Помощь в написании студенческих работ
Антистрессовый сервис

Исследование новых высокоэластических и стеклообразных полимеров методом обращенной газовой хроматографии

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Similia similibus solvantur… Одним из активно развивающихся разделов науки о полимерах и мембранной науки является поиск, синтез и исследование новых материалов непористых полимерных разделительных мембран. Хорошо известно, что движущей силой в-таких процессах, как разделение газов и паров, а также в первапорации, является градиент химического потенциала или концентрации компонентов разделяемой… Читать ещё >

Исследование новых высокоэластических и стеклообразных полимеров методом обращенной газовой хроматографии (реферат, курсовая, диплом, контрольная)

Содержание

  • СПИСОК СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ
  • Глава 1. ЛИТЕРАТУРНЫЙ ОБЗОР
    • 1. 1. Теоретические основы метода газо-жидкостной хроматографии 6 и ОГХ
      • 1. 1. 1. Основания хроматографии
      • 1. 1. 2. Изобарно-изотермическая система
    • 1. Л.З. Приведенный коэффициент активности и термодинамиче- 16 ские функции на его основе
      • 1. 1. 4. Теория Флори-Хаггинса и приведенный коэффициент ак- 20 тивности
      • 1. 1. 5. Определение параметра растворимости полимера
      • 1. 2. Экспериментальное осуществление ОГХ. Влияние различных 26 факторов на характеристики удерживания
      • 1. 2. 1. Роль различных механизмов удерживания в ОГХ
      • 1. 2. 2. Влияние твердого носителя на параметры удерживания
      • 1. 2. 3. Влияние величины пробы на значения параметров удер- 34 живания
      • 1. 2. 4. Влияние содержания полимерной фазы и скорости газа- 36 носителя
      • 1. 3. Объекты, исследованные методом ОГХ
      • 1. 3. 1. Полимеры, исследованные выше их Т&- или Тт 40 1.3.1 Л. Полиолефины: полиэтилен, полипропилен и высшие 41 полиолефины
        • 1. 3. 1. 2. Полисилоксаны
        • 1. 3. 1. 3. Полимеры с дендритной архитектурой
        • 1. 3. 2. Полимеры, изученные ниже
    • 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
      • 2. 1. Характеристика объектов исследования
      • 2. 2. Основные характеристики сорбатов
      • 2. 3. Приготовление колонок и проведение газо-хроматографи- 66 ческого эксперимента
      • 2. 4. Выбор режимов эксперимента при изучении объемной сорбции
      • 2. 5. Определение плотности полимеров
      • 2. 6. Сравнение сорбционных параметров, определенных на основе 75 приведенных и неприведенных удельных удерживаемых объемов
    • 3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
      • 3. 1. Газохроматографическое изучение систем «полимер — органи- 78 ческий сорбат», содержащих связи С-Н и С-Р
        • 3. 1. 1. Удельные удерживаемые объемы сорбатов в поли (ТФЭ- 80 ПМВЭ), СРП, ППМ и ПТМСН
        • 3. 1. 2. Коэффициенты растворимости в поли (ТФЭ-ПМВЭ), 85 СРП, ППМ и ПТМСН
        • 3. 1. 3. Термодинамические функции сорбатов в поли (ТФЭ
  • ПМВЭ), СРП и ППМ при бесконечном разбавлении
    • 3. 1. 4. Параметры Флори-Хаггинса Х12°° в поли (ТФЭ-ПМВЭ), 97 СРП и ППМ
      • 3. 1. 5. Параметры растворимости поли (ТФЭ-ПМВЭ), СРП и 100 ППМ
      • 3. 2. Исследование дендримера и сверхразветвленного полимера с 104 идентичным химическим составом
      • 3. 3. Изучение ППМ и ПТМСН методом ОГХ
      • 3. 3. 1. Полипентенамер
      • 3. 3. 2. Аддитивный поли (триметилсилил норборнен)
      • 3. 4. Корреляции для коэффициента растворимости
  • ВЫВОДЫ

…similia similibus solvantur… Одним из активно развивающихся разделов науки о полимерах и мембранной науки является поиск, синтез и исследование новых материалов непористых полимерных разделительных мембран. Хорошо известно, что движущей силой в-таких процессах, как разделение газов и паров, а также в первапорации, является градиент химического потенциала или концентрации компонентов разделяемой смеси. Поэтому необходимым этапом материаловедческих исследований мембранных полимеров является изучение термодинамики сорбции в них. В большинстве случаев для этой цели использовались статические методы изучения сорбции — волюмометрические и гравиметрические. Эти методы, несомненноимеют определенные достоинства, но и ряд ограничений. В* связи с этим, внимание привлекает экспрессный и информативный динамический метод — обращеннаягазовая хроматография^ (ОГХ). Именно он был использован в данной работе для решения разных задач термодинамики сорбции в полимерах. Объектами исследования служили разные полимеры, находящиеся в высокоэластическом и стеклообразном состоянии. Перфторированный каучук, сополимер тетрафторэтилена и перфторметилвинилового эфира, был изучен в связи с привлекающей в последнее время внимание проблемой особенностейтермодинамикисорбцииуглеводородов и фторуглеродов в полимерах разной химической структуры. Углеводородный каучук — полипентенамер был изучен для сравнения, а также в связи с его низкой температурой стеклования и высокими коэффициентами газпроницаемо-сти. Полимеры с дендритной архитектурой привлекают большое внимание, и в литературе почти отсутствовали термодинамические исследования по сорбции паров, что и послужило мотивацией включения их в круг объектов. Наконец, аддитивный поли (триметилсилил норборнен) является новым, весьма интересным мембранным полимером, созданным в ИНХС, и постановка задачи его исследования методом ОГХ кажется весьма естественной и актуальной.1. ЛИТЕРАТУРНЫЙ ОБЗОР.

ВЫВОДЫ:

1. Исследована сорбция углеводородов и фторуглеродов алифатической и ароматической природы в перфорированном (поли (ТФЭ-ПМВЭ)) и углеводородном (ППМ) каучуках методом ОГХ. Показано, что в поли (ТФЭ-ПМВЭ) наблюдаются повышенные коэффициенты растворимости (S) фторуглеродов и пониженные — углеводородов, причем, различия возрастают с ростом молекулярной массы сорбата. Для ППМ отмечены пониженные коэффициенты растворимости фторуглеродов.

2. Показано, что в перфорированном полимере параметры Флори-Хаггинса (%п) углеводородов >2, для фторуглеродов %12 лежат в пределах (НО.6, что отражает поведение этого полимера как растворителя для F-содержащих сорба-тов. Впервые продемонстрирована линейная корреляция между %г и числом атомов фтора в молекуле сорбата (на примере фторированных толуолов). Наблюдаемые закономерности можно объяснить аддитивностью вкладов взаимодействия отдельных СН и CF-связей в полимере и сорбате.

3. Определение параметров растворимости (52) полимеров в подобных системах (CF/CF или СН/СН, CHF/CHF) и в системах CF/CH и CH/CF показало, что для систем первого типа выполняется правило геометрического среднего, что не имеет место для систем второго типа.

4. Для карбосиланового дендримера наблюдаются в основном те же термодинамические параметры сорбции, что и для сверхразветвленного карбосиланового полимера того же химического состава и, в более общем виде, для обычных, линейных каучуков.

5. Исследование высокопроницаемого стеклообразного аддитивного по-ли (триметилсилилнорборнена) методом ОГХ показало, что этот полимер отличается существенно более высокими, чем большинство изученных полимеров, коэффициентами растворимости. Зависимости избыточных энтальпий от размера сорбата позволили оценить размер элемента свободного объема в этом полимере. Полученные данные указывают на бимодальное распределение свободного объема с радиусами полостей 5.5 А и 6.7 А.

6. Рассмотрена применимость теорий Флори-Хаггинса и регулярных растворов (в рамках метода ОГХ) для определения %12 и коэффициентов растворимости углеводородов в высокоэластических и стеклообразных полимерах (на примере ППМ и ПТМСН). Показано, что эти теории не применимы для оценки и? в стеклообразном полимере.

7. Для исследованных полимеров (линейные и разветвленные каучуки, карбо-силановый дендример, стеклообразный ПТМСН) подтверждена справедливость корреляций коэффициентов растворимости с квадратом критической температуры сорбата. Анализ параметров этих корреляций показывает, что они зависят от физического строения и химического состава полимера.

8. На широком наборе полимеров и сорбатов продемонстрированы хорошие корреляции коэффициентов растворимости с поляризуемостью сорбатов.

Показать весь текст

Список литературы

  1. Э., Кастер Т. и др. Хроматография. Практическое приложение метода. В 2 частях/Пер. с англ. М.: Мир, 1986.
  2. В.Г. Газо-жидко-твердофазная хроматография. М.: Химия, 1986.
  3. К. А., Вигдергауз М. С. Введение в газовую хроматографию. М.: Химия, 1990.
  4. Е.С. Термодинамика межмолекулярного взаимодействия. Наука, Сибирское отделение, Новосибирск, 1968 г., С.165−170.
  5. Даванков В.А.,"Онучак JI.A., Кудряшов С. Ю., Арутюнов Ю. И. О физическом смысле удельного удерживаемого объема в газовой хроматографии. Журнал физ. химии, 1999, Т.73, № 10, С. 1783−1788.
  6. Davankov V.A. Critical reconsideration of the physical meaning and the use of fundamental retention parameters in gas chromatography. New IUPAC recommendations. Chromatographia Supplement, 2003, V.57, P. S-195 S-198.
  7. James A.T., Martin A.J.P. Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem. J., 1952, V.50, № 5, P. 679−690.
  8. Davankov V.A. Revisiting the problem of correcting retention parameters for pressure and temperature in gas chromatography. Chromatographia, 1998, Y.48, P. 71−73.
  9. В.А. Фундаментальные параметры удерживания в газовой хроматографии имеют термодинамическую природу и не допускают двоякой интерпретации. Журнал физ. химии, 2000, Т.74, № 10, С. 1911−1917.
  10. С.Ю., Онучак JI.A., Даванков В. А. Физико-химическая интерпретация характеристик удерживания в газовой хроматографии с идеальным поведением подвижной фазы. Журнал физ. химии, 2002, Т.76, № 5, С. 937−942.
  11. Kawakami M., Kagawa Sh. Measurements of the solubility coefficients of gases and vapors in natural rubber by gas chromatographic technique. Bull Chem. Soc. Japan, 1978 V.51,P. 75−78.
  12. Л.А., Кудряшов С. Ю., Даванков В. А. Расчет стандартных термодинамических функций сорбции в газожидкостной хроматографии. Журнал физ. химии, 2003, Т.77, № 9, С. 1677−1682.
  13. Г., Рендалл М. Химическая термодинамика./ Пер. с англ. под ред. П. А. Ребиндера. Л., ОНТИ — Химтеорет, 1936.
  14. Л.А., Кудряшов С. Ю., Арутюнов Ю. И., Даванков-В.А. Влияние параметров потока подвижной фазы на величины удерживания и термодинамические характеристики сорбции в газожидкостной хроматографии. Журнал физ. химии, 2006, Т.80, № 8, С. 1493−1498.
  15. Langer S.H., Purnell J.H.-A gas-liquid chromatographic study of the thermodynamics of solution of some aromatic compounds. J. Phys. Chem., 1963, V.67, P. 263−270.
  16. Snyder P. S., Thomas J.F. Solute activity coefficients at infinite dilution via gasliquid chromatography. J. Chem. Eng. Data, 1968, V.13, № 4, P. 527−529.
  17. Smidsrod O. and Guillet J.E. Study of polymer-solute interactions by gas chromatography. Macromolecules, 1969, V.2, № 3, P. 272−277.
  18. McReynolds W.O. «Gas chromatographic retention data», Preston technical abstracts company, Evanston, III. 1966.
  19. Fritz D.F. and Kovats E.sz. Activity coefficient for gas chromatography. Influence. of themolecular weight of thestationaryphase on gas chromatographic^data. Analytical Chemistry, 1973, V.45, P. 1175−1179.
  20. Patterson D. Tewari Y.B., Schreiber H.P., and Guillet J.E. Application of gasliquid chromatography to the thermodynamics of polymer solutions. Macromolecules, 1971, V.4, № 3, P. 356−359.
  21. Ashworth A.J. and Price G.J. Static investigation of the influence of polymer molecular weight and loading in the gas chromatographic determination of poly (dimethylsiloxane) interaction parameters. Macromolecules, 1986, V.19, № 2, P. 358−361.
  22. Ashworth A.J. and Price G.J. Comparison of static with gas. chromatographic interaction parameters and estimation of the solubility parameter for poly (dimethylsiloxane). Macromolecules, 1986, v. 19, № 2, P. 362−363.
  23. DiPaola-Baranyi G., Braun J.-M., and Guillet J.E. Partial molar heats of mixing of small molecules with polymers by gas chromatography. Macromolecules, 1978, V. l 1, № 1, P. 224−227.
  24. Flory P.J. Fifteenth spiers memorial lecture. Thermodynamics of polymer solutions. Discuss. Faraday Soc., 1970, P. 7−29.
  25. Galin M. Gas-chromatographic investigation of the thermodynamic interactions of poly (dimethylsiloxane) or-poly (diethylsiloxane) with some solvents between 60 and lS0oC. Macromolecules, 1977, V. l0, № 6, P. 1239−1224.
  26. Petri H.-M., Schuld N., and Wolf B.A. Hitherto ignored effects of chain length on the Flory-Huggins interaction parameters in concentrated polymer solutions. Macromolecules, 1995, V.28', № 14, P. 4975−4980.
  27. Huggins M.L. Solutions of long chain compounds. J. Chem. Phys., V.9, P. 440."
  28. Flory P.J. Thermodynamics of high polymer solutions. J. Chem. Phys., V.9, P. 660.
  29. Huggins M.L. Ann. N.Y.Acad. Set, 1942, V.43, art. l, P. 1−32.
  30. А.А., Колмакова JI.К. Параметр растворимости, методы его оценки, связь с растворимостью.полимеров. Высокомолек. сред., А, 1980, Т.22, № 3, С. 483−494.
  31. DiPaola-Baranyi G. and Guillet J.E. Estimation of polymer solubility parameters by gas chromatography. Macromolecules, 1978, V. l 1, № 1, P. 228−235.
  32. Hildebrand J.H., Scott R.L. The Solubility of Nonelectrolytes, Reinhold, 3d ed., New York, 1950.
  33. Guggengeim E.A. Mixtures, Oxford, 1952.
  34. DiPaola-Baranyi G. and Guillet J.E., Klein J. and Jeberien H.-E. Estimation of solubility parameters for poly (vinyl acetate) by inverse gas chromatography. J. Chromatogr. 1978, V. l66, P. 349−356.
  35. Aspler J.S., Gray D.G. Interaction of organic vapours with hydroxypropyl cellulose. Polymer, 1982, V.23, 43−46.
  36. Eguiazabal J.I., Fernandez-Berridi M.J., Iruin J.J., and Elorza J.M. Chromatographic determination of polymer solubility parameters. Polymer Bulletin, 1985, V.13,P. 463−467.
  37. Siow K.S., Goh S.H., Yap K.S. Solubility parameters of poly (a-methylstyrene-co-acrylonitrile) from gas—liquid chromatography. J. Chromatogr., 1986, Y.354, P. 75−81.
  38. Galin M. Gas-liquid chromatography study of the thermodynamics of interactions between linear polyethylene and non-polar and polar solutes. Polymer, 1989, V.30, P. 2074−2079.
  39. Voelkel A., Fall J. Inverse gas chromatography. Relationship between mass activity coefficient and flory-huggins interaction parameter in the examination of petroleum pitches. Chromatographia, 1997, V.44, P. 197−204.
  40. Farooque A.M., Deshpande D.D. Characterization of polyetherpolyurethane by inverse gas chromatography. Eur. Polym. J., 1992, V.28, P. 1597−1600.
  41. Kaya I., Demirelli K. Determination of thermodynamic properties of poly2-(3-methyl-3-phenylcyclobutyl)-2-hydroxyethylmethacrylate. and its copolymers at infinite dilution using inverse gas chromatography. Polymer, 2000, V.41, P. 28 552 863. .
  42. Bardavid S.M., Schulz P.C., Arancibia E.L. Solubility parameter determination of cationic surfactants by inverse GC. Chromatographia, 2003, V.57, P. 529−532.
  43. Price G.J., Shillcock I.M. Inverse gas chromatographic measurement of solubility parameters in liquid crystalline systems. J. Chromatogr., A, 2002, V.964, P. 199−204.
  44. Siudiga Т., Mianovski A. Examination of polyolefins-organic compounds interactions by inverse gas chromatography. J. Therm. Anal. Cal., 2007, V.89, P. 191 196.
  45. Balashova I.M., Danner R.P., Puri P. S., Larry J.L. Solubility and diffusivity of solvents and nonsolvents in polysulfone and polyetherimide. Ind. Eng. Chem. Res., 2001, V.40, P. 3058−3064.
  46. Kong X., Silveira M-D.L.V., Zhao L., Choi Ph. A Pseudo equation-of-state approach for the estimation of solubility parameters of polyethylene by inverse gas chromatography. Macromolecules, 2002, V.35, № 22, P. 228−235.
  47. Braun J.-M., Guillet J.E. Study of polymers by inverse gas chromatography. Adv. Polym. Sci., 1976, V.21, P. 107−145.
  48. Martin K.L. Adsorption on the liquid phase in gas chromatography. Anal. Chem., 1961, -V.33, P. 347−352.
  49. В.Г., Пахомов В. П., Старобинец JT.JI., Березкина Л. Г. О влиянии системы твердый носитель-жидкая фаза на характеристики разделения в газовой хроматографии. Нефтехимия, 1965, Т.5, № 3, С. 438−444.
  50. В.Г., Пахомов В. П., Татаринский B.C., Фатеева В. М. Изучение вклада адсорбции на межфазных границах в удерживаемый объем в- газо-жидкостно-твердофазной хроматографии. ДАН СССР, 1968, Т.180, № 5, С. 1135−1138.
  51. Conder J.R., Locke D.C., Purnell J.H. Concurrent solution and adsorption phenomena in chromatography. 1. General considerations. J. Phys. Chem., 1969, V.78, № 3, P. 700−708.
  52. Cadogan D.F., Conder J.R., Locke D.C., and Purnell J.H. Concurrent solution and adsorption phenomena in chromatography. 1. System Alcohols-Squalane. J. Phys. Chem., 1969, V.73, № 3, P. 708−712.
  53. A.E., Липатов-Ю.С. Обращенная газовая хроматография в термодинамике полимеров. Киев: Наукова Думка, 1976.
  54. В. Р. Березкин B.F., Мельникова Ю. В. О влиянии фазовых переходов в неподвижной фазе на хроматографические характеристики элюируе-мых соединений. Журнал физ. химии, 1965, Т.39, С. 200−202.
  55. Card T.W., Al-Saigh Z.Y., Munk P. Inverse gas chromatography. 2. The role of «inert» support. Macromolecules, 1985, V.18, № 5, P. 1030−1034.
  56. Newman R.D., Prausnitz J.M. Polymer-solvent interactions from gas-liquid partition chromatography J. Phys. Chem., 1972, V.76, № 10, P. 1492−1496.
  57. Dimathieu C., Chehimi M.M., Lipskier J.-F. Inverse gas chromatographic characterization of functionalized polysiloxanes. Relevance to sensors technology. Sensors and actuators, B, 2000, V.62, P. 1−7.
  58. Lipatov Yu.S., Nesterov A.E. The influence of thickness of polymeric stationary phase on its properties determined by gas chromatography. Macromolecules, 1975, V.8, № 6, P. 889−894.
  59. A.A., Кириллова Т. И., Иканина T.B. О возможности применения-метода обращенной, газовой хроматографии для расчета термодинамических параметров сродства полимера к растворителю. Высокомолек. соед., А, 1978, Т.20, № 11, С. 2543−2551.
  60. Romdhane I.H., Danner R.F. Solvent volatilities from polymer solutions by gasliquid chromatography. J.Chem. Eng. Data, 1991, V. 36, P. 15−20.
  61. В.Г., Пахомов В. П., Сакодынский К. И. Твердые носители в газовой хроматографии. М.: Химия, 1975.
  62. Супина В: Р. Насадочные колонки в газовой хроматографии./пер. с англ. Березкина В. Г. М.: Мир, 1977.
  63. М.С., Измайлов Р. И. Применение газовой хроматографии для определения физико:химических свойств веществ. М.: Наука, J 970.
  64. Munk P., Al-Saigh Z.Y., Card T.W. Inverse gas chromatography. 3. Dependence of retention volume on the amount of probe injected. Macromolecules, 1985, v.18, № 11, P. 2196−2201.
  65. D. DeVault. The Theory of chromatography. J. Amer. Cem. Soc., 1943, V.65, P. 532−540.
  66. Gluekauf E. Theory of chromatography. Part II. Chromatograms of a^single solute.Chem. Soc., 1947, P. 1302−1308.
  67. A.B., Яшин Я. И. Газо-адсорбционная хроматография. М.: Наука, 1967.
  68. Gray D.G., Guillet J.E. A gas chromatographic method for the study of sorption on polymers. Macromolecules, 1972, V.5, № 3, P. 316−321.
  69. Conder J.R., Purnell J.H. Gas chromatography at finite concentrations. Part 1. Iffect of gas imperfection on calculation of the activity coefficient in solution from experimental data. Trans. Faraday Soc., 1968, V.64, P. 1505−1512.
  70. Conder J.R., Purnell J.H. Gas chromatography at finite concentrations. Part 2. A generalised retention theory. Trans. Faraday Soc., 1968, V.64, P. 3100−3111.
  71. Conder J.R., Purnell J.H. Gas chromatography at finite concentrations. Part 3. Theory of frontal and elution techniques of thermodynamic measurement. Trans.- Faraday Soc., 1969, Y.65, P. 824−838.
  72. Conder J.R., Purnell J.H. Gas chromatography at finite concentrations. Part 4. Experimental evaluation of methods for thermodynamic study of solutions. Trans. Faraday Soc., 1969, V.65, P. 839−848.
  73. Brockmeier N.F., McCoy R.W., Meyer J.A. Gas chromatographic determination of thermodynamic properties of polymer solutions. 1. Amorphous polymer systems. Macromolecules, 1972, V.5, № 4, P. 464−470.
  74. Brockmeier N.F., McCoy R.W., Meyer J.A. Gas chromatographic determination of thermodynamic properties of polymer solutions. 2. Semicrystalline polymer systems. Macromolecules, 1973, V.6, № 2, P. 176−180.
  75. КотельниковаТ.А., Агеев Е. П. Сорбционные свойства некоторых полимерных материалов по данным нелинейной газовой хроматографии. Высоко-молек. соед., Б, 2002, Т.44, С. 1433−1443.
  76. Т.А., Агеев Е. П. Температурная зависимость изостериче-ских хроматографических характеристик сорбции воды и изопропанола на по-ливинилтриметилсилане. Журнал физ. химии, 2000, Т.74, С. 1107−1110.
  77. Braun J.-M. and Guillet J.E. Comments on the paper «Polymer-solvent interactions from gas-liquid chromatographywith capillary columns». Macromolecules, 1975, V.8, № 4, P. 557−558.
  78. Braun J.-M. and Guillet J.E. Studies of polystyrene in the region of the glass transition temperature by inverse gas chromatography. Macromolecules, 1975, V.8, № 6, P. 882−886.
  79. A.H. Изучение фазового равновесия методом газовой хроматографии. Киев: Наукова Думка, 1985.80: Калюжный Н. Э. Дисс. .канд. хим. наук, ИНХС РАН, Москва, 1987.
  80. Tait P.J.T., Abushihada А. М-. Comparative studies on the use of gas chromatographic and vapour pressure techniques for the determination of the interaction energy parameter. Polymer, 1977, V.18, P. 810−816.
  81. Van Deemter J.J., Zuiderweg F.J., Klinkenberg A. Longitudinal. diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci., 1956, V.5, P. 271−289.
  82. К.И., Бражников B.B., Волков C.A., Зельвенский ВЯО., Ган-кина Э.С., Шатц В. Д. Аналитическая хроматография. М.: Химия, 1993.
  83. Sai N.G., Harris H.G., Prausnitz J.M. Henry’s constants for methane, ethane, ethylene, propane and propylene in octadecane, eicosane, and docosane. J. Chem. Eng. Data, 1969, V.14, № 4, P. 482−483.
  84. Langer S.H., Sheehan R.J., Huang J.-C. Gas-chromatographic study of the solution thermodynamics of hydroxylic derivatives and related compounds. J. Phys. Chem., 1982, V.86, № 23, P. 4605−4618.
  85. Sheehan R.J., Langer S.H. Determination of Liquid-Liquid Distribution Coefficients by Gas-liquid Chromatography. Ind. Eng. Chem. Process Des. Develop., 1971, V.10,№ 1,P. 44−47.
  86. Funk E.W. Study of heavy hydrocarbons by inverse-phase chromatography. Ind. Eng. Chem, Prod Res. Dev., 1977, V.16, № 2, P. 115−120.
  87. Schiller M., Gmehling J. Measurement of activity coefficients at infinite dilution using gas-liquid chromatography. 4. Results for alkylene glycol dialkyl ethers as stationary phases. J. Chem. Eng. Data, 1992, V.37, P. 503−508.
  88. Alessi P., Kikic I., Papo A. Torriano G. Gas chromatographic characterization of phosphate esters. J. Chem. Eng. Data, 1978, V.23, P. 29−33.
  89. Mutelet F., Butet V., and Jaubert J.-N. Application of inverse gas chromatography and regular solution theory for characterization of ionic liquids. Ind. Eng. Chem. Res., 2005, V.44, P. 4120−4127.
  90. Willey D.G., Brown G.H. A thermodynamic study of solutions with liquid crystal solvents by gas-liquid partition chromatography. J. Phys. Chem., 1972, V.76, № 1,P. 99−105.
  91. Witkiewicz Z., Oszczudlowski J., R’epelewicz Mi Liquid-crystalline stationary phases for gas chromatography. J. Chromatogr., A, 2005, V.1062, P. 155−174.
  92. Al-Saigh Z.Y. Inverse gas chromatographic characterization of poly (ethylene oxide). Polymer, 999, V.40, P. 3479−3485.
  93. Cakar F. and Cankurtaran O. Determination of secondary transitions-and thermodynamic interaction parameters of poly (ether imide) by inverse gas chromatography. Polymer Bulletin, 2005, v.55, P: 95−104.
  94. Tian M. and Munk P. Characterization of polymer-solvent interactions and their temperature dependence using inverse gas chromatography. J. Chem. Eng. Data, 1994, V.39, P. 742−755.
  95. Tihminlioglu F., Danner R.P. Application of inverse gas chromatography to the measurement of diffusion and phase equilibria’in polyacrylate-solvent systems. J. Chromatogr., A, 1999, V.845, P. 93−101.
  96. Bellenger V., Kaltenecker-Commercon J., Verdu J. Interactions of solvents with poly (methyl methacrylate). Polymer, 1997, V.38, № 16, P.4175−4184.
  97. Kim N.H., Won Y.S., Choi J.S. Partial molar heat of mixing at infinite dilution in solvent/polymer (PEG, PMMA, P (ET-VA)) solutions. Fluid Phase Equilibria, 1998, V.146, P.223−246.
  98. Acikses A., Kaya I., Horoz G. Synthesis, characterization, and thermodynamic properties of poly (3-mesityl-2-hydroxypropyl methacrylate). J. Appl. Polym. Sci., 2006, V.101,P. 101−109.
  99. Yampol’skii Yu. and Ovsepian R. Permeation of chloromethanes in copolymers of chloroprene with methyl methacrylate and methacrylic acid. J. Mem.br. Sci., 1991, V.55, P. 239−255.
  100. Bogillo V.I., Voelkel A. Solution properties of amorphous co- and terpolymers of styrene as examined by inverse gas chromatography. J. Chromatogr. A, 1995, V.715, P. 127−134.
  101. Kaya I., Demirelli K. Determination of thermodynamic properties of poly2-(3-methyl-3-phenylcyclobutyl)-2-hydroxyethylmethacrylate. and its copolymers at infinite dilution using inverse gas chromatography. Polymer, 2000, V.41, P. 28 552 863.
  102. Schuster R.H., Grater H., and Cantow H.-J. Thermodynamic studies on polystyrene-solvent systems by gas chromatography. Macromolecules, 1984, V.17, P. 619−625.
  103. Miltz J. Inverse gas chromatographic studies of styrene diffusion in polystyrene and monomer/polymer interaction. Polymer, 1986, V.27, P. 105−108.
  104. Bonifaci L., Carnelli L., and Cori L. Determination of infinite dilution diffusion and activity coefficients of solvents in polystyrene by inverse gas chromatography on a capillary column. J. Appl. Polym. Sci., V.51, P. 1923−1930.
  105. Lichtenthaler R.N., Liu D.D., and Prausnitz J.M. Polymer-solvent interactions from gas-liquid" chromatography with capillary columns. Macromolecules, 1974, V.7, № 5, P. 565−570.
  106. DiPaola-Baranyi G., Guillet J.E. Thermodynamics of hydrogen bonding polymer-solute interactions by inverse gas chromatography. Makromol. Chem., 1980, V.181, P. 215−226.
  107. Sanetra R., Kolarz B.N.,-and A. Wlochowicz. Determination of thermodynamic data for the interaction of aliphatic alcohols with poly (styrene-co-divinylbenzene) using inverse gas chromatography. Polymer, 1987, V.28, P. 17 531 757.
  108. Liu D.D. and Prausnitz J.M. Solubilities of gases and volatile liquids in polyethylene and in ethylene-vinyl acetate copolymers in the region 125−225°C. Ind. Eng. Chem., Fundam., 1976, V.15, № 4, P. 330−335.
  109. Maloney D.P. and Prausnitz J.M. Solubilities of ethylene and other organic solutes in liquid, low-density polyethylene in the region 124 to 300 °C. AIChE J., 1976, V.22, № 1, P. 74−82.
  110. DiPaola-Baranyi G., Guillet J.E., Jeberien H.-E., Klein J. Thermodynamics of hydrogen bonding polymer-solute interactions by inverse gas chromatography. Makromol. Chem., 1980, V.181, P. 215−226.
  111. Zhao L., Choi P. Differences between Ziegler-Natta and single-site linear low-density polyethylenes as characterized by inverse gas chromatography. Macromol. Rapid Commun., 2004, V.25, P. 535−541.
  112. Ito K. and Guillet J.E. Estimation of solubility parameters for some olefin polymers and copolymers by inverse gas chromatography. Macromolecules, 1979, V.12, P. 1163−1167.
  113. Zhao Ch., Li J., Zeng Ch. Determination, of the infinite dilution diffusion and activity coefficients of alkanes in polypropylene by inverse gas chromatography. J. Appl. Polym. Sci., 2006, V.101, P. 1925−1930.
  114. Leung Yu-K.and Eichinger B.E. Gas-liquid-chromatography on polymers. 1. Polyisobutylene-hydrocarbons at25°C. J. Phys. Chem., 1974, V.78, № 1, P: 60−64.
  115. Oner M. and Dincer S. Thermophysical properties of polymer-probe pairs by gas chromatography. Polymer- 1987, V.28, P: 279−282.
  116. Price G .J. and Guillet J.E.The use of gas chromatography to study solubility in polymeric systems. J. Sol. Chem., 1987, V.16, № 6, P. 605−613. •
  117. Kozlowska M.K., Domanska U., Lempert M., Rogalski M: Determination of thermodynamic properties of isotactic poly (l-butene) at infinite dilution. using density and inverse gas chromatography. J. Chromatogr., A, 2005, V.1068, P. 297−305.
  118. Alessi P., Cortesi A., Sacomani P., Valles E. Solvent-polymer interactions in -polybutadienes. Macromolecules,-1993,-V.26, P. 6175−6179.
  119. Pekar M. Inverse gas chromatography of liquid polybutadienes. Polymer, 2002, V.43, P. 1013−1015.
  120. Deshpande D.D. and Tyagi O.S. Inverse gas chromatography of poly (vinylisobutyl ethers) and polymer-solute thermodynamic interactions. J. Appl. Polym. Sci, 1987, Y.33, P. 715−726.
  121. Chen Ch.-T., Al-Saigh Z.Y. Characterization of semicrystalline polymers by inverse gas chromatography. 1. Poly (vinylidene fluoride). Macromolecules, 1989, V.22, P. 2974−2981.
  122. Al-Saigh Z.Y. Characterization of poly (vinyl methyl ketone) using the inverse gas chromatography method. Polymer International, 1996, V.40, P. 25−32.
  123. Summers W.R., Tewari Y.B., and Schreiber H.P. Thermodynamic interaction in polydimethylsiloxane-hydrocarbon systems from gas-liquid chromatography. Macromolecules, 1972, V.5, P. 12−16.
  124. Lichtennthaler R.N., Newman R.D., and Prausnitz J.M. Specific retention volumes from gas-liquid chromatography for poly (dimethylsiloxane)-hydrocarbon systems. Macromolecules, 1973, V.6, P. 650−651.
  125. Cankurtaran O., Yilmaz F. Determination of exchange enthalpy and entropy parameters of the equation-of-state theory for poly (dimethyl siloxane)* and some aromatic solvents by inverse gas chromatography. Polym. Int., 2000, V.49, P. 99 102.
  126. Huang J.-Ch., Langer S.H., Sheehan R.J. Gas liquid chromatographic study of the solution thermodynamics of hydroxylic-derivatives in selected polymeric liquids.^. ^/zjas:. 2004, V.108, P. 4422−4431.
  127. Deshpande D.D., Patterson D., Schreiber H.P., Su C.S. Thermodynamic interactions in polymer systems by gas-liquid chromatography. IV. Interactions between components in a mixed stationary phase. Macromolecules, 1974, V.7, P. 530−535.
  128. Lichtenthaler R.N., Prausnitz J.M., Su C.S., Schreiber H.P., Patterson D. Inter-laboratory comparison of gas-liquid chromatographic data for polydimethylsilox-ane-hydrocarbon systems. Macromolecules, 1974, V.7, P. 136.
  129. Roth M., Novak J. Thermodynamics of poly (dimethylsiloxane)-alkane systems by gas-liquid chromatography. Macromolecules, 1986, V. l9, P. 364−369.
  130. Roth M., Novak J., David P., Novotny M. Thermodynamic studies into a sorption mechanism within the cross- linked polysiloxane stationary phases. Anal. Chem., 1987, V.59, P. 1490−1494.
  131. Roth M. Thermodynamics of polymethyl (trifluoropropyl)siloxane.-alkane systems by gas-liquid chromatography. Macromolecules, 1990, V.23, P. 1696−1700.
  132. Humpa O., Uhdeova J., Roth M. Thermodynamics of poly (methylphenylsiloxane)-alkane systems by gas-liquid chromatography. Macromolecules, 1991, V.24, P. 2514−2517.
  133. Frechet J.M.J., Tomalia D.A. editors. Dendrimers and Other Dendritic Polymers. Wiley & Sons, Chichester, 2001.
  134. Jansen J., de Brabander-vanden Berg E., Meijer E. Encapsulation of guest molecules into a denritic box. Science, 1994, V.226, P. 1226−1229.
  135. Jansen J., Meijer E., de Brabander-vanden Berg E. The dendritic box: shape-selective liberation of encapsulated guests. J. Am. Chem. Soc., 1995, V.117, P. 4417−4418.
  136. Knapen J.W.J., van der Made A.W., de Wilde J.C., van Leeuwen P.W.N.M., Wijkens P., Grove D.M., van Koten G. Homogeneous Catalysts based on silanedendrimersfunctionalizedwitharylnickel (II)complexes. Nature, 1994, V.372,P659.663.
  137. Wiener E.C., Brechbiel M.W., Brothers H., Magin R.L., Gansow O.A., Tomalia D.A., Lauterbur P.C. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med., 1994, V.31, P. 1−8.
  138. Polese A., Mio C., Bertucco A. Infinite-dilution activity coefficients of polar and nonpolar solvents in solutions of hyperbranched polymers. J. Chem. Eng. Data, 1999, V.44, P.839−845.
  139. C.B., Усольцева Н. Б., Ольхович M.B., Шарапова А. В. Высокомо-лек. Соед., А, 2006, Т.48, С. 1144−1150.
  140. Anhang J., Gray D.G. Surface characterization of poly (ethylene terephthalate) film by inverse gas chromatography. J. Appl. Polym. Sci., 1982, V.27, P. 71−78.
  141. Bailey R.A., Persaud-K.C. Application of inverse gas chromatography to characterization of a polypyrrole surface. Anal. Chim. Acta, 1998, V.363, P. 147−156.
  142. Voelkel A. Inverse gas chromatography in characterization of surface. Chemometrics and Intelligent Laboratory Systems, 2004, V.72, P. 205−207.
  143. Braun J.-M., Guillet J.E. A Model of the gas chromatographic behavior of polymer stationary phases through their glass transitions. Macromolecules, 1976, V.9, P. 617−621.
  144. Yapmolskii Yu.P., Durgarjan S.G., Kaliuzhnyi N.E. Sorption-ofn-alkanes in poly (vinyltrimethylsilane) studied by inverse gas chromatography. J. Chromatogr., 1984, V.286, P. 97−105.
  145. Yampolskii Yu.P., Kaliuzhnyi N.E., Durgarjan S.G. Thermodynamics of sorption in glassy poly (vinyltrimethylsilane). Macromolecules, 1986, V.19, P. 846−850.
  146. Tait P.J.T., Abushihada A.M. Use of a gas chromatographic technique for the study of the variation of the interaction" energy parameter with temperature. Macromolecules, 1978, V.11,P. 918−922.
  147. Glass A.S., Larsen J.W. Inverse gas chromatography of glassy polymer surfaces. Macromolecules, 1993, V.26, P. 6354−6358.
  148. Kontominas M.G., Gavara R., Giacin J.R. Gas-solid chromatographic studyofipolymer surfaces: Adsorption on polysterene. Eur. Polym. J., 1994, Y.30, P. 271 277.
  149. Dangayach K.C.B., Bonner D.C. Solvent interactions with polysulfone. Polym. Eng. Sci., 1980, V.20, P. 59−64.
  150. Davydova M.B., Yampolskii Yu.P. An inverse gas chromatography study of sorption on polyphenylene oxide. Polym. Sci., 1991, V.33, P. 495−501.
  151. Ю.П., Березкин В. Г., Попова Т. П., Кориков А. П., Freeman B.D., Bondar V.I., Merkel T.C. Термодинамика сорбции газов и паров аморфными стеклообразными тефлонами AF. Высокомолек. Соед., А, 2000, Т.42, С. 1023−1034.
  152. Yampolskii Yu.P., Soloviev S.A., Gringolts M.L. Thermodynamics of sorption in and free volume of poly (5,6-bis (trimethylsilyl)norbornene). Polymer, 2004, V.45, P. 6945−6952.
  153. Yampolskii Yu.P., Kamiya Y., Alentiev A.Yu. Transport parameters and solubility coefficients of polymers at their glass transition temperatures. J. Appl. Polym. Sci., 2000, V.76, № 11, P. 1691−1705.
  154. B.B., Наметкин H.C., Новицкий Э. Г. Температурная зависимость сорбции и диффузии газов в поли(винил триметилане). Высокомолек. соед., А, 1979, Т.21, С. 927−931.
  155. В.В.Волков, С. Г. Дургарьян, Э. Г. Новицкий, Н. С. Наметкин. Растворимость газов в поли (винил триметилсилане). Докл АН СССР, 1977, Т.232, С. 838−840.
  156. Prabhakar R.S., De Angelis M.G., Sarti G.C., Freeman B.D., Coughlin M.C. Gas and vapor sorption, permeation, and diffusion in poly (tetrafluoroethylene-co-perfluoromethyl vinyl ether). Macromolecules, 2005, V.38, P. 7043−7055.
  157. Makovetsky K.L. Metathesis Polymerization of Olefins and Polymerization of Alkynes /Ed. by Imamoglu Y., NATO ASI Series. jDordrecht: Kluwer, 1998. P.79.
  158. К.Л., Редькина Л. И. Изучение равновесия полимер-мономер при цис-полимеризации циклопентена. Докл. АН СССР, 1976, Т.231. С. 143 145.
  159. Н.А., Мякушев В. Д., Татаринова Е. А., Галлямов М!0., Хохлов А. Р., БузишМ.И., Музафаров A.M. Докл. РАН, 2005, Т.403, № 5, С. 644-.
  160. Справочник химика- Т.1. /Под ред. Никольского Б .П., JI.-M., Химия, 1963 г. ¦¦•/.'¦¦ .
  161. NIST: http://webbook.nist.gov/chemistry/
  162. Korean.DataBase: http://infosys.korea.ac.kr/kdb/index.html
  163. Рид Р., Шервуд Т. Свойства газов, и жидкостей. /Под ред. Когана В. Б.: Химия, JI. 1971.
  164. Merkel T.C., Bondar V.I., Nagai K., Freeman B.D., Pinnau I. Gas^sorption, diffusion-- and' permeation in poly (dimethylsilbxane). J. Polymr Sci, Part B* 2000, V.38,№ 3, P. 415−434. ^
  165. Merkel T.C., Bondar V.I., Freeman B.D. Sorption and transport of hydrocarbon and perfluorocarbon gases in poly (l -trimethylsilyl- l-propyne) J. Polym. Sci., Part B- 2000, V, 38, P. 273−296.
  166. Yampolskii Y.P., Bespalova N.B., Finkelshtein E.S., Bondar V. I, Popov A.V. Synthesis, gas permeability, and- gas sorption properties of fluorine-containing norbornene polymers. Macromolecules, 1994, V.27, № 10, P. 2872−2878.
  167. Т.М., Глазкова С. В., Хрычева А. Д., Макотченко В. Г., Пантюхин M.JI. Исследование влияния фторирования на свойства поверхности углеродных материалов методом газовой хроматографии. Вест. Моск. Ун-та, Сер.2, Химия, 2007, Т.48, С. 80−85.
  168. Т.М., Шония Н. К., Глазкова С. В., Хрычева А. Д. Газохроматогра-фическое исследование свойств поверхности фторированного углерода. Вест. Моск. Ун-та, Сер.2, Химия, 2005, Т.46, С. 29−33.
  169. Ван Кревелен Д. В. Свойства и химическое строение полимеров. /Под ред. д. ф-м.н. Малкина А. Я. -М.: Химия, 1976.
  170. Stern S.A.,.Mullhaupt J.T., Gareis P.J. The Effect of pressure on the permeation of gases and vapours through polyethylene. Usefulness of the corresponding states principle. AIChE J., 1969, V.15, P. 64−73.
  171. B.B., Наметкин H.C., Новицкий Э. Г., Дургарьян С. Г. Диффузия и сорбция углеводородов в поливинилтриметилсилане и селективность порни-цаемости. Высокомолек. соед., А, 1979, Т.21, № 4, С. 920−926.
  172. Solubility Data Series- Clever H.L., Young, C.L., Eds.- Pergamon Press: New York, 1987- V. 27/28.
  173. Solubility Data Series- Hayduk W., Ed.- Pergamon Press: New York, 1982- V. 9202J5olubility-Pata Series- Hayduk W., Ed.- Pergamon Press: NewYork, 1986- V24.
  174. Solubility Data Series- Clever H.L., Ed.- Pergamon Press: New York, 2005- V. 80- published in J Phys. Chem. Ref. Data, 2005, V.34, P. 201−438.
  175. Guillet J.E., Purnell J.H. Advances in analytical chemistry and instrumentation, gas chromatography. New York: Wiley, 1973.205. van Laar J.J., Richard Lorenz R.Z. Z. anorg. Allgem. Chem., 1925, V.146, P. 42−44.
  176. Scott R.L. The anomalous behavior of fluorocarbon solutions. J. Phys. Chem., 1958, V.62.P. 136−145.
  177. Dantzler Siebert E.M. and Knobler C.M. Interaction virial coefficients in hy-drocarbon-fluorocarbon mixtures. J. Phys. Chem., 1971, V.76, № 26, P. 3863−3870.
  178. McCabe C., Galindo A., Gil-Villegas A., and Jackson G. Predicting the high-pressure phase equilibria of binary mixtures of perfluoro-n-alkanes + n-alkanes using the SAFT-VR approach. J. Phys. Chem., B, 1998, V.102, № 41, P. 8060−8069.
  179. Song W., Rossky P.J., Maroncelli M. Modeling alkane+perflouroalkane interactions using all-atom potentials: Failure of the usuaL combining rules. J. Chem. Phys., 2003, V.119, P. 9145−9162.
  180. Tomalia D. A, Naylov A. M, Goddard W.A. Starburst. dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. chem., 1990, V.29, № 2. P. 138−175.
  181. NewkomeG.R, Moorefield C, Vogtle F. Dendritic Molecules: Concepts, Syntheses, Perspective- VCH: Weinheim, Germany, 1996.
  182. Frechet J.M.J, Tomalia D.A. Dendrimers and Other Dendritic Polymers. Wiley Series in Polymer Science. New York: Wiley. 2001.
  183. Tomalia D. A, Hedstrand D. H, Ferrito M.S. Comb-burst dendrimer topology: new macromolecular architecture derived from dendritic grafting. Macromolecules, 1991, V.24,№ 1,P. 1435−1438.
  184. A.M., Ребров E.A., Папков B.C. Объемнорастущие полиорга-носилоксаны. Возможности молекулярного конструирования в высокофункциональных системах. Успехи химии, 1991, Т.60, № 7, С. 1596−1612.
  185. Holier D., Frey H. Degree of branching in hyperbranched polymers. 2. Enhancement of the db: Scope and limitations. Acta Polym., 1997, V.48, № 8, P. 298 309.
  186. Frechet J.M.J. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science, 1995, V.263, № 5154, P. 1710−1715'.
  187. Biginn U., Drochmann C., Moller M. Conversion dependence of the branching density for the polycondensation of AB" monomers. Macromolecules, 1997, V.30, № 14, P. 4112−4116.
  188. Mueller A. H'.E., Yan D., Wulkow M. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 1. Molecular weight distribution. Macromolecules, 1997, V.30, № 23, P. 7015−7023.
  189. Aharoni S.M., Crosby C.R., Walsh E.K. Size and solution properties of globular tert-butyloxycarbonyl-poly (a, s-L-lysine). Macromolecules, 1982, V.15, № 4, P. 1093−1098.
  190. Lorenz К., Frey Н., Stuhn В., Mulhaupt R. Carbosilane dendrimers with per-fluoroalkyl end- groups. Core-shell macromolecules with generation-dependent order. Macromolecules, 1997, V.30, № 22, P. 6860−6868:
  191. Mueller A., Kowalewski Т., Wooley K.L. Synthesis, characterization, and de-rivatization of hyperbranched polyfluorinated polymers. Macromolecules, 1998, V.31, № 3, P. 776−786.
  192. Stark В., Stiihn В., Frey H., Lach C., Lorenz K., Frick B. Segmental dynamics in dendrimers with perfluorinated end groups: A study using quasielastic neutron scattering. Macromolecules, 1998, V.31, № 16, P. 5415−5423.
  193. Luo J., Ma H., Haller M., Jen A. K-Y., Barto R.R. Large electro-optic activity and low optical loss derived from a highly fluorinated dendritic nonlinear optical chromophore. Chem. Comm., 2002, № 8, P. 888−889.
  194. Muzafarov АЖ, Shumilkina N.A., Tereschenko.A.S. Pol. Prepr., 2006, V.47, № 2, P. 1148.
  195. Suwandi M.S.- Stern S.A. Transport of heavy organic vapors through silicone rubber. J. Polym. Sci., Polym. Phys. Ed., 1973, V. ll, P. 663−681.
  196. C.A., Ямпольский Ю. П., Economou I.G., Ушаков H.B., Фин-келынтейн Е.Ш. Термодинамические параметры сорбции углеводородов по-лисилтриметиленами. Высокомолек. Соед., А, 2002, Т.44, № 3, С. 465−473.
  197. Witchey-Lackshmanan L.G., Hopfenberg Н.В., Chern R.T., Sorption and trans-" port of organic vapors in poly (l-trimethylsilyl))-l-propyne. J. Membr. Sci., 1990, V.48, P. 321−331.
  198. Doghieri F., Sarti G.C. Solubility, diffusivity, and mobility of n-pentane and ethanol in poly (l-trimethylsilyl-l-propyne). J. Polym. Sci., B, 1997, V.35, P. 22 452 258.
  199. Wind М-., Saalwachter К., Wiesler U.M., Mullen K., Spiess H.W. Solid-state NMR investigations of molecular dynamics in polyphenylene dendrimers: evidence of dense-shell packing. Macromolecules, 2002, V.35, № 27, P. 10 071−10 086.
  200. Zhou Т., Chen S.B. Monte Carlo simulations of dendrimer-polymer conjugates. Macromolecules, 2005, V.38, № 20, P. 8554−8561.
  201. Murat M., Grest S. Molecular dynamics study of dendrimer molecules in solvents of varying quality. Macromolecules, 1996, V.29, № 4, P. 1278−1285.
  202. Jansen J.F.G.A., de Brabander van den Berg E.M.M., Meijer E.W. Encapsulation of guest molecules into a dendritic box. Science, 1994, V.266, № 5188, P. 12 261 229.
  203. Yampolskii Yu., Shantarovich V. In: Yampolskii Yu., Pinnau I., Freeman B.D., editors. Materials Science of Membranes for Gas and Vapor Separation, Chichester, Wiley, 2006, — Pr 191. '
  204. Ю.П. Методы изучения свободного объема в полимерах. Успехи химии, 2007, Т.76, № 1, С. 66−87. i
  205. D.R., Stejskal Е.О., Andrady A.L. 129Xe NMR Investigation of the Free Volume in Dendritic and Cross-Linked Polymers. Macromolecules, 1999, V.32, № 6, P. 1897−1903.
  206. Л.Э., Белов H.A., Шантарович В. П., Suzuki Т., Голенко-Т.Г., Маковецкий.К.Л., Ямпольский Ю.П."Транспортные и физикохимические. параметры полипентенамера. Высокомолек. соед., А, 2007, Т.49, С. 786−795.
  207. Barton A.F.M. Handbook of solubility parameters and other cohesion parameters. CRC Press, Inc. Boca Raton, Florida, 1988.
  208. Van Amerongen G.J. Diffusion in Elastomers. Rubber Chem. Technol., 1964, V.37, № 5, P. 1065−1152.
  209. Ю.П., Дургарьян С. Г., Наметкин H.C. Коэффициенты поступательной и вращательной диффузии низкомолекулярных веществ в полимерах с различной температурой стеклования. Высокомолек. соед., А, 1982, Т.24, № 3, С. 536−541.
  210. Stern S.A., Shah V.M., Hardy В.J. Structure-permeability relationships in silicone polymers. J. Polym. Sci., Polym. Phys., 1987, V.25, № 6, P. 1263−1298.
  211. Yampolskii Yu., Freeman B.D., Pinnau I., Eds., Materials Science of Membranes for Gas and Vapor Separation, Wiley, Chichester, 2006.
  212. Ф.Ф. Дисс. .канд. хим. наук, ИНХС РАН, Москва, 1971.
  213. Matteucci S., Yampolskii Yu., Freeman B.D. and Pinnau I. Transport of gases and vapors in glassy and rubbery polymers, in Materials Science of membranes for gas and vapor separation edited by Yampolskii Yu, Pinnau I.&Freeman B.D. Wiley, 2006.
  214. Paul D.R., Yampolskii Yu.P. Polymeric gas separation membranes. CRC
  215. Press, Inc., 2000, Boca Raton, Florida, P. 32−40.i
  216. Paterson R'., Yampolskii Yu., Solubility Data Series, Solubility of gases in glassy polymers, J. Phys. Chem. Ref. Data, 1999, V.28, P. 1255.
  217. Koros W.J., Chern R'.T. Separation of gaseous mixtures using polymer membranes, in: R.Y.Rousseau, Handbook. of Separation Process Technology, Wiley, 1987, P. 862.
  218. Tokarev A., Friess K., Machkova J., Sipek M., Yampolskii Yu. Sorption and diffusion of organic vapors in amorphous teflon AF2400. J. Polym. Sci., B, 200 6, V.44, P. 832−844.
  219. B.B., Бокарев A.K., Дургарьян С. Г. Сорбция низкомолекулярных.веществ стеклообразным поливинилтриметилсиланом вблизи и ниже критической температуры сорбата. Доклады Акад. Наук, СССР, 1985, V.282, Р. 641 644.
  220. Т. С., Bondar V., Nagai К., Freeman B.D., Yampolskii Yu.P. Gas sorption, diffusion and permeation in poly (2,2-bis (trifluoromethyl)-4,5-difluoro-l, 3-dioxole-co-tetrafluoroethylene). Macromolecules, 1999, V.32, P. 8427−8440.
  221. Yampolskii Y., Wiley D., Maher C. Novel correlation for solubility of gases in polymers: effect of molecular surface area of gases, J. Appl. Polym. Sci., 2000, V.76, P. 552−560.
  222. Kharitonov A.P., Moskvin Yu.L., Teplyakov V.V., Le Roux J.D. Direct fluori-nation of poly (vinyl trimethylsilane) and poly (phenylene oxide). J. Fluorine Chemistry, 1999, V.93, P. 129−137.
  223. Kharitonov A.P., Taege R., Ferrier G., Teplyakov V.V., Syrtsova D.A. Koops. Direct fluorination useful tool to enhance separation properties of polymer articles. J. Fluorine Chemistry, 2005, V.126, P. 251−263.
  224. ХаритоновА.П. Дисс. .докт. физ.-мат. наук, ИНЭПХФ РАН, Москва, 2006.
Заполнить форму текущей работой