cell. 1998. V. 1. No. 3. P. 443−447.
  122. Carugo O., Argos P. NADP-dependent enzymes. II: Evolution of the mono-and dinucleotide binding domains // Proteins. 1997. V. 28. No. 1. P. 29−40.
  123. Kossykh V.G., Schlagman S.L., Hattman S. Studies on the function of conserved sequence motifs in the T4 Dam-N6- adenine. and ZscoRII [C5-cytosine] DNA methyltransferases // Gene. 1995. V. 157. No. 1−2. P. 125−126.
  124. Ahmad I., Rao D.N. Functional analysis of conserved motifs in Eco?5 DNA methyltransferase // J. Mol. Biol. 1996. V. 259. No. 2. P. 229−240.
  125. Jeltsch A., Roth M., Friedrich T. Mutational analysis of target base flipping by the? coRV adenine-N6 DNA methyltransferase // J. Mol. Biol. 1999. V. 285. No. 3. P. 1121−1130.
  126. Friedrich Π’., Roth M., Helm-Kruse S., Jeltsch A. Functional mapping of the EcoRV DNA methyltransferase by random mutagenesis and screening for catalytically inactive mutants // Biol. Chem. 1998. V. 379. No. 4−5. P. 475−480.
  127. Bergerat A., Guschlbauer W. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli II Nucleic Acids Res. 1990. V. 18. No. 15. P. 4369−4375.
  128. Adams G.M., Blumenthal R.M. The PvuW DNA (cytosine-N4)-methyltransferase comprises two trypsin-defined domains, each of which binds a molecule of S- adenosyl-L-methionine // Biochemistry. 1997. V. 36. No. 27. P. 8284−8292.
  129. Bergerat A., Guschlbauer W., Fazakerley G.V. Allosteric and catalytic binding of S-adenosylmethionine to Escherichia coli DNA adenine methyltransferase monitored by 3H NMR // Proc. Natl. Acad. Sci. 1991. V. 88. No. 15. P. 6394−6397.
  130. Sugisaki H., Kita К., Takanami M. The Fokl restriction modification system II. Presence of two domains in Fokl methylase responsible for modification of different DNA strands // J. Biol. Chem. 1989. V. 264. No. 10. P. 5757−5761.
  131. Kossykh V.G., Schlagman S.L., Hattman S.M. Conserved sequence motif DPPY in region IV of the phage T4 Dam DNA-N6-adenine.-methyltransferase is important for S-adenosyl-L-methionine binding // Nucleic Acids Res. 1993. V. 21. No. 20. P. 4659−4662.
  132. Guyot J.Π’., Grassi J., Hahn U., Guschlbauer W. The role of the preserved sequences of Dam methylase // Nucleic Acids Res. 1993. V. 21. No. 14. P. 31 833 190.
  133. Willcock D.F., Dryden D.T., Murray N.E. A mutational analysis of the two motifs common to adenine methyltransferases // EMBO J. 1994. V. 13. No. 16. P. 3902−3908.
  134. Fuller-Pace F.V., Murray N.E. Two DNA recognition domains of the specificity polypeptides of a family of type I restriction enzymes // Proc. Natl. Acad. Sci. U. S. A. 1986. V. 83. No. 24. P. 9368−9372.
  135. Mi S., Roberts R.J. How M. Msp I and M. Hpall decide which base to methylate // Nucleic Acids Res. 1992. V. 20. No. 18. P. 4811−4816.
  136. Pradhan S., Roberts R.J. Hybrid mouse-prokaryotic DNA (cytosine-5) methyltransferases retain the specificity of the parental C-terminal domain // EMBO J. 2000. V. 19. No. 9. P. 2103−2114.
  137. Gubler M., Braguglia D., Meyer J., Piekarowicz A., Bickle T.A. Recombination of constant and variable modules alters DNA sequence recognition by type 1Π‘ restriction-modification enzymes // EMBO J. 1992. V. 11. No. 1. P. 233−240.
  138. Cheng X., Blumenthal R.M. Finding a basis for flipping bases // Structure. 1996. V. 4. No. 6. P. 639−645.
  139. Szegedi S.S., Gumport R.I. DNA binding properties in vivo and target recognition domain sequence alignment analyses of wild-type and mutant Rsrl N6-adenine. DNA methyltransferases // Nucleic Acids Res. 2000. V. 28. No. 20. P. 3972−3981.
  140. Bujnicki J., Radlinska M. Molecular evolution of DNA-(cytosine-N4) methyltransferases: evidence for their polyphyletic origin // Nucleic Acids Res. 1999. V. 27. No. 22. P. 4501−4509.
  141. Radlinska M., Bujnicki J.M. Cloning of enterohemorrhagic Escherichia coli phage VT-2 dam methyltransferase // Acta Microbiol. Pol. 2001. V. 50. No. 2. P. 161−167.
  142. Woodbury C.P., Jr., Hagenbuchle O., von Hippel P.H. DNA site recognition and reduced specificity of the EcoRl endonuclease // J. Biol. Chem. 1980. V. 255. No. 23. P. 11 534−11 548.
  143. Woodbury C.P., Jr., Downey R.L., von Hippel P.H. DNA site recognition and overmethylation by the EcoRl methylase // J. Biol. Chem. 1980. V. 255. No. 23. P. 11 526−11 533.
  144. Reich N.O., Olsen C., Osti F., Murphy J. In vitro specificity of EcoRl DNA methyltransferase // J. Biol. Chem. 1992. V. 267. No. 22. P. 15 802−15 807.
  145. Heitman J., Model P. Site-specific methylases induce the SOS DNA repair response in Escherichia coli II J. Bacteriol. 1987. V. 169. No. 7. P. 3243−3250.
  146. Ginetti F., Perego M., Albertini A.M., Galizzi A. Bacillus subtilis mutS mutL operon: identification, nucleotide sequence and mutagenesis // Microbiology. 1996. V. 142 (Pt 8). P. 2021−2029.
  147. Smith D.W., Crowder S.W., Reich N.O. In vivo specificity of Π•ΡΠΎΠ¨ DNA methyltransferase //Nucleic Acids Res. 1992. V. 20. No. 22. P. 6091−6096.
  148. Bandaru Π’., Gopal J., Bhagwat A.S. Overproduction of DNA cytosine methyltransferases causes methylation and Π‘ —> T mutations at non-canonical sites // J. Biol. Chem. 1996. V. 271. No. 13. P. 7851 -7859.
  149. Cohen H.M., Tawfik D.S., Griffiths A.D. Promiscuous methylation of non-canonical DNA sites by HaeIII methyltransferase // Nucleic Acids Res. 2002. V. 30. No. 17. P. 3880−3885.
  150. Friedrich Π’., Fatemi M., Gowher H., Leismann O., Jeltsch A. Specificity of DNA binding and methylation by the M. Fofcl DNA methyltransferase // Biochim. Biophys. Acta. 2000. V. 1480. No. 1−2. P. 145−159.
  151. Kossykh V.G., Schlagman S.L., Hattman S.M. Phage T4 DNA N6-adenine.-methyltransferase. Overexpression, purification and characterization // J. Biol. Chem. 1995. V. 270. No. 24. P. 14 389−14 393.
  152. Minko I., Hattman S., Lloyd R.S., Kossykh V. Methylation by a mutant T2 DNA N (6)-adenine. methyltransferase expands the usage of RecA-assisted endonuclease (RARE) cleavage // Nucleic Acids Res. 2001. V. 29. No. 7. P. 14 841 490.
  153. Jeltsch A., Christ F., Fatemi M., Roth M. On the substrate specificity of DNA methyltransferases //J. Biol. Chem. 1999. V. 274. No. 28. P. 19 538−19 544.
  154. Roth M., Jeltsch A. Changing the target base specificity of the EcoRV DNA methyltransferase by rational de novo protein-design // Nucleic Acids Res. 2001. V. 29.No. 15. P. 3137−3144.
  155. Cerritelli S., Springhorn S.S., Lacks S.A. DpnA, a methylase for single-strand DNA in the Dpnll restriction system, and its biological function // Proc. Natl. Acad. Sci. 1989. V. 86. No. 23. P. 9223−9227.
  156. Merkiene E., Vilkaitis G., Klimasauskas S. A pair of single-strand and double-strand DNA cytosine-N4 methyltransferases from Bacillus centrosporus II Biol. Chem. 1998. V. 379. P. 569−571.
  157. Allan B.W., Garcia R.A., Maegley K., Mort J., Wong D., Lindstrom W.M., Beechem J.M., Reich N.O. DNA bending by EcoRl DNA methyltransferase accelerates base flipping but compromises specificity // J. Biol. Chem. 1999. V. 274. No. 27. P. 19 269−19 275.
  158. Slatko B.E., Croft R., Moran L.S., Wilson G.G. Cloning and analysis of the Hae III and Haell methyltransferase genes 11 Gene. 1988. V. 74. No. 1. P. 45−50.
  159. Rina M., Bouriotis V. Cloning, purification and characterization of the BseCI DNA methyltransferase from Bacillus stearothermophilus II Gene. 1993. V. 133. No. 1. P. 91−94.
  160. Bhattacharya S.K., Dubey A.K. Kinetic mechanism of cytosine DNA methyltransferase Mspl И J. Biol. Chem. 1999. V. 274. No. 21. P. 14 743−14 749.
  161. Yoon H., Suh H., Kim K., Han M.H., Yoo O.J. The specificity fnd catalytic properties of Alui methylase. II Korean Biochem. 2002. V. 18. No. 1985. P. 88−93.
  162. Malygin E.G., Ovechkina L.G., Zinoviev V.V., Lindstrom W.M., Reich N.O. DNA-(N4-cytosine)-methyltransferase from Bacillus amyloliquefaciens: kinetic and substrate-binding properties // Mol. Biol. (Mosk). 2001. V. 35. No. 1. P. 35−44.
  163. Gunthert U., Jentsch S., Freund M. Restriction and modification in Bacillus subtilis: two DNA methyltransferases with BsuRI specificity // J. Biol. Chem. 1981. V. 256. No. 17. P. 9346−9351.
  164. Goedecke K., Pignot M., Goody R.S., Scheidig A.J., Weinhold E. Structure of the N6-adenine DNA methyltransferase MTaql in complex with DNA and a cofactor analog II Nat. Struct. Biol. 2001. V. 8. No. 2. P. 121−125.
  165. Schluckebier G., Labahn J., Granzin J., Saenger W. M. Taql: possible catalysis via cation-pi interactions in N-specific DNA methyltransferases // Biol. Chem. 1998. V. 379. No. 4−5. P. 389−400.
  166. Pogolotti A.L., Ono A., Subramaniam R., Santi D.V. On the mechanism of DNA adenine methylase // J. Biol. Chem. 1988. V. 263. No. 16. P. 7461−7464.
  167. Blumenthal R.M., Cheng X. A Taq attack displaces bases // Nat. Struct. Biol. 2001. V. 8. No. 2. P. 101−103.
  168. Klimasauskas S., Roberts R.J. M. Hhal binds tightly to substrates containing mismatches at the target base // Nucleic Acids Res. 1995. V. 23. No. 8. P. 13 881 395.
  169. Yang A.S., Shen J.C., Zingg J.M., Mi S., Jones P.A. Hhal and Hpall DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair // Nucleic Acids Res. 1995. V. 23. No. 8. P. 1380−1387.
  170. Allan B.W., Beechem J.M., Lindstrom W.M., Reich N.O. Direct real time observation of base flipping by the Eco RI DNA methyltransferase // J. Biol. Chem. 1998. V. 273. No. 4. P. 2368−2373.
  171. Π’., Klimasauskas S., Serva S., Weinhold E. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases // Nucleic Acids Res. 1998. V. 26. No. 4. P. 1076−1083.
  172. Szegedi S.S., Reich N.O., Gumport R.I. Substrate binding in vitro and kinetics of Rsrl N6-adenine. DNA methyltransferase // Nucleic Acids Res. 2000. V. 28. No. 20. P. 3962−3971.
  173. Hosfield D.J., Guan Y., Haas B.J., Cunningham R.P., Tainer J.A. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis // Cell. 1999. V. 98. No. 3. P. 397−408.
  174. Slupphaug G., Mol C.D., Kavli Π’., Arvai A.S., Krokan H.E., Tainer J.A. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA // Nature. 1996. V. 384. No. 6604. P. 87−92.
  175. Roberts R.J. On base flipping//Cell. 1995. V. 82. No. 1. P. 9−12.
  176. Chen L., MacMillan A.M., Chang W., Ezaz-Nikpay K., Lane W.S., Verdine G.L. Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase // Biochemistry. 1991. V. 30. No. 46. P. 11 018−11 025.
  177. Verdine G.L. The flip side of DNA methylation // Cell. 1994. V. 76. No. 2. P. 197−200.
  178. Santi D.V., Norment A., Garrett C.E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine // Proc. Natl. Acad. Sci. 1984. V. 81. No. 22. P. 6993−6997.
  179. Friedman S., Ansari N. Binding of thecoRII methyltransferase to 5-fluorocytosine containing DNA. Isolation of a bound peptide // Nucleic Acids Res.1992. V. 20. No. 12. P. 3241−3248.
  180. Chen L., MacMillan A.M., Verdine G.L. Mutational separation of DNA binding from catalysis in DNA cytosine methyltransferase // J. Am. Chem. Soc.1993. V. 115. P. 5318−5319.
  181. Renbaum P., Razin A. Interaction of M. SssI and M. Hhal with single-base mismatched oligodeoxynucleotide duplexes // Gene. 1995. V. 157. No. 1−2. P. 177 179.
  182. Dubey A.K., Bhattacharya S.K. Angle and locus of the bend induced by the Mspl DNA methyltransferase in a sequence-specific complex with DNA // Nucleic Acids Res. 1997. V. 25. No. 10. P. 2025−2029.
  183. Cal S., Connolly B.A. The Eco RV modification methylase causes considerable bending of DNA upon binding to its recognition sequence GATATC //J. Biol. Chem. 1996. V. 271. No. 2. P. 1008−1015.
  184. Garcia R.A., Bustamante C.J., Reich N.O. Sequence-specific recognition by cytosine C5 and adenine N6 DNA methyltransferases requires different deformations of DNA // Proc. Natl. Acad. Sci. 1996. V. 93. No. 15. P. 7618−7622.
  185. Lindstrom W.M., Flynn J., Reich N.O. Reconciling structure and function in Hha DNA cytosine-C-5 methyltransferase // J. Biol. Chem. 2000. V. 275. No. 7. P. 4912−4919.
  186. Szczelkun M.D., Connolly B.A. Sequence-specific binding of DNA by the EcoRV restriction and modification enzymes with nucleic acid and cofactor analogues // Biochemistry. 1995. V. 34. No. 34. P. 10 724−10 733.
  187. Greene P.H., Poonian M.S., Nussbaum A.L., Tobias L., Garfin D.E., Boyer H.W., Goodman H.M. Restriction and modification of a self-complementary octanucleotide containing the EcoRI substrate // J. Mol. Biol. 1975. V. 99. No. 2. P. 237−261.
  188. Kaszubska W., Webb H.K., Gumport R.I. Purification and characterization of the M. Tfarl DNA methyltransferase from Escherichia coli II Gene. 1992. V. 118. No. 1. P. 5−11.
  189. Kossykh V.G., Schlagman S.L., Hattman S. Comparative studies of the phage T2 and T4 DNA (N6- adenine) me thy transferases: amino acid changes that affect catalytic activity // J. Bacteriol. 1997. V. 179. No. 10. P. 3239−3243.
  190. Nardone G., George J., Chirikjian J.G. Differences in the kinetic properties of Π’Π°Ρ‚Π¨ endonuclease and methylase with linear DNA substrates // J. Biol. Chem. 1986. V. 261. No. 26. P. 12 128−12 133.
  191. Kang Y.K., Lee H.B., Noh M.J., Cho N.Y., Yoo O.J. Different effects of base analog substitutions in Π’Π°Ρ‚Π¨ restriction site on recognition by Π’Π°Ρ‚Π¨ endonuclease and itowHImethylase // Biochem. Biophys. Res. Commun. 1995. V. 206. No. 3. P. 997−1002.
  192. Thielking V., Dubois S., Eritja R., Guschlbauer W. Dam methyltransferase from Escherichia coli: Kinetic studies using modified DNA oligomers: nonmethylated substrates // Biol. Chem. 1997. V. 378. No. 5. P. 407−415.
  193. Marzabal S., Dubois S., Thielking V., Cano A., Eritja R., Guschlbauer W. Dam methylase from Escherichia coli: kinetic studies using modified oligomers: hemimethylated substrates // Nucleic Acids Res. 1995. V. 23. No. 18. P. 36 483 655.
  194. Szilak L., Der A., Deak F., Venetianer P. Kinetic characterization of the Ecal methyltransferase// Eur. J. Biochem. 1993. V. 218. No. 2. P. 727−733.
  195. Winter M. Investigation of de novo methylation activity in mutants of the EcoKl methyltransferase. University of Edinburgh- 1998.
  196. Ahmad I., Rao D.N. Interaction of? coP15I DNA methyltransferase with oligonucleotides containing the asymmetric sequence 5'-CAGCAG-3' // J. Mol. Biol. 1994. V. 242. No. 4. P. 378−388.
  197. R.A., Modrich P. ЕсоШ methylase. Physical and catalytic properties of the homogeneous enzyme // J. Biol. Chem. 1977. V. 252. No. 20. P. 7265−7272.
  198. Kossykh V.G., Schlagman S.L., Hattman S. Function of Pro-185 in the ProCys of conserved motif IV in the iscoRII cytosine-C5.-DNA methyltransferase // FEBS Lett. 1995. V. 370. No. 1−2. P. 75−77.
  199. Wolcke J. University Dortmund, Germany- 1998.
  200. Reich N.O., Danzitz M.J.J. Non-additivity of sequence-specific enzyme-DNA interactions in the ЕсоШ. DNA methyltransferase // Nucleic Acids Res. 1991. V. 19. No. 23. P. 6587−6594.
  201. Jeltsch A., Friedrich Π’., Roth M. Kinetics of methylation and binding of DNA by the? coRV adenine-N6 methyltransferase // J. Mol. Biol. 1998. V. 275. No. 5. P. 747−758.
  202. Lee K.F., Liaw Y.-C., Shaw P.C. Overproduction, purification, and characterization of М. Π―ΡΠΎΠΠšΠ—ΠŸ, a bacterial methyltransferase with two polypeptides // Biochem. J. 1996. V. 314. No. 1. P. 321−326.
  203. Kaczorowski Π’., Sektas M., Skowron P., Podhajska A.J. The Fokl methyltransferase from Flavobacterium okeanokoites. Purification and characterization of the enzyme and its truncated derivatives // Mol. Biotechnol. 1999. V. 13. No. l.P. 1−15.
  204. Pradhan S., Bacolla A., Wells R.D., Roberts R.J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation // J. Biol. Chem. 1999. V. 274. No. 46. P. 33 002−33 010.
  205. Glickman J.F., Flynn J., Reich N.O. Purification and characterization of recombinant baculovirus-expressed mouse DNA methyltransferase // Biochem. Biophys. Res. Commun. 1997. V. 230. No. 2. P. 280−284.
  206. Vilkaitis G., Merkiene E., Serva S., Weinhold E., Klimasauskas S. The mechanism of DNA cytosine-5 methylation. Kinetic and mutational dissection of Hha methyltransferase // J. Biol. Chem. 2001. V. 276. No. 24. P. 20 924−20 934.
  207. Schluckebier G., Labahn J., Granzin J., Schildkraut I., Saenger W. A model for DNA binding and enzyme action derived from crystallographic studies of the Taql N6-adenine-methyltransferase // Gene. 1995. V. 157. No. 1−2. P. 131−134.
  208. Reich N.O., Mashhoon N. Kinetic mechanism of the ?
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ