Помощь в написании студенческих работ
Антистрессовый сервис

Идентификация и характеристика IbpA, малого белка теплового шока микоплазмы (Acholeplasma laidlawii)

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Исследование механизмов жизнеобеспечения наиболее просто устроенной клетки, способной к самостоятельному воспроизведению (каковыми являются клетки микоплазм), в т. ч. системы ответа на стресс, имеет фундаментальное значение для понимания основных принципов функционирования любой клетки. Протективная роль белка IbpA, обнаруженная в модельных экспериментах с клетками Е. coli, позволяет утверждать… Читать ещё >

Идентификация и характеристика IbpA, малого белка теплового шока микоплазмы (Acholeplasma laidlawii) (реферат, курсовая, диплом, контрольная)

Содержание

  • Цели и задачи исследования
  • Научная новизна полученных результатов
  • Теоретическое и практическое значение работы
  • Апробация работы
  • Глава 1. Обзор литературы
    • 1. 1. Контроль за качеством белков в бактериальной клетке
    • 1. 2. Основные БТШ бактерий
    • 1. 3. БТШ микоплазм: история открытия
    • 1. 4. БТШ микоплазм: «гены и геномы»
    • 1. 5. Регуляция экспрессии генов БТШ в клетках микоплазм
    • 1. 6. Структура, свойства и функции БТШ микоплазм
    • 1. 7. Семейство БТШ а-кристаллинового типа (а-БТШ)
  • Глава 2. Материалы и методы
    • 2. 1. Компьютерный анализ аминокислотных последовательностей
    • 2. 2. Бактериальные штаммы
    • 2. 3. Клонирование гена
    • 2. 4. Получение рекомбинантного белка
    • 2. 5. Получение поликлональных антител
    • 2. 6. Иммуноблотинг
    • 2. 7. Тепловой шок
    • 2. 8. Оценка молекулярной массы олигомеров
    • 2. 9. Шаперонная активность рекомбинантного белка in vitro
    • 2. 10. Оценка влияния рекомбинантного белка на агрегацию белков Е. coli in vitro при нагреве
    • 2. 11. Оценка теплоустойчивости клеток Е. coli, продуцирующих рекомбинантный белок
    • 2. 12. Электронная микроскопия
  • Глава 3. Результаты
    • 3. 1. Идентификация белка р17 и анализ его аминокислотной последовательности
    • 3. 2. Рекомбинантный белок IbpA и поликлональные антитела против него
    • 3. 3. Олигомерные формы рекомбинантного белка IbpA
    • 3. 4. Шаперонная активность рекомбинантного белка IbpA in vitro
    • 3. 5. Влияние рекомбинантного белка IbpA на агрегацию белков Е. coli in vitro при нагреве
    • 3. 6. Теплоустойчивость клеток Е. coli в присутствии рекомбинантного IbpA
    • 3. 7. Локализация белка IbpA в клетке A. laidlawi
  • Глава 4. Обсуяадение

При подъеме температуры до сублетальных значений клетки как прокариот, так и эукариот приостанавливают синтез большинства обычных белков и увеличивают скорость синтеза особого набора белков, называемых БТШ. БТШ были обнаружены у многих эукариот и бактерий (Опс^шв^ 1986). Микоплазмы (класс МоШсЩсб) не составили исключение. БТШ микоплазм впервые были выявлены в Лаборатории структурной организации генома Института цитологии РАН (ВогсИзешиз е! а1., 1990). Было показано, что при увеличении температуры с 32 до 44 °C на 2 ч клетки Ас1го1ер1ахта 1аШ1аш ускоряют синтез девяти полипептидов на фоне подавления синтеза остальных белков, причем в наибольшей степени возрастает количество полипептидов с молекулярной массой 72, 65, 17 и 10 кДа. Наличие БТШ у микоплазм, при том, что геномы этих микроорганизмов значительно редуцированы, указывает на фундаментальное значение БТШ для жизнеобеспечения клетки, в том числе «минимальной». Синтез БТШ у ряда микоплазм был независимо показан и другими авторами (БазсЬег ег а1., 1990).

1 Позже синтез БТШ у микоплазм нескольких видов был исследован методом иммуноблотинга с использованием поликлональных антител к БТШ 70 человека и бактериальным белкам ОгоЕЬ и СгоЕБ. При этом полипептид с молекулярной массой 72 кДа, синтезируемый клетками А. кйс11а\'П, был идентифицирован как шаперон БпаК (бактериальный аналог БТШ 70 человека), а полипептиды 65 и 10 кДа — как аналоги известных бактериальных шаперонов вгоЕЬ и ОгоЕБ, соответственно (Вонский и др., 1993). Ген, кодирующий БпаК Л. ШсНаюИ, был секвенирован. Малый БТШ (17кДа), условно обозначенный как р17, не был идентифицирован и охарактеризован, однако были прочитаны 15 аминокислот с его М-конца (Вонский, 2001). Уровень синтеза р17 в условиях теплового шока возрастал многократно, количество р17 увеличивалось до 7,2% от общего количества белков в клетке. Другие БТШ накапливались в клетках А. 1тй1ачи в меньшем количестве (Вонский и др., 1993). Вероятно, роль р17 в ответе на тепловой шок весьма важна для клеток А. 1шс11аыИ. Мы предположили, что в соответствии с молекулярной массой р17 может относиться к семейству белков теплового шока а-кристаллинового типа (а-БТШ). а-БТШ исследованы у многих бактерий, животных, растений и некоторых архей. Известно, что молекулярная масса а-БТШ у разных организмов варьирует от 10 до 43 кДа, причем размер большинства из них 14−27 кДа. Члены многочисленного семейства а-БТШ обладают общими свойствами: 1) наличием а-кристаллинового домена, 2) способностью к формированию олигомеров, 3) шаперонной активностью олигомерной формы (КагЬегЬаиэ,.

2002). В условиях стресса а-БТШ связываются с частично денатурированными полипептидными цепями, предотвращая их необратимую денатурацию и агрегацию (Horwitz, 1992). В отличие от шаперонов GroEL и DnaK, а-БТШ не нуждаются в АТФ (Jakob et al., 1993). Предполагают, что а-БТШ интегрированы в мультишаперонную сеть, строго контролирующую качество белков в клетке (Wong, Houry, 2004). Кроме того, а-БТШ играют роль в регуляции текучести клеточных мембран: они способны стабилизировать жидкокристаллическое состояние бислоя и поддерживать целостность мембраны во время термических флуктуаций (Horvath et al., 1998; Tsvetkova et al., 2002). Некоторые а-БТШ эукариот взаимодействуют с белками цитоскелета и защищают их в условиях стресса (Mounier, Arrigo, 2002; Day et al., 2003).

Интересно, что среди прокариот значительная часть исследованных а-БТШ была обнаружена у микроорганизмов, образующих покоящиеся стадии. Например, гомолог а-БТШ с молекулярным весом 16кДа считается маркером латентных форм Mycobacterium tuberculosis (Cunningham, Spreadbury, 1998). Понимание роли, которую играют а-БТШ у прокариот в покоящихся стадиях, в состоянии повышенной устойчивости к различным стрессам, может привести к разработке новых стратегий лечения болезней, вызываемых персистирующими патогенными микроорганизмами. Клетки A. laidlawii при неблагоприятных условиях способны образовывать так называемые ультрамикроформы, отличающиеся от обычных клеток меньшим размером, повышенной устойчивостью к биотическим и абиотическим стрессовым факторам и фитопатогенностью (Chernov et al., 2007). Мы предполагаем, что основная роль при этом принадлежит системе ответа на стресс, в состав которой должен входить исследуемый нами малый белок теплового шока.

Цели и задачи исследования.

Целью данной работы было идентифицировать и охарактеризовать малый белок теплового шока (р17) A. laidlawii. В рамках поставленной цели были определены следующие задачи:

1) найти в геноме A. laidlawii ОРС, соответствующую гену, кодирующему белок р17, и проверить аминокислотную последовательность предсказанного продукта этого гена на наличие консервативных участков;

2) выполнить поиск последовательностей, гомологичных полноразмерному р17, в геномах всех полностью секвенированных к настоящему времени микоплазм;

3) клонировать ген, кодирующий р17, в экспрессирующем векторе, получить рекомбинантный белок и поликлональные антитела к нему;

4) проверить, образует ли исследуемый белок олигомерные формы;

5) проверить наличие у белка р17 шаперонной активности;

6) исследовать локализацию малого белка теплового шока в клетках A. laidlawii с применением методов иммуно-электронной микроскопии.

Научная новизна полученных результатов.

Свойства и функции малого белка теплового шока из микоплазмы исследованы впервые. Показано, что этот белок принадлежит к семейству шаперонов а-кристаллинового типа и обладает основными свойствами белков этого семейства: 1) наличием консервативного а-кристаллинового домена- 2) способностью к спонтанной олигомеризации in vitro- 3) температуро-зависимой шаперонной активностью in vitro. Кроме того, установлено, что рекомбинантный а-БТШ A. laidlawii защищает некоторые белки клеточного экстракта Е. coli от агрегации при воздействии высокой температуры и повышает устойчивость трансформированных клеток Е. coli к тепловому шоку. Впервые исследована локализация а-БТШ в клетке микоплазмы и показана его ассоциация с элементами клеточных структур.

Теоретическое и практическое значение работы.

Исследование механизмов жизнеобеспечения наиболее просто устроенной клетки, способной к самостоятельному воспроизведению (каковыми являются клетки микоплазм), в т. ч. системы ответа на стресс, имеет фундаментальное значение для понимания основных принципов функционирования любой клетки. Протективная роль белка IbpA, обнаруженная в модельных экспериментах с клетками Е. coli, позволяет утверждать, что он способен выполнять защитную функцию в клетках. Данные по локализации IbpA в клетке микоплазмы являются существенным вкладом в исследование свойств а-БТШ прокариот, так как в мировой литературе есть всего несколько подобных работ, выполненных на других микроорганизмах. Результаты работы могут быть полезны при дальнейших исследованиях механизмов ответа на стресс у микоплазм. Для получения результатов по локализации а-КТТТТ в клетках А. laidlawii были адаптированы методы иммуно-электронной микроскопии, которые могут быть использованы для исследования микоплазм и других мини-клеток, изучение которых методами световой и фазово-контрастной микроскопии невозможно из-за их маленького размера.

Апробация работы.

По теме диссертации опубликовано 11 печатных работ, в том числе 3 журнальные статьи. Материалы диссертации были представлены на Международной конференции «Mycoplasmology — a review of developments over the last decade» (Гран-Канария, Испания, 10−12 июня 2009 г.) — 17-м (Тяньцзинь, Китай, 6−11 июля 2008 г.) и 18-м (Кьянчано Терме, Италия, 11−16 июля 2010 г.) Международных конгрессах ЮМ (International Organization for Mycoplasmology) — XXII (Черноголовка, 2−6 июня 2008 г.) и ХХШ (31 мая — 4 июня 2010 г.) Российских конференциях по электронной микроскопии (РКЭМ) — П Конференции молодых ученых Института цитологии РАН (Санкт-Петербург, 15−16 февраля 2010 г.) — 14-й Международной Пущинской школе-конференции молодых учёных «Биология — наука XXI века» (Пущино, 19−23 апреля 2010 г.) — Политехническом симпозиуме «Молодые учёные — промышленности Северо-Западного региона» (Санкт-Петербург, 20 мая 2010 г.) и на заседании объединённого научного семинара Лаборатории структурной организации генома, Лаборатории цитологии опухолевого роста, Лаборатории регуляции экспрессии генов, Отдела клеточных культур и Группы ультраструктуры клеточных мембран Института цитологии РАН 29 ноября 2010 г.

Выводы:

1. Белок IbpA (р17) является продуктом ОРС ACL0421 A. laidlawii. Последовательность белка состоит из 137 аминокислотных остатков, и центральная её часть содержит консервативный а-кристаллиновый домен.

2. Среди микоплазм гены, кодирующие гомологи а-БТШ, найдены только в геномах представителей семейства Acholeplasmataceae.

3. Рекомбинантный белок IbpA спонтанно формирует олигомерные комплексы in vitro (PBS lx, pH 7,4). В этом растворе IbpA представляет собой смесь мономеров и олигомеров, находящихся, вероятно, в динамическом равновесии, и состоящих из 2, 4, 12 и 24 мономерных субъединиц.

4. Рекомбинантный белок IbpA in vitro обнаруживает зависимую от температуры шаперонную активность по отношению к инсулину и предотвращает агрегацию ряда растворимых белков из клеточного экстракта Е. coli при тепловой обработке (55 °С).

5. Продукция рекомбинантного белка IbpA клетками Е. coli повышает их теплоустойчивость в условиях сильного теплового шока (48 °С).

6. При тепловом шоке значительная часть молекул IbpA в клетке А. laidlawii ассоциирована с элементами клеточных структур.

Заключение

.

IbpA (р 17) из А. laidlawii является малым белком теплового шока а-кристаллинового типа, поскольку обладает характерными для этого семейства белков свойствами: 1) наличием консервативного а-кристаллинового домена- 2) способностью к спонтанной олигомеризации in vitro- 3) шаперонной активностью по отношению к инсулину как модельному субстрату. При этом а-БТШ из микоплазмы является эффективным шапероном только в условиях повышенной температуры, наподобие Hsp26 из дрожжей S. cerevisiae.

Рекомбинантный а-БТШ из А. laidlawii защищает некоторые белки клеточного экстракта Е. coli от денатурации и агрегации при воздействии высокой температуры и повышает устойчивость трансформированных клеток Е. coli к тепловому шоку. Вероятно, IbpA А. laidlawii выполняет шаперон-подобную функцию и в клетках микоплазм.

В условиях теплового шока значительная часть молекул IbpA в клетке А. laidlawii ассоциирована с элементами клеточных структур. Мы предполагаем, что а-БТШ из микоплазмы может иметь множественные мишени в клетке и участвовать в стабилизации различных структур во время теплового шока. С какими именно мишенями взаимодействует IbpA в клетках А. laidlawii, ещё предстоит установить.

Показать весь текст

Список литературы

  1. И.Е., Борхсениус С. Н. 2007. Белок FtsZ и цитокинез у бактерий. Цитология. 49 (5): 421−429.
  2. И.Е., Борхсениус С. Н., Басовский Ю. И., Левицкий С. А., Лазарев В. Н., Снигиревская Е. С., Комиссарчик Я. Ю. 2009. Локализация белка деления FtsZ в клетках микоплазмы. Цитология. 51 (3): 247−256.
  3. М.С., Аствацатурянц Г. В., Борхсениус С. Н. 1993. Экспрессия белков теплового шока у микоплазм. ДАН, 331 (1): 112−115.
  4. М.С. 2001. Белки теплового шока микоплазм: клонирование и экспрессия гена dnaK. Кандидатская диссертация. СПб. 121 стр.
  5. Е.С. 2010. Адаптация Acholeplasma laidlawii PG8 к условиям среды: морфологические, ультраструктурные, патогенные и молекулярно-генетические аспекты. Кандидатская диссертация. Казань. 181 стр.
  6. А. А., Комиссарчик Я. Ю., Миронов В. А. 1994. Методы электронной микроскопии в биологии и медицине: Методическое руководство. СПб.: Наука. 400 с.
  7. О.О., Ким М.В., Гусев Н. Б. 2003. Структура и свойства малых белков теплового шока. Успехи биологической химии. 43: 59−98.
  8. Akiyama Y., Ehrmann M., Kihara A., Ito K. 1998. Polypeptide binding of Escherichia coli FtsH (HflB). Mol. Microbiol. 28: 803−812.
  9. Albanese V., Yam A.Y., Baughman J., Parnot C., Frydman J. 2006. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell. 124: 75−88.
  10. S.P., Polazzi J.O., Gierse J.K., Easton A.M. 1992. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174: 6938−6947.
  11. H., Atomi Y. 1997. Chaperone Activity of aB-crystallin Suppresses Tubulin Aggregation through Complex Formation. Cell Structure and Function. 22: 539−544.
  12. S., Jakob U., Glocker M.O. 2000. Mass spectroscopy unravels disulfide bond formation as the mechanism that activates a molecular chaperone. J. Biol. Chem. 275: 1 875 918 766.
  13. E.N., Helps C.R., Peters I.R., Darby A.C., Radford A.D., Tasker S. 2011. Complete genome sequence of Mycoplasma haemofelis, a hemotropic mycoplasma (Direct Submittion).
  14. D., Slavec B., Narat M. 2005. Antibody response to GroEL varies in patients with acute Mycoplasma pneumoniae infection. FEMS Immun. Med. Microbiol. 43(3): 399−406.
  15. R.L., Slavec B., Lavric M., Narat M., Bidovec A., Dove P., Bencina D. 2008. Identification of major immunogenic proteins of Mycoplasma synoviae isolates. Vet Microbiol. 127(1−2): 147−54.
  16. Birren B.W., Stange-Thomann N. Hafez N. DeCaprio D., Fisher S., Butler J., Elkins T., Kodira C.D., Major J., Wang S., Nicol R" Nusbaum C" Knight T. Jr., Fournier G. 2004. The complete genome sequence of Mesoplasma florum LI (Direct Submission).
  17. Boelens W.C., Croes Y., de Jong W.W. 2001. Interaction between aB-crystallin and the human 20S proteasomal subunit C8/alpha7. Biochim. Biophys. Acta 1544: 311−319.
  18. Boelens W.C., Croes Y" de Ruwe M., de Reu L., de Jong W.W. 1998. Negative charges in the C-terminal domain stabilize the alphaB-crystallin complex. J. Biol. Chem. 273: 28 085−28 090.
  19. S.N., Budantseva E.V., Vonsky M.S. 1990. The heat-shock proteins of Acholeplasma laidlawii. Zentralbl. Bakteriol. Suppl. 20: 657−658. In: Stuttgart, New York: Gustav Fisher Verlag. 962 p.
  20. M. 1976. A rapid and sencitive method for quantitation of microgramm quantities of protein utilizing the principle of protein-dye binding. Anal. Boichem. 72: 248−254.
  21. J. 1999. Hsp90 & Co. a holding for folding. Trends Biochem. Sei. 24: 136−141.
  22. B., Deuerling E., Pfund C., Craig E.A. 2000. Getting newly synthesized proteins into shape. Cell. 101: 119−122.
  23. B., Horwich A.L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell. 92: 351−366.
  24. Calderon-Copete S.P., Wigger G., Wunderlin C., Schmidheini T., Frey J., Quail M.A., Falquet L. 2009. The Mycoplasma conjunctivae genome sequencing, annotation and analysis. BMC Bioinformatics. 10(Suppl 6): S7.
  25. Caspers G.J., Leunissen J.A.M., de Jong W.W. 1995. The expanding small heat-shock protein family, and structure predictions of the conserved «alpha-crystallin domain». J. Mol. Evol. 40: 238−248.
  26. L.J., Chen W.H., Minion F.C., Shiuan D. 2008. Mycoplasmas regulate the expression of heat-shock protein genes through CIRCE-HrcA interactions. Biochem Biophys Res Commun. 367(1): 213−8.
  27. Chattin-Kacouris B.R., Ishihara K., Miura T., Okuda K., Ikeda M., Ishikawa T., Rowland R. 2002. Heat shock protein of Mycoplasma salivarium and Mycoplasma orale strains isolated from HIV-seropositive patients. Bull Tokyo Dent Coll. 43(4): 231−6.
  28. Chen Y.-L., Wang S.-N., Yang W.-J., Chen Y.-J., Lin H.-H., Shiuan D. 2003. Expression and Immunogenicity of Mycoplasma hyopneumoniae Heat Shock Protein Antigen P42 by DNA Vaccination. Infect. Immun. 71(3): 1155−1160.
  29. V.M., Moukhametshina N.E., Gogolev Yu.V., Nesterova T.N., Trushin M.V., Chernova O.A. 2007. Acholeplasma laidlawii PG8 culture adapted to unfavorable growth conditions shows an expressed phytopathogenicity. The Scientific World Journal. 7: 1−6.
  30. G.W., Tillier E.R. 2010. Loss and gain of GroEL in the Mollicutes. Biochem Cell Biol. 88: 185−194.
  31. J.M., Krause D.C. 2010. Functional domain analysis of the Mycoplasma pneumoniae co-chaperone TopJ. Mol Microbiol. 77(1): 158−69.
  32. P., Korcsmaros T., Kovacs LA., Szalay M.S., Soti C. 2007. Systems biology of molecular chaperone networks. Novartis Foundation Symposium 291: The biology of extracellular molecular chaperones. Wiley, Chichester, p.45−58.
  33. A.F., Spreadbury C.L. 1998. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton a-crystallin homolog. J. Bacteriol. 180: 801−808.
  34. C.C., Poddar S.K., Maniloff J. 1990. Heat shock response in mycoplasmas, genome-limited organisms. J. Bacteriol. 172: 1823−1827.
  35. I., Rapoport G., Msadek T. 1999. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol. Microbiol. 31: 117−131.
  36. Deuerling E., Schulze-Specking A., Tomoyasu T., Mogk A., Bukau B. 1999. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature. 400: 693−696.
  37. Dybvig K., Zuhua C., Lao P., Jordan D.S., French C.T., Tu A.H., Loraine A.E. 2008. Genome of Mycoplasma arthritidis. Infect. Immun. 76 (9): 4000−4008.
  38. M., Graber S., Gaestel M., Buchner J. 1997. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16: 221−229.
  39. Ehrnsperger, M., Lilie H., Gaestel M., and Buchner J. 1999. The dynamics of Hsp25 quaternary structure. Structure and function of different oligomeric species. J. Biol. Chem. 274: 14 867−14 874.
  40. R.J. 2005. Chaperomics: in vivo GroEL function defined. Curr. Biol. 15(17): R661−663.
  41. M., Gupta R.S. 1997. Phylogenetic analysis of mycoplasmas based on Hsp70 sequences: cloning of the dnaK (hsplO) gene region of Mycoplasma capricolum. Int. J. Syst. Bacteriol. 47(1): 38−45.
  42. P.N., Singh K. 2000. Self-complementary motifs (SCM) in alpha-crystallin small heat shock proteins. FEBS Lett. 482: 175−179.
  43. O., Ziegelhofer T., Georgopoulos C. 1989. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171: 1379−1385.
  44. T.M., Wuhr M., Richter K., Walter S., Buchner J. 2005. The activation mechanism of Hsp26 does not require dissociation of the oligomer. J. Mol. Biol. 350: 10 831 093.
  45. Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A., Fleischmann R.D., Bult
  46. E. 1983. Culture media for classical mycoplasmas. In: Methods in mycoplasmology. New York: Acad. Press. 1: 127−136.
  47. K., Ishihama Y., Nakahigashi K., Soga T., Taguchi H. 2010. A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J. 29: 1552−1564.
  48. Gil R., Silva F.J., Perety J., Moya A. 2004. Determination of the Core of a Minimal Bacterial Gene Set. Microbiol Mol Biol Rev. 68 (3): 518−537.
  49. K., Elofsson A., Fischer D., Rychlewski L. 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics. 2003. 19(8): 1015−1018.
  50. Glass J.I., Durkin A.S., Hostetier J., Jackson J., Johnson J., May M.A., Paralanov V., Radune
  51. D., Szczypinski B., Brown D.R. 2010. The complete genome sequence of Mycoplasma crocodyli MP 145 (Direct Submission).
  52. Glass J.I., Lartigue C., Pfannkoch C., Baden-Tillson H., Smith H.O., Venter J.C., Roske K., Wise K.S., Calcutt M.J., Nelson W.C., Nierman W.C. 2005. The complete sequence of Mycoplasma capricolum subsp. capricolum ATCC 27 343 (Direct Submission).
  53. J.I., Lefkowitz E.J., Glass J.S., Heiner C.R., Chen E.Y., Cassell G.H. 2000. The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature. 407(6805): 757−62.
  54. J.R., Lindquist S. 1998. Hspl04, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 94: 73−82.
  55. S., Wickner S., Maurizi M.R. 1997. Protein quality control: triage by chaperones and proteases. Genes Dev. 11: 815−823.
  56. Guo Z., Cooper L.F. 2000. An N-terminal 33-amino-acid-deletion variant of hsp25 retains oligomerization and functional properties.Biochem. Biophys. Res. Commun. 270: 183−189.
  57. Hartl F.U., Hayer-Hartl M. 2009. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16: 574−581.
  58. M., Walke S., Stromer T., Ehrnsperger M., White H. E., Chen S. X., Saibil H. R., Buchner J. 1999. Hsp26: a temperature-regulated chaperone. EMBO J. 18: 6744−6751.
  59. M., Schumann W., Volker U. 1996. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19: 417−428.
  60. A.O., Beall B.W., Moran C.P. 1997. CotM of Bacillus subtilis, a member of the a-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J. Bacteriol. 179: 1887−1897.
  61. Herman, C., Thevenet, D., Bouloc, P., Walker G.C., D’Ari R. 1998. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12: 1348−1355.
  62. Himmelreich R., Hilbert H" Plagens H" Pirkl E., Li B.C., Herrmann R. 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24: 4420−4449.
  63. Himmelreich R., Plagens H., Hilbert H. et al. 1997. Comparative analysis of the genome of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium II Nucl. Acids Res. Vol. 25. P. 701−712.
  64. Horwich A.L., Weber-Ban E.U., Finley D. 1999. Chaperone rings in protein folding and degradation. Proc. Natl. Acad. Sei. USA 96: 11 033−11 040.
  65. J. 1992. a-Crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sei. USA. 89: 10 449−10 453.
  66. Hutchison C.A., HI, Petterson S.N., Gill S.R., Cline R.T., White O., Fraser C.M., Smith H.O., Venter J.C. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science. 286(5447): 2165−2169.
  67. T., Beuron F., Kessel M., Wickner S., Maurizi M.R., Steven A.C. 2001. Translocation pathway of protein substrates in ClpAP protease. Proc. Natl. Acad. Sei. USA 98: 4328−4333.
  68. Ivanov V.A., Fel V.J. 1984. On some similarity between membrane antigens of the cell of Zajdela hepatoma and liver of rats subjected to a single 4-dimethylaminoazobenzene injection. Neoplasma. 27: 745−750.
  69. U., Gaestel M., Engel K., Buchner J. 1993. Small heat shock proteins are molecular chaperones. J. Biol Chem. 268: 1517−1520.
  70. U., Lilie H., Meyer I., Buchner J. 1995. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J. Biol. Chem. 270: 7288−7294.
  71. Jiao W., Li P., Zhang J., Zhang H., Chang Z. 2005. Small heat-shock proteins function in the insoluble protein complex. Biochem. Biophys. Res. Commun. 335: 227−231.
  72. O., Busconi L., Sherman M., Goldberg A.L. 1994. Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. J Biol Chem. 269: 23 575−23 582.
  73. T.R., Musatovova O., Gowda P., Baseman J.B. 2008. Characterization of a Unique ClpB Protein of Mycoplasma pneumoniae and Its Impact on Growth. Infect. Immun. 76(11): 5082−5092.
  74. Kedersha N.L., Gupta M., Li W" Miller I., Anderson P. 1999. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2a to the assembly of mammalian stress granules. J. Cell Biol. 147: 1431−1442.
  75. C.K., Benesch J.L., Gohlke U., Wang L., Robinson C.V., Orlova E.V., Saibil H.R., Keep N.H. 2005. Dodecameric structure of the small heat shock protein Acrl from Mycobacterium tuberculosis. J. Biol. Chem. 280: 33 419−33 425.
  76. Kerner M.J., Naylor D.J., Ishihama Y., Maier T., Chang H.C., Stines A.P., Georgopoulos C., Frishman D., Hayer-Hartl M., Mann M., Hartl F.U. 2005. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell. 122(2): 209−220.
  77. Kim K. K., Kim R., Kim S. H. 1998. Crystal structure of a small heat-shock protein. Nature. 394: 595−599.
  78. Kim R., Kim K.K., Yokota H., Kim S.H. 1998a. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. USA 95:9129−9133.
  79. Kobayashi K. et al. 2003. Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 100, 4678^1683.
  80. Kokke B.P., Leroux M.R., Candido E.P., Boelens W.C., de Jong W.W. 1998. Caenorhabditis elegans small heatshock proteins Hspl2.2 and Hspl2.3 form tetramers and have no chaperone-like activity. FEBS Lett. 433: 228−232.
  81. M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A.M., Reinhardt R., Seemuller E. 2008. The linear chromosome of the plant-pathogenic mycoplasmas «Candidatus Phytoplasma mali». BMC Genomics. 9: 306.
  82. Kuczynska-Wisnik D., Laskowska E., Taylor A. 2001. Transcription of ibpB heat shock gene is under control of a32- and o54-promoters, a third regulon of heat-shock response. Biochem. Biophys. Res. Commun. 284: 57−64.
  83. Kusukawa N., Yura T., Ueguchi C., Akiyama Y., Ito K. 1989. Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J. 8: 3517−3521.
  84. U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London). 227: 680−685.
  85. H., Charette S.J., Bernier A.F., Guimond A., Landry J. 1999. HSP27 Multimerization Mediated by Phosphorylation-sensitive Intermolecular Interactions at the Amino Terminus. J. Biol. Chem. 274(14): 9378 -9385.
  86. Lee S.Y., Prochaska D.J., Fang F., Barnum S.R. 1998. A 16.6-kilodalton protein in the cyanobacterium Synechocystis sp. PCC 6803 plays a role in the heat shock response. Curr. Microbiol. 37: 403−407.
  87. Leroux M.R., Ma B.J., Batelier G., Melki R., Candido E.P.M. 1997. Unique structural features of a novel class of small heat shock proteins. J. Biol. Chem. 272: 12 847−12 853.
  88. R.A., Treweek T.M., Carver J.A. 2001. The molecular chaperone alpha-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of alpha-lactalbumin. Biochem. J. 354: 79−87. •
  89. S. 1986. The heat-shock response. Ann. Rev. Biochem. 55: 1151−1191.
  90. Liu W., Fang L., Li S., Li Q., Zhou Z., Feng Z, Luo R., Shao G., Wang L., Chen H., Xiao S. 2010. Complete genome sequence of Mycoplasma hyorhinis strain HUB-1. J. Bacteriol. 192(21): 5844−5845.
  91. Lluch-Senar M., Querol E., Pinol J. 2010. Cell division in a minimal bacterium in the absence offtsZ. Mol. Microbiol. 78(2): 278−289.
  92. H., Schairer H.U., Heidelbach M. 1995. Localization of the stress protein SP21 in indole-induced spores, fruiting bodies, and heat shocked cells of Stigmatella aurantiaca. J. Bacteriol. 177: 7092−7099.
  93. Madsen M.L., Nettleton D" Thacker E.L., Edwards R., Minion F.C. 2006. Transcriptional Profiling of Mycoplasma hyopneumoniae during Heat Shock Using Microarrays. Infect. Immun. 74(1): 160−166.
  94. Macario A.J., Conway de Macario E. 2001. The molecular chaperone system and other antistress mechanisms in archaea. Frontiers Biosci. 6: 262−283.
  95. J. 1970. Ultrastructure of Mycoplasma laidlawii during culture development. J. Bacteriol. 102: 561−572.
  96. G.A., Bertoloni G., Busolo F., Conventi L. 1980. Colony morphology, ultrastructure and morphogenesis in Mycoplasma hominis, Acholeplasma laidlawii and Ureaplasma urealyticum. J. General Microbiol. 116: 435−443.
  97. F.C., Lefkowitz E.J., Madsen M.L., Cleary B.J., Swartzell S.M., Mahairas G.G. 2004. The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J. Bacteriol. 186 (21): 7123−7133.
  98. Mogk A., Tomoyasu T" Goloubinoff P., Rudiger S., Roder D., Langen H., Bukau B. 1999. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18: 6934−6949.
  99. N.A. 2002. Microbial minimalism: genome reduction in bacterial pathogens. Cell. 108(5): 583−586.
  100. Mounier N., Arrigo A.-P. 2002. Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress & Chaperones. 7: 167−176.
  101. M., Nocker A., Narberhaus F. 1999. Multiple small heat shock proteins in rhizobia. J. Bacteriol. 181: 83−90.
  102. O., Dhandayuthapani S., Baseman J.B. 2006. Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium. J. Bacteriol. 188(8): 2845−2855.
  103. H., Vigh L. 2007. The small heat shock proteins and their clients. Cell. Mol. Life Sci. 64: 294−306.
  104. F. 1999. Negative regulation of bacterial heat shock genes. Mol. Microbiol. 31(1): 1−8.
  105. F. 2002. a-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 2002. 66: 64−93.
  106. W.J., Hartl F.U. 1998. Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends Biochem. Sci. 23(2): 68−73.
  107. A., Hausherr T., Balsiger S., Krstulovic N.P., Hennecke H., Narberhaus F. 2001. A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res. 29: 4800−4807.
  108. Oshima K., Kakizawa S., Nishigawa H., Jung H.Y., Wei W., Suzuki S., Arashida R., Nakata D., Miyata S., Ugaki M., Namba S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 36: 27−29.
  109. K.H., Walker G.C. 1987. Escherichia coli clnaK mutants are inviable at high temperatures. J. Bacteriol. 169: 283−290.
  110. Panaretou B., Prodromou C., Roe S.M., Obrien R., Ladbury J.E., Piper P.W., Pearl L.H. 1998. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17: 4829−4836.
  111. Plesofsky-Yig N., Brambl R. 1995. Disruption of the gene for hsp30, an a-crystallin-related heat shock protein of Neurospora crassa, causes defects in thermotolerance. Proc. Natl. Acad. Sci. USA 92: 5032−5036.
  112. Raman B., Ramakrishna T., Rao C.M. 1995. Temperature dependent chaperone-like activity of alpha-crystallin. FEBS Lett. 365: 133−136.
  113. S.H., Herrmann R. 2002. Molecular Biology and Pathogenicity of Mycoplasmas. Plenum Publishers, New York, NY.
  114. S., Yogev D., Naot Y. 1998. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62(4): 1094−1156.
  115. Richmond C.S., Glasner J.D., Mau R., Jin H., Blattner F.R. 1999. Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res. 27: 3821−3835.
  116. A., Tzschaschel B., Schumann W. 1995. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. Mol. Microbiol. 15:421−429.
  117. Segal G., Ron E.Z. 1998. Regulation of heat-shock response in bacteria. Ann. N. Y. Acad. Sci. 851: 147−151.
  118. Schonfeld H.J., Schmidt D" Schroder H., Bukau B. 1995. The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem. 270 (5): 2183−9.
  119. P., Grandvalet C., Mazodier P. 2000. The RheA repressor is the thermosensor of the HSP18 heat shock response of Streptomyces albus. Proc. Natl. Acad. Sci. USA 97: 35 383 543.
  120. J.R., Baneyx F. 1999. Biochemical characterization of the small Heat shock protein IbpB from Escherichia coli. J. Biol. Chem. 274: 9937−9945.
  121. S., Watanabe H., Hattori M., Sakaki Y., Ishikawa H. 2000. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 407 (6800): 81−86.
  122. S., Methe B.A., Glass J., White K., Duffy L.B. 2008. Genome sequence of Ureaplasma urealyticum serovar 10 ATCC-33 699 (Direct Submission).
  123. P., Masin J., Hrdy I., Konopasek I., Zarsky V. 2000. Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J. 23: 703−713.
  124. S0ndergiird-Andersen J., Jensen J.S., Uldum S.A., Lind K. 1990. Heat-shock protein in Mycoplasma pneumoniae shown by immunoblotting to be related to the bacterial common antigen. J. Infect. Dis. 161(5): 1039−1040.
  125. Soti C., Pal C., Papp B., Csermely P. 2005. Chaperones as regulatory elements of cellular networks. Curr Opin Cell Biol. 17: 210−215.
  126. C., Beil A., Ehrmann M. 1999. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell. 97: 339−347.
  127. Squires C.L., Pedersen S" Ross B.M., Squires C. 1991. ClpB is the Escherichia coli heat shock protein. J. Bacteriol. 173: 4254−4262.
  128. S., Narberhaus F. 2000. Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J. Biol. Chem. 275: 37 212−37 218.
  129. Su H.-C., Hutchison C. A, III, Giddings M.C. 2007. Mapping phosphoproteins in Mycoplasma genitalium and Mycoplasma pneumoniae. BMC Microbiology. 7(1): 63.
  130. Sun T.X., Liang JJ.N. 1998. Intermolecular exchange and stabilization of recombinant human aA- and aB-crystallin. J. Biol. Chem. 273: 286−290.
  131. Sun Y., Mansour M., Crack J.A., Gass G.L., MacRae T.H. 2004. Oligomerization, chaperone activity, and nuclear localization of p26, a small heat shock protein from Artemia franciscana. J. Biol. Chem. 279 (38): 39 999−40 006.
  132. Tsvetkova N. M" Horvath I., Torok Z., Wolkers W. F., Balogi Z., Shigapova N. Crowe L. M., Tablin F., Vierling E., Crowe J. H., Vigh L. 2002. Small heat-shock proteins regulate membrane lipid polymorphism. Proc. Natl. Acad. Sci. USA. 99: 13 504−13 509.
  133. L., Diamant S., Buchner J., Goloubinoff P. 1998. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273: 11 032−11 037.
  134. Walsh P., Bursac D., Law Y.C., Cyr D., Lithgow T. 2004. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5: 567−571.
  135. Weiner J., EI, Zimmerman C.U., Gohlmann H.W., Herrmann R. 2003. Transcription profiles of the bacterium Mycoplasma pneumoniae grown at different temperatures. Nucleic Acids Res. 31: 6306−6320.
  136. Williams T.A., Fares M.A. The Effect of Chaperonin Buffering on Protein Evolution. Genome Biol. Evol. 2: 609−619.
  137. Wise K., Calcutt M.J., Foecking M.F., Madupu R., DeBoy R.T., Roske K., Martin T.R., Hvinden M.L., Durkin A.S., Glass J., Methe B.A. 2010. Genome Sequence of Mycoplasma leachii PG50 MU clone A8 (Direct Submittion).
  138. K.S., Calcutt M.J., Foecking M.F., Roske K., Madupu R., Methe B.A. 2011. Complete Genome Sequence of Mycoplasma bovis Type Strain PG45 (ATCC 25 523). Infect. Immun. 79(2): 982−983.
  139. Wolf-Jackel G.A., Jackel C" Museux K., Hoelzle K., Tasker S., Lutz H., Hofmann-Lehmann R. Identification, Characterization, and Application of a Recombinant Antigen for the
  140. Serological Investigation of Feline Hemotropic Mycoplasma Infections. 2010. Clinical and Vaccine Immunology. 17(12): 1917−1925.
  141. P., Houry W. A. 2004. Chaperone networks in bacteria: analysis of protein homeostasis in minimal cells. J. Struct. Biol. 146: 79−89.
  142. Wu W.F., Zhou Y., Gottesman S., 1999. Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease. J. Bacteriol. 181: 3681−3687.
  143. Yeh C.-H., Chang P.-F. L., Yeh K.-W., Lin W.-C., Chen Y.-M., Lin C.-Y. 1997. Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshspl6.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sei. USA. 94: 10 967−10 972.
  144. Yeh C.-H., Yeh K.-W., Wu S.-H., Chang P.-F., Chen Y.-M., Lin C.-Y. 1995. A recombinant rice 16.9-kDa heat shock protein can provide thermoprotection in vitro. Plant Cell Physiol. 36: 1341−8.
  145. Y., Crane D.D., Barry C.E. 1996. Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial a-Crystallin homolog. J. Bacteriol. 178 (15): 4484−4492.
  146. T., Kanemori M., Morita M. 2000. The heat shock response: regulation and function, p. 3−18. In Storz R., Hengge-Aronis R., Eds. Bacterial stress response. ASM Press, Washington, D.C.
  147. Zhu X., Zhao X., Burkholder W.F., Gragerov A., Ogata C.M., Gottesman M.E., Hendrickson W.A. 1996. Structural analysis of substrate binding by the molecular chaperone DnaK. Science. 272: 1606−1614.
Заполнить форму текущей работой