Помощь в написании студенческих работ
Антистрессовый сервис

Хиральные лиганды на основе монотерпенов для асимметрического сульфоксидирования

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Автор выражает искреннюю благодарность сотруднику ЛФМИ к.х.п. Корчагиной Д. В. за установление структуры всех полученных новых соединений с помощью ЯМР спектроскопии, ведущему инженеру ЛЛ и ПБАС Комаровой Н. И. за анализ проб, отобранных для контроля хода некоторых реакций, и определение энантиомерного избытка в оптически активном омепразоле с помощью ВЭЖХ, д.х.н. Гатилову Ю. В. за проведение… Читать ещё >

Хиральные лиганды на основе монотерпенов для асимметрического сульфоксидирования (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. АСИММЕТРИЧЕСКОЕ СУЛЬФОКСИДИРОВАНИЕ, КАТАЛИЗИРУЕМОЕ КОМПЛЕКСАМИ ИОНОВ ВАНАДИЛА С ХИРАЛЬНЫМИ ОСНОВАНИЯМИ ШИФФА (обзор литературы)
    • 1. 1. Хиральные лиганды, применяемые для асимметрического ванадийкатализируемого сульфоксидирования, с одним хиральным центром
    • 1. 2. Хиральные лиганды, применяемые для асимметрического ванадийкатализируемого сульфоксидирования, с двумя и более хиральными центрами
    • 1. 3. Иммобилизованные хиральные лиганды, применяемые для асимметрического ванадийкатализируемого сульфоксидирования

Хиральные сульф оксиды являются важным классом органических соединений, находящим широкое применение в асимметрическом синтезе, ряд. хиральных сульфоксидов проявляет высокую биологическую активность.

Одним из самых простых и эффективных способов получения хиральных сульфоксидов является асимметрическое металлокомплексное окисление сульфидов водной перекисью водорода с использованием в качестве катализаторов комплексов ионов ванадия с хиральными основаниями Шиффа, Этот метод позволяет проводить окисление при комнатной температуре в присутствии атмосферного воздуха (в отличие от титансодержащих каталитических систем, нет необходимости использовать инертные газы и безводные растворители), металлокомплексный катализатор используется в каталитических количествах (~1 моль%). Однако в настоящее время существует лишь небольшой набор доступных лигандов, успешно применяющихся в этой каталитической системе. Необходимо отметить, что не существует универсальных лигандов, подходящих для асимметрического окисления разнообразных сложных полифункциональных сульфидов, и для решения такого рода задач желательно иметь библиотеку различных доступных оптически активных лигандов.

В последнее время терпеноиды все чаще рассматриваются как перспективные источники хиральности для синтеза оптически чистых соединений и, в частности, лигандов для металлокомплексного асимметрического синтеза.

Целью настоящей работы является синтез ряда новых хиральных оснований Шиффа, подходящих для использования в качестве лигандов в окислительной системе с ацетилацетонатом ванадила, на основе распространенных монотерпенов и изучение особенностей асимметрического окисления некоторых сульфидов с использованием полученных лигандов.

В представленной работе впервые изучено взаимодействие (+)-2-карена с хлорсульфонилизоцианатом и показано, что при этом образуется смесь двух изомерных азетидин-2-онов, соответствующих первоначальному образованию третичного или а-циклопропилкарбинильного ионов. Полученные соединения разделены дробной перекристаллизацией и использованы в качестве исходных соединений для синтеза новых хиральных аминоэфиров, аминоспиртов и аминокислоты, а так же их производных.

Реакцией аминоспиртов, полученных по модифицированным нами литературным методикам из (+)-, (-)-а-пиненов, (+)-3-карена, а так же аминоспирта, синтезированного на основе (+)-2-карена, с салициловым альдегидом, его разнообразными производными, 2гидрокси-1-нафтальдегидом и пиколинальдегидом впервые синтезирован большой набор хиральных оснований Шиффа с высокой оптической чистотой. Восстановлением некоторых оснований Шиффа получены новые хиральные амины.

Обнаружено, что часть полученных оснований Шиффа при комнатной температуре полностью или частично находится в оксазинановой форме. Интересно, что если в случае оснований Шиффа с пинановым остовом образованию оксазинанов способствовали электроноакцепторные заместители, то в случае оснований Шиффа с карановым остовом — электронодонорные.

Возможность образования устойчивых комплексов полученных оснований Шиффа с металлами подтверждена в ИНХ СО РАН. Синтезированы комплекс Си (НЬ)С1 и сольват Си (НЬ)С1 * МеС1М, а так же выращены монокристаллы гидрата [Си (НЬ)С1] • Н2О (где Ьоснование Шиффа, полученное исходя из (+)-а-пинена и салицилового альдегида), строение которого подтверждено данными РСА.

Необходимо отметить, что при проверке биологической активности полученных терпеноидных аминоспиртов и аминоэфиров впервые обнаружено, что эти соединения оказывают значительное воздействие на нейромедиаторные системы, при этом большое значение имеют как тип функциональной кислородсодержащей группы, так и абсолютная конфигурация указанных соединений, а аминоэфир, полученный на основе (+)-а-пинена, проявляет высокую противосудорожную активность.

Полученные основания Шиффа и амины опробованы в качестве лигандов для асимметрического ванадийкатализируемого окисления тиоанизола. Оптическая чистота получаемого сульфоксида зависела и от пространственной затруднённости лиганда, и от электронных факторов лиганда, природы окислителя (органические перекиси или водная перекись водорода), растворителя и температуры реакции. При использовании основания Шиффа, синтезированного на основе а-пинена и салицилового альдегида, содержащего два трет-бутильных заместителя, энантиомерный избыток соответствующего сульфоксида достигал 32%, наибольший энантиомерный избыток (37%) при окислении других модельных сульфидов (бензилфенилсульфид, ияря-бромфенилметилсульфид) был достигнут в присутствии этого же лиганда. Показано, что хиральные амины при асимметрическом окислении тиоанизола оказались менее эффективны, чем соответствующие основания Шиффа.

В результате настоящей работы получен новый метод синтеза оптически активного омепразола с использованием в качестве катализатора окисления комплекса ванадила с хиральным основанием Шиффа, полученным из доступного монотерпена (+)-а-пинена. Эзомепразол ((¿-^-энантиомер омепразола) является действующим веществом эффективного противоязвенного препарата, продающегося под торговой маркой «Нексиум» и входящего в число лидеров мировых продаж в денежном выражении среди лекарственных средств. Разработанный метод позволяет получать оптически активный омепразол без создания специальных условий (поддержания определенной влажности, использования инертной атмосферы) и использовать комплекс ванадила с хиральным основанием Шиффа в каталитических количествах (1 моль%). В отличие от тиоанизола, при окислении сульфида, являющегося предшественником омепразола, наибольший энантиомерный избыток — 31% достигался при использовании менее пространственно затруднённого основания Шиффа, синтезированного на основе а-пинена и салицилового альдегида. При разработке данного метода варьировались: хиральный лиганд, окислитель, растворитель, температураизучено влияние различных добавок на оптическую чистоту продуктаобнаружено, что присутствие уУ, А^-диизопропилэтиламина позволяет увеличить энантиомерный избыток продукта с 19 до 31%. Дальнейшее повышение энантиомерного избытка оптически активного омепразола может осуществляться перекристаллизацией в соответствии с предложенными ранее методиками. На разработанный метод получен патент РФ.

Строение всех впервые полученных соединений доказано данными спектров ЯМР и 13С, РСА, а также масс-спектрометрии высокого разрешения.

Автор выражает искреннюю благодарность сотруднику ЛФМИ к.х.п. Корчагиной Д. В. за установление структуры всех полученных новых соединений с помощью ЯМР спектроскопии, ведущему инженеру ЛЛ и ПБАС Комаровой Н. И. за анализ проб, отобранных для контроля хода некоторых реакций, и определение энантиомерного избытка в оптически активном омепразоле с помощью ВЭЖХ, д.х.н. Гатилову Ю. В. за проведение рентгеноструктурного анализа и расчетов методами квантовой химии, д.б.н. Толстиковой Т. Г. и её сотрудников за проведение фармакологических исследований, к.х.н. Карповой Е. В. за определение энантиомерного избытка в ряде продуктов методом хиральной ГЖХ-МС, к.х.п. Генаеву A.M. за проведение расчётов методом молекулярной механики, д.х.н. Ларионову С. В., к.х.н. Кокиной Т. Е. за синтез комплексов с предоставленными лигандами. Также выражает признательность д.х.н. Волчо К. П. за научные консультации и внимательное отношение к соискателю.

ВЫВОДЫ.

1) Впервые синтезирован большой набор хиральных оснований Шиффа с высокой оптической чистотой, исходя из аминоспиртов, полученных на основе (+)-, (-)-а-пиненов, (+)-3- и (+)-2-каренов. Полученные лиганды существенно отличаются друг от друга по пространственной затруднённости и электронным факторам.

2) Впервые изучено взаимодействие (+)-2-карена с хлорсульфонилизоцианатом и показано, что при этом образуется смесь двух азетидин-2-онов, на основе которых синтезированы соответствующие аминокислоты, аминоэфиры, основания Шиффа.

3) Показана возможность применения полученных оснований Шиффа, а также синтезированных на их основе аминов в качестве лигандов для асимметрического ванадийкатализируемого окисления тиоанизола. Оптическая чистота получаемого сульфоксида существенно зависит от строения исходного терпеноида, объёма и электронных факторов заместителей в ароматическом кольце лигандов, а также типа окислителя, растворителя и температуры, при которой проводилось окисление. При использовании основания Шиффа, синтезированного на основе а-пинена и салицилового альдегида, содержащего два трет-бутильных заместителя, энантиомерный избыток соответствующего сульфоксида достигал 32%.

4) Разработан новый патентночистый метод получения (5)-омепразола с использованием каталитических количеств комплекса ацетилацетоната ванадила с хиральным основанием Шиффа, полученным из доступного монотерпена (+)-а-пинена, позволяющий проводить реакцию без создания специальных условий (поддержания определенной влажности, использования инертной атмосферы) и использовать комплекс ванадила с хиральным основанием Шиффа в каталитических количествах (1 моль%). Обнаружено положительное влияние добавки диизопропилэтиламина на ход ванадийкатализируемого асимметрического сульфоксидирования. При использовании основания Шиффа, синтезированного на основе а-пинена и салицилового альдегида, энантиомерный избыток омепразола без дополнительных стадий очистки и перекристаллизации составлял 31%.

Показать весь текст

Список литературы

  1. Posner, G.H. The chemistry of sulfones and sulfoxides / Ed. S. Patai, Z. Rappoport. Stirling C.J.M. UK: J. Wiley & Sons Inc., 1988. — V. 3. — P. 55.
  2. Carreno, M.C. Applications of sulfoxides to asymmetric synthesis of biologically active compounds // Chem. Rev. 1995. — V. 95. — P. 1717−1760.
  3. Mikolajczyk, M., Drabowicz, J., Kielbasinski, P. Chiral Sulfur Reagents: Applications in Asymmetric and Stereoselective Synthesis / New York: CRC Press, 1997.
  4. Mellah, M., Voituriez, A., Schulz E. Chiral sulfur ligands for asymmetric catalysis // Chem. Rev. 2007. — V. 107. — P. 5133−5209.
  5. Owens Т., Souers A., Ellman J. The preparation and utility of bis (sulfinyl)imidoamidine ligands for the copper-catalyzed Diels-Alder reaction // J. Org. Chem. 2003. — V. 68. — P. 3−10.
  6. , А. Г., Толстяков, Г. А., Ившина, И. Б., Гришко, В. В., Толстикова, О. В., Глушов, В. А., Хлебникова, Т. Б., Салахутдинов, Н. Ф., Волчо, К. П. Современные проблемы асимметрического синтеза / Екатеринбург: Типография УрО РАН, 2003.
  7. , С.Ю. Алкалоиды / Ташкент: ФАН. 1981. Р. 212.
  8. Takaishi, Y., Murakami, Y., Uda, M., Ohashi Т., Hamamura N., Kido M., Kadota S. Hydroxyphenylazoformamide derivatives from Calvatia craniformis // Phytochemistry. 1997. -V. 45.-P. 997−1001.
  9. Meng, D., Chen, W., Zhao, W. Sulfur-containing spiroketal glycosides from Breynia fruticosa И J. Nat. Prod. 2007. — V. 70. — P. 824−829.
  10. Pitchen, P., France, C.J., McFarlane, I.M., Newton, C.G., Thompson, D.M. Large scale asymmetric synthesis of a biologically active sulfoxide // Tetrahedron Lett. 1994. — V. 35. — P. 485−488.
  11. Cotton, H., Elebring, Т., Larsson, M., Li, L., Sorensen, H., von Ungeb, S. Asymmetric synthesis of esomeprazole // Tetrahedron: Asymmetry 2000. — V. 11. — P. 3819−3825.
  12. , Т. Эзомепразол первый блокатор протонной помпы — моноизомер: новые перспективы в лечении кислотозависимых заболеваний // Клиническая фармакология и терапия. — 2002. — V. 11.
  13. Ozaki, S., Ortiz de Montellano, P.R. Molecular engineering of horseradish peroxidase: thioether sulfoxidation and styrene epoxidation by phe-41 leucine and threonine mutants // J. Am. Chem. Soc. 1995. — V. 117. — P. 7056−7064.
  14. Colonna, S., Gaggero, N., Pasta, P., Ottolina, G. Enantioselective oxidation of sulfides to sulfoxides catalyzed by bacterial cyclohexanone monooxygenases // Chem. Commun. 1996. -P. 2303−2307.
  15. Auret, B.J., Boyd, D.R., Henbest, H.B., Ross, S. Stereoselectivity in the oxidation of sulfoxides to sulfones in the presence of Aspergillus niger // J. Chem. Soc., C. 1968. — P. 23 742 376.
  16. Holland H.L. Chiral sulfoxidation by biotransformation of organic sulfides // Chem. Rev. -1988.-V. 88.-P. 473−485.
  17. Berkessel, A., Frauenkron, M. Stoichiometric asymmetric oxidation with hydrogen peroxide activated by a chiral phosphoryl chloride // Tetrahedron: Asymmetry. 1996. — V. 7. — P. 671 672.
  18. Bethell, D., Page, P.C.B., Vahedi, H. Catalytic asymmetric oxidation of sulfides to sulfoxides mediated by chiral 3-substituted-l, 2-benzisothiazole 1,1-dioxides // J. Org. Chem. 2000. — V. 65.-P. 6756−6760.
  19. Page, P.C.B., Heer, J.P., Bethell, D., Collington, E.W., Andrew, D.M. Asymmetric sulfide oxidation using (3,3-dimethoxycamphoryl)sulfonyl.oxaziridine // Tetrahedron: Asymmetry. -1995.-V. 6.-P. 2911−2914.
  20. Bohe, L., Lusinchi, M., Lusinchi, X. Oxygen atom transfer from a chiral N-alkyloxaziridine promoted by acid. The asymmetric oxidation of sulfides to sulfoxides // Tetrahedron. 1999. — V. 55.-P. 155−166.
  21. Pitchen, P., Dunach, T., Desmukh, N.N., Kagan, H.B. An efficient asymmetric oxidation of sulfides to sulfoxides // J. Am. Chem. Soc. 1984. — V. 106. — P. 8188−8193.
  22. Di Furia, F., Modena, G., Seraglia, R. Synthesis of chiral sulfoxides by metal catalyzed oxidation with t-butyl hydroperoxide // Synthesis. — 1984. — P. 325−326.
  23. Katsuki, T., Sharp less, K.B. The first practical method for asymmetric epoxidation // J. Am. Chem. Soc. 1980. -V. 102. — P. 5974−5976.
  24. Zhao, S.H., Samuel, O., Kagan, H.B. Asymmetric oxidation of sulfides mediated by chiral titanium complexes: mechanistic and synthetic aspects // Tetrahedron. 1987. — V. 43. — P. 51 355 144.
  25. , К.П., Салахутдинов, Н.Ф., Толстиков, А. Г. Металлокомплексное асимметрическое окисление сульфидов // ЖОРХ 2003. — V. 39. — Р. 1607−1622.
  26. Noyori, R. Asymmetric catalysis in organic synthesis. NY: John Wiley and Sons, 1994. — P. 155.
  27. Kagan, H.B. Catalytic asymmetric synthesis, Second Edition / Ed. I. Ojima. NY: Wiley-VCH, 2000. Chapter 6C. — P. 327.
  28. Procter, D.J. The synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones // J. Chem. Soc., Perkin Trans. 1. 2000. — P. 835−871.
  29. Fache, F., Schulz, E., Tommasino, M.L., Lemaire, M. Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis // Chem. Rev. 2000. — V. 100. — P. 21 592 231.
  30. Туе, H. Catalytic asymmetric processes // J. Chem. Soc., Perkin Trans. 1. 2000. — P. 275 298.
  31. Туе, H., Comina, P.J. Catalytic asymmetric processes // J. Chem. Soc., Perkin Trans. 1. -2001.-P. 1729−1747.
  32. Procter, D.J. The synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones // J. Chem. Soc., Perkin Trans. 1. 2001. — P. 335−354.
  33. Fernandez, I., Khiar, N. Recent Developments in the Synthesis and Utilization of Chiral Sulfoxides // Chem. Rev. 2003. — V. 103. — P. 3651−3705.
  34. Ligtenbarg, A.G.J., Hage, R., Feringa, B.L. Catalytic oxidations by vanadium complexes // Coordin. Chem. Rev.-2003.-V. 237.-P. 89−101.
  35. Katsuki, T. Unique asymmetric catalysis of cis-b metal complexes of salen and its related Schiff-base ligands // Chem. Soc. Rev. 2004. — V. 33. — P. 437−444.
  36. Ramon, D.J., Yus, M. In the Arena of Enantioselective Synthesis, Titanium Complexes Wear the Laurel Wreath // Chem. Rev. 2006. — V. 106. — P. 2126−2208.
  37. Baleizao, C., Garcia, H. Chiral Salen Complexes: An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts // Chem. Rev. 2006. — V. 106. — P. 3987−4043.
  38. Matsumoto, K., Saito, В., Katsuki, T. Asymmetric catalysis of metal complexes with non-planar ONNO ligands: salen, salalen and salan // Chem. Commun. 2007. — P. 3619−3627
  39. Pavlov, V.A. C2 and CI Symmetry of chiral auxiliaries in catalytic reactions on metal complexes // Tetrahedron. 2008. — V. 64. — P. 1147−1179.
  40. Nakajima, K., Kojima, M., Fujita, J. Asymmetric oxidation of sulfides to sulfoxides by organic hydroperoxides with optically active schiff base-oxovanadium (IV) catalysts // Chemistry Letters. 1986. — P. 1483−1486.
  41. Bolm, C. Vanadium-catalyzed asymmetric oxidation // Coordination Chemistry Reviews. -2003.-V. 237.-P. 245−256.
  42. Bolm, C., Bienewald, F. Asymmetric sulfide oxidation with vanadium catalysts and H2O2 // Angew. Chem. Int. Ed. Engl. 1995. — V. 34. — P. 2640−2641.
  43. Bolm, C., Schlingloff, G., Bienewald, F. Copper- and vanadium-catalyzed asymmetric oxidations // J. Mol. Catal. A: Chem. 1997. — V. 117. — P. 347−350.
  44. Bolm, C., Bienewald, F. Asymmetric oxidation of dithioacetals and dithioketals catalyzed by a chiral vanadium complex // Synlett. 1998. — V. 12. — P. 1327−1328.
  45. Hinch, M., Jacques, O., Drago, C., Caggiano, L., Jackson, R., Dexter, C., Anson, M., Macdonald, S. Effective asymmetric oxidation of enones and alkyl aryl sulfides // J. Mol. Catal. A: Chem.-2006.-V. 251.-P. 123−128.
  46. Skarzewski, J., Ostrycharz, E., Siedlecka, R. Vanadium catalyzed enantioselective oxidation of sulfides: easy transformation of bis (arylthio)alkanes into C2 symmetric chiral sulfoxides // Tetrahedron: Asymmetry. 1999. — V. 10. — P. 3457−3461.
  47. Gluszynska, A., Krajewska, K. Enantioselective oxidation of methyl p-tolyl sulfide catalyzed by chiral schiff base- vanadium complexes // Polish J. Chem. 2003. — V. 77. — P. 1703−1710.
  48. Zeng, Q., Wang, H., Weng, W. Substituent effects and mechanism elucidation of enantioselective sulfoxidation catalyzed by vanadium schiff base complexes // New J. Chem. — 2005.-V. 29.-P. 1125−1127.
  49. Delamare M., Belot, S., Caille, J.-C., Martinet, F., Kagan H. B., Henryon, V. A new titanate/(+)-(li?, 2S)-c/s-l-amino-2-indanol system for the asymmetric synthesis of (S)-tenatoprazole // Tetrahedron Lett. 2009. — V. 50. — P. 1702−1704.
  50. Barbarini, A., Maggi, R., Muratori, M. Enantioselective sulfoxidation catalyzed by polymer-supported chiral schiff base-VO (acac)2 complexes // Tetrahedron: Asymmetry. 2004. — V. 15. -P. 2467−2473.
  51. Karpyshev, N.N., Yakovleva, O.D., Talsi, E.P., Bryliakov, K.P., Tolstikova, O.V., Tolstikov, A.G. Effect of portionwise addition of oxidant in asymmetric vanadium-catalyzed sulfide oxidation // J. Mol. Catal. A: Chem. 2000. — V. 157. — P. 91−95.
  52. Pelotier, В., Anson, M., Campbell, I. Enantioselective sulfide oxidation with H2O2: A solid phase and array approach for the optimization of chiral schiff base-vanadium catalysts // Synlett. 2002. — V. 7.-P. 1055−1060.
  53. Liu, G., Cogan, D.A., Ellman, J.A. Cayalytic asymmetric synthesis of tert-butanesulfinamide. Application to the asymmetric synthesis of amines // J. Am. Chem. Soc. 1997. — V. 119. — P. 9913−9914.
  54. Cogan, D.A., Liu, G., Kim, K., Backes, B.J., Ellman, J.A. Catalytic asymmetric oxidation of tert-butyl disulfide, synthesis of tert-butanesulfmamides, tert-butyl sulfoxides, and tert-butanesulfmimines // J. Am. Chem. Soc. 1998. -V. 120. — P. 8011−8019.
  55. , H.H., Толстяков, А.Г. Толстикова, О.В., Яковлева, О.Д., Шмаков, B.C. Синтез скалемической формы алкалоида (-)-диптокарпамина // Изв. АН. Сер. хим. 2000. -С. 564−565.
  56. , Г. А., Толстикова, О.В., Глушков, В.А., Яковлева, О. Д. Химия и технология растительных веществ, Казань, 2002 г.: Тез. докл. II всероссийской конференции Казань, 2002. — 54 с.
  57. Wu, Y., Liu, J., Li, X., Chan, A. S. C. Vanadium-catalyzed asymmetric oxidation of sulfides using Schiff base ligands derived from P-amino alcohols with two stereogenic centers // Eur. J. Org. Chem. 2009. — P. 2607−2610.
  58. Vetter, A., Berkessel, A. Schiff-base ligand carrying two elements of chirality: matched-mismatched effects in the vanadium-catalyzed sulfoxidation of thioethers with hydrogen peroxide // Tetrahedron Lett. 1998. — V. 39. — P. 1741−1744.
  59. Jeong, Y.-C., Dong Huang, Y., Choi, S. Synthesis of sterically controlled chiral P-amino alcohols and their applcation to the catalytic asymmetric sulfoxidation of sulfides // Tetrahedron: Asymmetry.-2005.-V. 16.-P. 3497−3501.
  60. Ohta, C., Shimizu, H., Kondo, A., Katsuki, T. Vanadium-catalyzed enantioselective sulfoxidation of methyl aryl sulfides with hydrogen peroxide as terminal oxidant // Synlett. -2002.-V. l.-P. 161−163.
  61. Sun, J., Zhu, C., Dai, Z., Xang, M., Pan, Y., Hu, H. Efficient asymmetric oxidation of sulfides and kinetic resolution of sulfoxides catalyzed by a vanadium-salan system // J. Org. Chem. 2004. — V. 69. — P. 8500−8503.
  62. Bryliakov, K., Talsi P. Titanium-salan-catalyzed asymmetric oxidation of sulfides and kinetic resolution of sulfoxides with H2O2 as the oxidant // Eur. J. Org. Chem. 2008. — 33 693 376.
  63. Jeong, Y.-C., Choi, S. Enantioselective oxidation of sulfides with hydrogen peroxide catalyzed by vanadium of sterically hindered chiral Schiff bases // Tetrahedron Lett. 2004. — V. 45.-P. 9249−9252.
  64. Khiar, N., Mallouk, S., Valdivia, V., Bougrin, K., Soufiaoui, M., Fernandes, I. Enantioselective organocatalytic oxidation of functionalized sterically hindered disulfides // Organic letters. 2007. — V. 9. — P. 1255−1258.
  65. Green, S., Monti, C., Jackson, R., Anson, M., Macdonald, S. Discovery of new solid phase sulfur oxidation catalysts using library screening // Chem. Commun. 2001. — P. 2594−2595.
  66. A. Butler, J.N. Carter-Franklin. The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products // Nat. Prod. Rep. 2004. — V. 21. — P. 180−188.
  67. Pordea, A., Creus, M., Panek, J., Duboc, C., Mathis, D., Novic, M., R. Ward, T. Artificial metalloenzyme for enantioselective sulfoxidation based on vanadyl-loaded streptavidin // J. Am. Chem. Soc. 2008. — V. 130. — P. 8085−8088.
  68. Szakonyi, Z., Martinek, Т., Hetenyi, A., Fulop F. Synthesis and transformations of enantiomeric 1,2-disubstituted monoterpene derivatives // Tetrahedron: Asymm. 2000. — V. 11. -P. 4571−4579.,
  69. Szakonyi, Z., Balazs, A., Martinek, Т., Fulop F. Enantioselective addition of diethylzinc to aldehydes catalyzed by g-amino alcohols derived from (+) — and (-)-a-pinene // Tetrahedron: Asymm. 2006. — V. 17. — P. 199−204.
  70. Malpass, J. Addition of chlorosulphonyl isocyanate to a- and pinene // Tetrahedron Lett. -1972.-V. 13.-P. 4951−4954.
  71. Sasaki, Т., Eguchi, S., Yamada, H. Reactions of isoprenoids. XVIII. Reactions of chlorosulfonyl isocyanate with bicyclic monoterpene olefins. Novel isomerization of 1-chlorosulfonyl-2-azetidinone // J. Org. Chem. 1973. — V. 38. — P. 679−686.
  72. Furst, G., Wachsman, M., Pieroni, J., White, J., Moriconi, E. Concerted cycloaddition of chlorosulfonyl isocyanate to a-pinene stepwise rearrangement of the (3−1 act am cycloadduct to a y-lactam // Tetrahedron. 1973. -V. 29. — P. 1675−1677.
  73. , Т.Г., Морозова, E.A., Павлова, A.B., Болкунов, А.В., Долгих, М.П., Конева, Е.А., Волчо, К.П., Салахутдинов, Н.Ф., Толстиков, Г. А. Производные аминокислот пинанового ряда новые противосудорожные агенты // Докл. АН. — 2008. -Т. 422.-С. 1−3.
  74. Parkkinen, A., Fiilop, F., Pihlaja, К. Formation of 1,3-perhydrobenzoxazines and their TV-methyl derivatives. A comparative study // Tetrahedron. 1991. — V. 47. — P. 2229−2236.
  75. Reck, G., Kutschabsky L. The crystal structure of 3-iV-methylaminomethylpinane hydrobromide // Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1970. — V. 26. — P. 578−582.
  76. Chirachanchai, S., Laobuthee, A., Phongtamruga, S. Self Termination of ring opening reaction of /"-substituted phenol-based benzoxazines: an obstructive effect via intramolecular hydrogen bond // Heterocyclic Chem. 2009. — V. 46. — P. 714.
  77. Gyonfalvi, S., Szakonyi, Z., Fulop, F. Synthesis and transformation of novel cyclic P-amino acid derivatives from (+)-3-carene // Tetrahedron: Asymmetry. 2003. — V. 14. — P. 3965−3972.
  78. Argay, G., Kalman, A., Bernath, G., Gyarmati, Z.C. cis-8-Azabicyclo5.2.0.nonan-9-one // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2004. — V. 60. — P. о 173−0175.
  79. Koneva, E., Volcho, K., Gatilov, Yu., Korchagina, D., Salnikov, G., Salakhutdinov, N. Synthesis of derivatives of the optically active b-amino acids from (+)-Car-2-ene // Helvetica Chimica Acta. 2008. — V. 91. — P. 1849−1856.
  80. Holland, H. L., Popperl, H., Ninniss, R. W., Chenchaiah, P. C. The oxidation of organic sulphides by Mortierellaisabellina. 2. Effects of substituents on the stereochemistry of sulphoxide formation // Can. J. Chem. 1985. — V. 63. — P. 1118−1120.
  81. Pitchen, P., Dunach, Е., Deshmukh М., Kagan Н. An efficient asymmetric oxidation of sulfides to sulfoxides // J. Am. Chem. Soc. 1984. — V. 106. — P. 8188−8193.
  82. Lindberg, P., Brandstrom, A., Wallmark, В., Mattsson, H., Rikner, L., Hoffman, K.-J. Omeprazole: The first proton pump inhibitor // Med. Res. Rev. 1990. — V. 10. — P. 1−54.
  83. Andersson, Т., Rohss, K., Hassan-Alin, M., Bredberg, E. Pharmacokinetics and dose-response relationship of esomeprasole // Gastroenterology. 2000. — V. 118. — P. A1210.
  84. Wilder-Smith, С., Rohss, К., Lundin, С., Rydholm, H. Esomeprazole 40 mg provides more effective acid control than pantoprazole 40 mg. // Gastroenterology. 2000. — V. 118. — P. A22.
  85. Patent 4 035 455 DE. Separation of enantiomers / Kohl, В., Senn-Bilfinger, J.- Byk Gulden Lomberg Chem Fab. 14.05.1990, Germany — 8 pp. (Chem. Abstr. — 1992: 90 285).
  86. Patent 9 427 988 WO. Optically pure salts of pyridinylmethyl sulfinyl-ih-benzimidazole compounds / Lindberg, P. L., Von U. S.- Astra Ab, Lindberg Per Lennart, Unge Sverker Von. — 12.08.994, Shweden -31 pp. (Chem. Abstr. 1995: 214 069).
  87. Deng, J., Chi, Y., Fu, F., Cui, X., Yu, K., Zhu, J., Jiang Y. Resolution of omeprazole by inclusion complexation with a chiral host BINOL // Tetrahedron: Asymmetry. 2000. — V. 11.-P. 1729−1732.
  88. Davis, F.A., Sheppard, A.C. Applications of oxaziridines in organic synthesis // Tetrahedron. 1989. — V. 45. — P. 5703−5742.
  89. Patent 9 702 261 WO. A process for the optical purification of enantiomerically enriched benzimidazole derivatives / von Unge, S.- Astra Aktiebolag. 23.01.1997, Shweden — 30 pp. (Chem. Abstr. — 1997: 186 087).
  90. , T.M., Волчо, К.П., Комарова, Н.И., Салахутдинов, Н. Ф. Эффективный способ получения эзомепразола с использованием комплекса хиральных лигандов // ЖОрХ. 2008. — Т. 44.-N. 1.-С. 126−129.
  91. Patent 2 062 786 WO. Processes for the production of substituted 2-(2-pyridylmethyl) sulfinyl-lh-benzimidazoles / Avrutov, II., Mendelovici, M.- Teva Pharma, Teva Pharmaceutical USA Inc. 15.08.2002, Israel — 21 pp. (Chem. Abstr. — 2002: 169 521).
  92. Patent 302 720 EP. Production of 2-(2-Pyridylmethylsulfinyl)-benzimidazole compounds / Kato, M., Toyoshima, Y., Iwano, N.- Takeda Chemical Industries LTD. 08.02.1989, Japan -11 pp. (Chem. Abstr. — 1989: 39 369).
Заполнить форму текущей работой