Помощь в написании студенческих работ
Антистрессовый сервис

Консервативность и вариабельность ДНК ядрышковых организаторов человека

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Биогенез рибосом — координированный многостадийный процесс, происходящий в ядрышке, где синтезируется, созревает и подвергается модификациям рибосомная РНК (рРНК) которая затем входит в состав зрелых рибосомных субъединиц. Этот процесс забирает огромное количество клеточной энергии и тесно связан с ростом и делением клеток. Скорость синтеза белка строго коррелирует с содержанием в клетке рРНК… Читать ещё >

Консервативность и вариабельность ДНК ядрышковых организаторов человека (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Организация, локализация и количественная оценка содержания рибосомной ДНК (рДНК) в геноме человека
    • 1. 2. Строение мономерных единиц рДНК. Орфоны
    • 1. 3. Alu повторы в геноме и в рДНК человека и их предполагаемые функции
    • 1. 4. Экспрессия и процессинг рибосомной РНК
    • 1. 5. Прителомерные и прицентромерные пространства, соседствующие с ядрышковым организатором в акроцентрических хромосомах
    • 1. 6. Специфические особенности и возможные механизмы эволюции рДНК
    • 1. 7. Сложная структура и динамическая эволюция субтеломер человека
    • 1. 8. Картирование фрагментов рибосомной РНК в хромосомах человека, лишенных ядрышковых организаторов
  • 2. МАТЕРИАЛЫ И МЕТОДЫ
    • 2. 1. Выделение ДНК из крови
    • 2. 2. Выделение ДНК из тканей
    • 2. 3. Блот-гибридизационный анализ ДНК
      • 2. 3. 1. Обработка ДНК рестрикционными эндонуклеазами
      • 2. 3. 2. Электрофоретическое фракционирование фрагментов геномной ДНК
      • 2. 3. 3. Перенос ДНК на нейлоновый фильтр (по Саузерну)
      • 2. 3. 4. Обработка нейлоновых фильтров перед гибридизацией
      • 2. 3. 5. Синтез меченых олигонуклеотидных зондов с помощью киназной реакции
      • 2. 3. 6. Гибридизация ДНК на фильтрах с мечеными олигонуклеотидными зондами
      • 2. 3. 7. Получение радиоавтографов
      • 2. 3. 8. Щелочная отмывка фильтра
    • 2. 4. ПЦР-амплификация
    • 2. 5. Получение рекомбинантных ДНК с помощью лигазной реакции
    • 2. 6. Трансформация компетентных клеток рекомбинантной ДНК
    • 2. 7. Отбор рекомбинантных колоний методом ПЦР-амплификации
    • 2. 8. Выделение плазмидной ДНК
    • 2. 9. Обработка рекомбинантных плазмид рестрикционными эндонуклеазами
    • 2. 10. Электрофоретическое фракционирование фрагментов плазмидной ДНК
    • 2. 11. Секвенирование рекомбинантной плазмидной ДНК методом амплификации с терминаторами
    • 2. 12. Компьютерный анализ нуклеотидных последовательностей
  • 3. РЕЗУЛЬТАТЫ

3.1 Феномен образования рекомбинантных (химерных) молекул ДНК, как следствие преждевременной терминации полимеразной цепной реакции в локусах содержащих однонаправленные Alu элементы и микросателлитные последовательности.

3.2 Природа гетерогенности сегмента LR2var рМГС человека.

3.3 Анализ in silico горячих точек рекомбинации, связанных с рДНК.

3.4 Сегментная дупликация прилегающих к рДНК участков генома человека

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

4.1 Феномен образования рекомбинантных (химерных) молекул ДНК, как следствие преждевременной терминации полимеразной цепной реакции в локусах содержащих однонаправленные Alu элементы.

4.2 Природа гетерогенности сегмента LR2 var рМГС человека.

4.3 Сегментные дупликации прилегающих к рДНК участков генома человека.

выводы

Биогенез рибосом — координированный многостадийный процесс, происходящий в ядрышке, где синтезируется, созревает и подвергается модификациям рибосомная РНК (рРНК) которая затем входит в состав зрелых рибосомных субъединиц. Этот процесс забирает огромное количество клеточной энергии и тесно связан с ростом и делением клеток. Скорость синтеза белка строго коррелирует с содержанием в клетке рРНК и транспортной РНК (тРНК). Синтез рРНК является первым событием в синтезе рибосом, и он активно регулируется внешними сигналами, такими как тип питания, ростовые факторы и клеточные стрессы. Таким образом, транскрипция генов рРНК и созревание пре-рРНК играют центральную роль в сложной системе контроля клеточного роста и пролиферации. Клетки растут и делятся. Некоторые типы клеток растут без деления, например, нейроны и ооциты. Развивающиеся зиготы, напротив, делятся без роста. Однако для подавляющего большинства клеток процессы роста и деления тесно сопряжены, что приводит к поддержанию размера клеток в узких пределах. Для роста клеток необходим синтез белков, а для синтеза белков необходимы рибосомы. Таким образом, контроль синтеза рибосом является неотъемлемым атрибутом контроля клеточного роста [Dipayan and Warner, 2004]. Гены, которые кодируют нуклеиновые кислоты и белки, формирующие рибосомы, а также гены, обслуживающие созревание транскриптов, активацию зрелых продуктов и функционирование рибосом, образуют массивный полигенный комплекс, и их координированная работа жизненно необходима для поддержания жизни отдельных клеток и всего организма в целом. Механизмы репликации и транскрипции рДНК, а также механизмы поддержания ее константности или вариабельности, поняты далеко не в полной мере. Они изучаются в ряде лабораторий во всем мире в совокупности с сопутствующими проблемами [Jacob, 1995; Gonzalez and Sylvester, 1995, 1997, 2001; Gonzalez et al., 1989; Grummt, 2003; Grummt, 1999; Langst et al., 1997; Mayer et al., 2005; Nosikov and Braga, 1982; Kupriyanova, 2000].

Давно известно, что количественные и качественные изменения в синтезе рРНК могут быть важными молекулярными показателями состояния организма. Это касается, в частности, возрастных изменений числа генов рРНК и характера метилирования рДНК. В ряде работ показано возрастное снижение количества рДНК в тканях мозга и сердца человека и в тканях мыши методом Саузерн гибридизации [Johnson and Strehler, 1972; Gaubatz and Cutler, 1978].

Исследование связи между метилированием рДНК и экспрессией рРНК при старении на культурах клеток, полученных от больных с синдромом Вернера, показало, что эти клетки росли медленнее и погибали, пройдя несколько делений, в отличие от контроля. [Indig et al., 2004].

Недавно показано, что при обработке культуры клеток фибробластов от больных ревматоидным артритом окисляющим агентом практически не наблюдается активации синтеза рРНК, тогда как в контрольных клетках синтез активируется на 50−80%. Для фибробластов таких больных характерен также ранний апоптоз [Вейко и др., 2005]. Интересное наблюдение было сделано при сравнении содержания копий рДНК у больных шизофренией и здоровых доноров. Оказалось, что число копий рДНК в геноме больных шизофренией примерно на 20% выше, чем у здоровых доноров. При этом содержание сателлита III и гистоновых генов в геномах исследуемых групп индивидов практически не различалось. Цитогенетический анализ (окрашивание серебром метафазных хромосом) показал, что содержание активных генов рРНК у больных шизофренией также выше, чем у здоровых людей [Вейко и др., 2003]. За последние годы получено много данных, которые позволяют предположить, что количественные и качественные изменения в синтезе рРНК могут быть важными молекулярными показателями злокачественности клеток [Williamson et al., 2006; Drygin et al., 2010].

Эти результаты открывают новое поле исследований для изучения связей между транскрипцией рДНК и клеточной пролиферацией [White, 2008; Montarano et al., 2008]. Понимание этих тонких связей необходимо для развития новых подходов к молекулярной характеристике и последующей терапии неопластических заболеваний. В рамках общей структурно-функциональной организации генов рРНК человека недостаточно изучены вопросы внутри-геномного полиморфизма рДНК и регуляции работы мультигенного семейства рДНК.

Целью данной работы является поиск и изучение вариаций в первичной структуре рМГС человека, и прилежащих к кластеру рДНК областей генома. Для решения поставленной цели были сформулированы следующие задачи:

• 1. С помощью ПЦР-амплификации провести анализ участков предпромоторной рДНК, содержащих повторы различных типов.

• 2. Определить уровень и изучить молекулярную природу вариабельности участка LR2 рибосомного межгенного спейсера.

• З. Из космидной клонотеки хромосомы 13 человека выделить клоны, содержащие рДНК и определить первичную структуру участков, предшествующих кластеру рДНК.

• 4. Определить вероятные «горячие точки рекомбинации» фрагментов области 1Л1-Ы12, с наибольшей вероятностью реализующиеся при рекомбинации в рДНК человека.

выводы.

1. Показана консервативность двух сложно-организованных локусов рМГС человека вблизи промотора генов рРНК, содержащих однонаправленные ^/¿-/-повторы и тандемные повторы между ними. Обнаружен феномен образования укороченных рекомбинантных (химерных) молекул ДНК при ПЦР-амплификации этих локусов в результате преждевременной терминации Тая-полимеразы в определенных участках ^/"-повторов.

2. Обнаружен гипервариабельный участок Ы12уаг в центральной части рМГС человека. Установлено, что гетерогенность ЬИ2уаг определяется микросателлитной изменчивостью, как следствие репликативных ошибок, однонуклеотидными заменами, инсерциями/делециями небольших участков и конверсионными обменами между Ы12 и ЬЮ.

3. Показана высокая гомология прителомерного участка (5 т.п.н.) хромосомы 13 с прицентромерным участком хромосомы 19.

4. С помощью анализа т вШсо установлены возможные «горячие точки» рекомбинации в рДНК и оценена представленность фрагментов области 1Л1−1Л12 на различных хромосомах человека.

Показать весь текст

Список литературы

  1. В.А., Чемерис A.B., Ахметзянов A.A. Нуклеотидная последовательность межгенных и внутренних транскрибируемых спейсеров рДНК диплоидной пшеницы Triticum urartu Thum, ex Candil. Молекулярная биология. 1989. T.23(2) С.441−448.
  2. H.H., Ляпунова H.A., Богуш A.B., Цветкова Т. Г. Определение числа рибосомных генов в индивидуальном геноме человека. Сравнение результатов молекулярного и генетического анализа. Молекулярная биология. 1996. Т. ЗО (5). С. 1076−1086.
  3. ВороновА.С., Шибалев Д. В., Куприянова Н. С. Особенности организации кластеров рибосомной ДНК у чешуйчатых рептилий. Генетика, 2008- том 44, № 11, с.1−6.
  4. И.Л., Глухова Л. А., Цветкова Т. Г., Кравец И. А., Мамаева С. А., Кущ A.A. Использование гибридизации ДНК in situ для идентификации хромосомных перестроек при кариотипировании клеточных линии. Цитология. 1992. Т.34(7). С. 41−46.
  5. П.М., Куприянова Н. С., Рысков А. П. Обнаружение и характеристика протяженных делеций в рДНК содержащих космидных клонах хромосомы 13 человека. Доклады Российской Академии Наук. 2000, 371, 60−62.
  6. П.М., Куприянова Н. С., Рысков А. П. 2000. Обнаружение и характеристика протяженных делеций в космидных клонах рибосомной ДНК хромосомы 13 человека. Докл. Акад. Наук. 371, 700−702.
  7. Н.С., Нечволодов К. К., Кириленко П. М., Капанадзе Б. И., Янковский Н. К., Рысков А.П.Внутригеномный полиморфизм генов рибосомной рнк хромосомы 13 человека. Молекулярная биология. 1996. Т. 30. С. 51−60.
  8. Н.С., Нечволодов К. К., Кириленко П. М., Рысков А. П. 1999. (TTGC)n микросателлит, специфичный для межгенного спейсера рДНК человека: использование для изучения вариабельности рДНК приматов. Молек. Биол. 33,314−318.
  9. Н.С., Нечволодов К. К., Кириленко П. М., Капанадзе Б. И., Янковский Н. К., Рысков А. П. Внутригеномный полиморфизм генов рибосомной РНК хромосомы 13 человека 1996. Молекуляр. Биология. 30, 51−60.
  10. Т., Фрич Э., Самбрук Дж.1984. Молекулярное клонирование. М.:Мир.
  11. МашковаТ.Д., Тюменева И. Г., Зиновьева O. JL, Романова Л. Ю., Джабс Е., Александров H.A. Прицентромерная альфа-сателлитная ДНК в хромосоме 21 человека, пограничная с эухроматиновой ДНК. Молекулярная биология. 1996. Т. ЗО (5). С. 1044−1054.
  12. С.П., Гоголевская И. К., Куприянова Н. С., Тимофеева М. Я. Полиморфизм длин рестриктных фрагментов 5'-области повтора рибосомного спейсера быка. 1992. Молекулярная биология. 1992. Т.26(2). С. 354−368.
  13. А.П., Куприянова Н. С., Капанадзе Б. И., Нечволодов К. К., Позмогова Г. Е., Просняк М. И., Янковский Н. К. Частота встречаемости различных мини- и микро-сателлитных последовательностей в ДНК хромосомы 13 человека. Генетика. 1993. Т. 29. С. 1750−1754.
  14. М.А., Разин С. В., Яровая О. В. Ингибирование топоизомеразы II этопозидом индуцирует ассоциацию ДНК топоизомеразы альфа, ДНК топоизомеразы бета и нуклеолина с BCR2 гена ЕТО. ДАН. 2008. Т.423. С. 334−336.
  15. Д.В., Воронов A.C., Фирсов С. Ю., Рысков А. П., Куприянова Н. С. Обнаружение внутригеномного полиморфизма участка LR2 межгенного рибосомного спейсера человека. Молекулярная биология. 2004. Т. 38. С. 835−838.
  16. OB., Разин С. В., Хенкок Р. Расщепление геномной ДНК вдоль границ топологических доменов топоизомеразой II ядерного матрикса. Генетика. 1994- 30(1):25−32.
  17. Adega F, Guedes-Pinto Н, Chaves R. Satellite DNA in the karyotype evolution of domestic animals-clinical considerations. Cytogenet Genome Res. 2009. (1−2): 12−20.
  18. Arnheim N., Krystal M., Schmickel R., Wilson G., Ryder O., Zimmer E. Molecular evidence for exchanges among ribosomal genes on non-homologous chromosomes in man and apes. Proc. Natl. Acad. Sei. 1980, 77, 7323−7327.
  19. Athanasiadis A, Rich A, Maas S: Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biology 2004. Dec-2(12):e391.
  20. Ashworth L.K., Batzer M.A., Brandriff B., Branscomb E., de Jong P., Garcia E., Games J.A., Gordon L.A., Lamerdin J.E., Lennon G. An integrated metric physical map of human chromosome 19. Nature Genet. 1995. 11,422−427
  21. Battaglia A, Novelli A, Ceccarini C, Carey JC. Familial complex 3q-10q rearrangement unraveled by subtelomeric FISH analysis. Am J Med Genet A. 2006. 140(2):144−50.
  22. Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E: Standardized nomenclature for Alu repeats. Journal of Molecular Evolution 1996, 42:3−6.
  23. J.A., Yavor A.M., Massa H.F., Trask B.J., Eichler E.E. 2001. Segmental duplications: organization and impact within the current human genome project assembly. Genome. Res. 11,1005−1017.
  24. Barak M, Levanon EY, Eisenberg E, Paz N, Rechavi G, Church GM, Mehr R. Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Res. 2009. Nov, 37(20), 6905−15.
  25. Battaglia A, Novelli A, Ceccarini C, Carey JC. Familial complex 3q-10q rearrangement unraveled by subtelomeric FISH analysis. Am J Med Genet A. 2006 Jan 15- 140(2):144−50.
  26. Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E: Standardized nomenclature for Alu repeats. Journal of
  27. Molecular Evolution 1996, 42:3−6.
  28. Benevolenskaya EV, Kogan GL, Tulin AV, Philipp D, Gvozdev VA. Segmented gene conversion as a mechanism of correction of 18S rRNA pseudogene located outside of rDNA cluster in D. melanogaster. J Mol Evol. 1997 Jun- 44(6):646−51.
  29. Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. The multifunctional nucleolus.
  30. Nat Rev Mol Cell Biol. 2007 — 8(7):574−85.
  31. Borgognone M, Armas P, Calcaterra NB. Cellular nucleic acid binding protein, a transcriptional enhancer of c-myc, promotes the formation of parallel g-quadruplexes 13 Biochem J. 2010. May 27, 428(3), 491−498.
  32. Britten R.J. Coding sequences of functioning human genes derived entirely from mobile element sequences. Proc. Natl. Acad. Sci. USA. 2004. 101(48) — 16 825−16 830.
  33. Britten RJ: Evolutionary selection against change in many Alu repeat sequences interspersed through primate genomes. Proc Natl Acad Sci U S A 1994. 91, 5992 -5996
  34. Bohne, A., Brunet, F., Galiana-Arnoux, D., Schultheis, C. and Volff, J.N. Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome. Res., 2008.16, 203−215.
  35. Borstnik B, Pumpernik D. Mutational dynamics of short tandem repeats in human genome. Europhys. Let. 2004. V.65 P. 290−296.
  36. Birky C.W. Jr. Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics. 1996 144, 427−437.
  37. Bradley R.D., Bull J.J., Johnson A.D., Hillis D.M. Origin of a novel allele in a mammalian hybrid zone. Proc. Natl. Acad. Sci. 1993. V. 90, P. P. 8939−8941.
  38. Bradley R.D., Hillis D.M., Recombinant DNA sequences generated by PCR amplification. Mol. Biol. Evol. 1997. V. 14, P. 592−593.
  39. Borovjagin AV, Gerbi SA. An evolutionary intra-molecular shift in the preferred U3 snoRNA binding site on pre-ribosomal RNA. Nucleic Acids Res. 2005 Sep 6- 33(15):4995−5005. Print 2005.
  40. Brohede J, Moller AP, Ellegren H. Individual variation in microsatellite mutation rate in barn swallows. Mutat Res. 2004 Jan 12- 545(l-2):73−80.
  41. Brownell E, Krystal M, Arnheim N. Structure and evolution of human and African ape rDNA pseudogenes. Mol Biol Evol. 1983 Dec- l (l):29−37.
  42. Buard J, Collick A, Brown J, Jeffreys AJ. Somatic versus germline mutation processes at minisatellite CEB1 (D2S90) in humans and transgenic mice. Genomics. 2000 Apr 15- 65(2):95−103.
  43. Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, Kellner M, GruberEber A, Kremmer E, Holzel M, Eick D. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem. 2010- 285(16):12 416−25.
  44. Castro J, Sanchez L, Martinez P, Lucchini SD, Nardi I. Molecular analysis of a NOR site polymorphism in brown trout (Salmo trutta): organization of rDNA intergenic spacers. Genome. 1997 Dec- 40(6):916−22.
  45. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 1998 Dec-8(12):1229−31.
  46. Cox R, Mirkin SM. Characteristic enrichment of DNA repeats in different genomes. Proc Natl Acad Sci USA. 1997 May 13- 94(10):5237−42.
  47. Cheung SW, Sun L, Featherstone T. Molecular cytogenetic evidence to characterize breakpoint regions in Robertsonian translocations. Cytogenet Cell Genet. 1990- 54(3−4): 97 102.
  48. Childs G, Maxson R, Cohn RH, Kedes L. Orphons: dispersed genetic elements derived from tandem repetitive genes of eucaryotes. Cell. 1981 Mar- 23(3):651−63.
  49. Chun-Hong Zhu, Jinyong Kim, Jerry W. Shay, Woodring E. Wright* An Essential Stress Granule/Nucleolar Protein Potentially Involved in 5.8s rRNA Processing/Transport. PLoS ONE 2008 Volume 3 | Issue 11 | e3716.
  50. Corvelo, A. and Eyras, E. Exon creation and establishment in human genes. Genome Biol., 2008 9, R141.
  51. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001 Apr- 2(4):292−301.
  52. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA. Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol. 1999 Jun 14- 145(6): 1119−31.
  53. Crossen PE, Godwin JM. Rearrangement and possible amplification of the ribosomal RNA gene sites in the human chronic myelogenous leukemia cell line K562. Cancer Genet Cytogenet. 1985 Sep- 18(l):27−30.
  54. Dawn M. Stults, Michael W. Killen, Erica P. Williamson, et al. Human rRNA Gene Clusters Are Recombinational Hotspots in Cancer Res 2009. 69, 9096−9104.
  55. Dixit A., L.C.Garg, W. Chao, S.T. Jacob, An enhancer element in the far upstream spacer region of rat ribosomal RNA gene. J Biol Chem. 1987. 262, 11 616−11 622.
  56. Dover G. Molecular drive: a cohesive mode of specious evolution. Nature. 1982. 299, 111 117.
  57. Dover G. How genomic and developmental dynamics affect evolutionary processes. Bioessays. 2000 Dec- 22(12): 1153−9.
  58. Drygin D., Rice WG, Grummt I. The RNA Polymerase I Transcription Machinery: An Emerging Target for the Treatment of Cancer. Annu. Rev. Pharmacol. Toxicol. 2010. 50:131 156.
  59. Dudov KP, Dabeva MD, Hadjiolov AA, Todorov BN. Processing and migration of ribosomal ribonculeic acids in the nucleolus and nucleoplasm of rat liver nuclei. Biochem J. 1978 May 1- 171(2):375−83.
  60. Eddy J and Maizels N. Selection for the G4 DNA Motif at the 5' End of Human Genes. Mol Carcinog. 2009. 48(4), 319−325.
  61. Eisenberg E, Adamsky K, Cohen L, Amariglio N, Hirshberg A, Rechavi G, Levanon EY: Identification of RNA editing sites in the SNP database. Nucl Acids Res 2005. 33, 4612−4617.
  62. Ellegren H Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet. 2000 Dec- 16(12):551−8.
  63. Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004 Jun- 5(6):435−45.
  64. Ellis RE, Sulston JE, Coulson AR. The rDNA of C. elegans: sequence and structure. Nucleic Acids Res. 1986 Mar 11- 14(5):2345−64.
  65. Ferreira J, Paolella G, Ramos C, Lamond ALSpatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol. 1997 Dec 29- 139(7): 1597−610.
  66. Feschotte C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet., 2008. 9, 397−405.
  67. Fuertes A.J., Rossello J.A., Nieto F.G. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol. Ecol. 1999. 8, 1341−1346.
  68. Garkavtsev I.V., Tsvetkova T.G., Yegolina N.A., Gudkov A.V. Variability of human rRNA genes inheritance and nonrandom chromosomal distribution of structural variants of nontranscribed spacer sequences. Hum. Genet. 1988. 81, 31−37.
  69. Gandolfi A., Bonilauri P., Rossi V., Menozzi P. Intraindividual and intraspecies variability of ITS1 sequences in the ancient asexual Darwinula stevensoni (Crustacea: Ostracoda). Heredity. 2001. 87, 449−455.
  70. Gaubatz JW, Cutler RG. Age-related differences in the number of ribosomal RNA genes of mouse tissues. Gerontology. 1978- 24(3): 179−207.
  71. Genuario R. R and Perry R.P. The GA-binding Protein Can Serve as Both an Activator and Repressor of ribosomal protein Gene Transcription. J. Biol. Chem. 1996. 271(8), 4388395.
  72. Georgiev OI, Nosikov VV, Braga EA, Hadjiolov AA. Sequence heterogeneity in the internal transcribed spacers of two rat ribosomal DNA clones. Biochem Int. 1984 Feb- 8(2):225−9.
  73. Gonzalez I.L., Sylvester J.E. Complete sequence analysis of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics. 1995. 27, 320−328
  74. Gonzalez IL, Sylvester JE. Incognito rRNA and rDNA in databases and libraries. Genome Res. 1997 Jan, 7(1), 65−70.
  75. Gonzalez I.L., Sylvester J.E. Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Chromosoma. 1997. 105, 431−437.
  76. Gonzalez I.L., Sylvester J.E. Human rDNA: Evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. Genomics. 2001. 73, 255−263.
  77. Gorski SA, Snyder SK, John S, Grummt I, Misteli T. Modulation of RNA polymerase assembly dynamics in transcriptional regulation. Mol Cell. 2008 May 23- 30(4):486−97.
  78. Grummt I., Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 2003.17, 1691−1702.
  79. Grummt I, Kuhn A, Bartsch I, Rosenbauer H. A transcription terminator located upstream of the mouse rDNA initiation site affects rRNA synthesis. Cell. 1986 Dec 26−47(6):901−11.
  80. Hall IM, Quinlan AR. Detection and interpretation of genomic structural variation in mammals. Methods Mol.Biol. 2012- 838: 225−48.
  81. Harris D.J., Crandall K.A. Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapoda: Cambaridae): implications for phylogenetic and microsatellite studies. Mol. Biol. Evol. 2000. 17, 284−291.
  82. Henderson AS, Atwood KC, Warburton D. Chromosomal distribution of rDNA in Pan paniscus, Gorilla gorilla beringei, and Symphalangus syndactylus: comparison to related primates. Chromosoma. 1976 Dec 16- 59(2):147−55.
  83. Henderson A, Ritossa FOn the inheritance of rDNA of magnified bobbed loci in D. melanogaster. Genetics. 1970 Nov- 66(3):463−73.
  84. Henderson S, Sollner-Webb B. A transcriptional terminator is a novel element of the promoter of the mouse ribosomal RNA gene. Cell. 1986 Dec 26- 47(6):891−900.
  85. Holzel M, Orban M, Hochstatter J, Rohrmoser M, Harasim T, Malamoussi A, Kremmer E, Langst G, Eick D. Defects in 18 S or 28 S rRNA processing activate the p53 pathway. J Biol Chem. 2010. 285(9), 6364−70.
  86. Horvath J., Schwartz S., Eichler E. The mosaic structure of a 2pl 1 pericentromeric segment: a strategy for characterizing complex regions of the human genome. Hum. Mol.
  87. Genome Res. 2000. 10, 839−852.
  88. Horvath J.E., Bailey J.A., Locke D.P., Eichler E.E. Lessons from the human genome: transitions between euchromatin and heterochromatin. Hum. Mol. Genet. 2001. 10, 22 152 223.
  89. Huang J, Brito IL, Villen J, Gygi SP, Amon A, Moazed D. Inhibition of homologous recombination by a cohesin-associated clamp complex recruited to the rDNA recombination enhancer. Genes Dev. 2006. Oct 15, 20(20), 2887−2901.
  90. Ijdo J., Baldini A., Ward D.C., Reeders S.T., Wells R.A. Origin of human chromosome 2: an ancestral telomere-telomere fusion. Proc. Natl. Acad. Sci. USA 1991. 88, 9051- 9055
  91. Ide S, Miyazaki T., Maki H., Kobayashi T. Abundance of ribosomal RNA gene copies maintains genome integrity. Science. 2010. 327(5966), 693−696.
  92. Jacob S.T., Regulation of ribosomal gene transcription. Biochem J. 1995. 306(Pt 3), 617−626.
  93. Jackson CJ, Barton RC, Evans EG. Species identification and strain differentiation of dermatophyte fungi by analysis of ribosomal-DNA intergenic spacer regions. J Clin Microbiol. 1999 Apr- 37(4):931−6.
  94. Jeffreys AJ, May CA. Intense and highly localized gene conversion activity in human meiotic crossover hot spots. Nat Genet. 2004 Feb- 36(2):151−6. Epub 2004 Jan 4.
  95. Jeffreys AJ, Ritchie A, Neumann R. High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum Mol Genet. 2000 Mar 22- 9(5):725−33.
  96. Jiang C, Liao D. Striking bimodal methylation of the repeat unit of the tandem array encoding human U2 snRNA (the RNU2 locus). Genomics. 1999- 62(3):508−18.
  97. Johnson R, Strehler BL. Loss of genes coding for ribosomal RNA in ageing brain cells. Nature. 1972. 240(5381), 412−414.
  98. Jordan, I.K., Rogozin, I.B., Glazko, G.V. and Koonin, E.V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet., 2003. 19, 68−72.
  99. Joseph N, Krauskopf E, Vera M., Michot B (1999) Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. Nucleic Acids Res. 27: 4533−455.
  100. Jurka J. Evolutionary impact of human Alu repetitive elements. Curr Opin Genet Dev. 2004.14(6), 603−608.
  101. Julien Ha’sler and Katharina Strub Alu elements as regulators of gene expression. Nucleic Acids Research, 2006. Vol. 34, No. 19 5491−5497.
  102. Kapitonov V, Jurka J: The age of Alu subfamilies. Journal of MolecularEvolution 1996. 42,59.65.
  103. Kaplan FS, Murray J, Sylvester JE, Gonzalez IL, O’Connor JP, Doering JL, Muenke M, Emanuel BS, Zasloff MA. The topographic organization of repetitive DNA in the human nucleolus. Genomics. 1993 Jan- 15(1): 123−32.
  104. Kauppi L, May CA, Jeffreys AJ. Analysis of meiotie recombination products from human sperm. Methods Mol. Biol. 2009- 557: 323−355
  105. Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol. 2007.431,61−81.
  106. Kim DDY, Kim TTY, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A: Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Res 2004. 14, 1719−1725.
  107. Kominami R, Muramatsu M. Amplified ribosomal spacer sequence: structure and evolutionary origin. J Mol Biol. 1987 Jan 5- 193(l):217−22.
  108. Komma DJ, Atwood KC. Magnification in Drosophila: evidence for an inducible rDNA-specific recombination system. Mol Gen Genet. 1994 Feb-242(3):321−6.
  109. Krystal M, D’Eustachio P, Ruddle FH, Arnheim N. Human nucleolus organizers on nonhomologous chromosomes can share the same ribosomal gene variants. Proc Natl Acad Sei USA. 1981. 78(9), 5744−5748.
  110. Kuhn A., I Grammt, A novel promoter in the mouse rDNA spacer is active in vivo and in vitro. EMBO J. 1987. 6- 3487−3492.
  111. Kuhn A, Normann A, Bartsch I, Grummt I. The mouse ribosomal gene terminator consists of three functionally separable sequence elements. EMBO J. 1988 May- 7(5): 1497−502.
  112. Kupriyanova NS, Shibalev DV, Voronov AS, Ryskov AP. Enhanced heterogeneity of the LR2 segment in the human ribosomal intergenic spacer. Gene. 2008 Dec 1, 425(1−2), 44−7.
  113. Kuprijanova N, Popenko V, Eisner G, Vengerov J, Timofeeva M, Tikhonenko A, Skryabin K, Bayev A. Organization of loach ribosomal genes (Misgurnus fossilis L.). Mol Biol Rep. 1982 Apr 16- 8(3):143−8.
  114. Labella T, Schlessinger D. Complete human rDNA repeat units isolated in yeast artificial chromosomes. Genomics. 1989 Nov- 5(4):752−60.
  115. Labhart P, Reeder RH. Characterization of three sites of RNA 3' end formation in the Xenopus ribosomal gene spacer. Cell. 1986 May 9- 45(3):431−43.
  116. Lam KW, Jeffreys AJ. Processes of copy-number change in human DNA: the dynamics of {alpha}-globin gene deletion. Proc Natl Acad Sei USA. 2006 Jun 13- 103(24):8921−7. Epub 2006 May 18.
  117. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature, 2001.409, 860−921.
  118. La Volpe A, Simeone A, D’Esposito M, Scotto L, Fidanza V, de Falco A, Boncinelli E. Molecular analysis of the heterogeneity region of the human ribosomal spacer. J Mol Biol. 1985 May 25- 183(2):213−23.
  119. Lehrman M.A., Russel D.W., Goldstein J.L., Brown M.S., Alu-Alu recombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. J.Biol.Chem. 1987. V. 262, 3354−3361.
  120. Leung AK, Gerlich D, Miller G, Lyon C, Lam YW, Lleres D, Daigle N, Zomerdijk J, Ellenberg J, Lamond AI. Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J Cell Biol. 2004−166(6):787−800.
  121. Liao D. Concerted evolution: molecular mechanism and biological implications. Am J Hum
  122. Genet. 1999 Jan- 64(l):24−30.
  123. Liao D. Gene conversion drives within genie sequences: concerted evolution of ribosomal RNA genes in bacteria and archaea. J Mol Evol. 2000 Oct- 51(4):305−17.
  124. Lohe AR, Roberts PA. An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes. Genetics. 1990 Jun- 125(2):399−406.
  125. Long EO, Dawid IB. Repeated genes in eukaryotes. Annu Rev Biochem. 1980−49:727−64.
  126. Luke S., Verma R.S. Origin of human chromosome 2. Nature Genet. 1992. 2, 11−12.
  127. Makalowski, W. and Toda, Y. Modulation of host genes by mammalian transposable elements. Genome Dyn., 2007. 3,163−174.
  128. Manuelidis L, Borden J. Reproducible compartmentalization of individual chromosome domains in human CNS cells revealed by in situ hybridization and three-dimensional reconstruction. Chromosoma. 1988- 96(6):397−410.
  129. Marino-Ramirez, L., Lewis, K.C., Landsman, D. and Jordan, I.K. Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet. Genome Res., 2005. 110, 333−34.
  130. Maxwell ES, Fournier MJ. The small nucleolar RNAs. Annu Rev Biochem. 1995- 64:897 934.
  131. McStay B, Grummt I. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol. 2008−24:131−57.
  132. McMahon M, Ayllon V, Panov KI, O’Connor R. Ribosomal 18 S RNA processing by the GF-I-responsive WDR3 protein is integrated with p53 function in cancer cell proliferation. 2010 Jun 11, 285(24), 18 309−18 318. Epub 2010 Apr 14.
  133. Melford H.C., Trask B.J. The complex structure and dynamic evolution of human subtelomeres. Nature Rev. Genet. 2002. 3, 91−102.
  134. Mih?i E, Ozcan M, Berker-Karauziim S, Keser I, Ta? oy S, Hapsolat S, Liileci G. Subtelomeric rearrangements of dysmorphic children with idiopathic mental retardation reveal 8 different chromosomal anomalies. Turk J Pediatr. 2009. Sep-Oct, 51(5), 453−9.
  135. Miller DA, Tantravahi R, Dev VG, Miller OJ. Frequency of satellite association of human chromosomes is correlated with amount of Ag-staining of the nucleolus organizer region. Am J Hum Genet. 1977 Sep- 29(5):490−502.
  136. Moyzis RK, Torney DC, Meyne J, Buckingham JM, Wu JR, Burks C, Sirotkin KM, Goad WB. The distribution of interspersed repetitive DNA sequences in the human genome.
  137. Genomics. 1989 Apr- 4(3):273−89.
  138. Montanaro L, Trere D, Derenzini M. Nucleolus, ribosomes, and cancer. Am. J. Pathol. 2008.173,301−310.
  139. Mikkelsen, T.S., Wakefield, M.J., Aken, B., Amemiya, C.T., Chang, J. L, Duke, S., Garber, M., Gentles, A.J., Goodstadt, L" Heger, A. et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature, 2007. 447, 167−177.
  140. Mukha DV, Sidorenko AP, Lazebnaya IV, Wiegmann BM, Schal C. Analysis of intraspecies polymorphism in the ribosomal DNA cluster of the cockroach Blattella germanica. Insect Mol Biol. 2000 Apr- 9(2):217−22.
  141. Mukha DV, Mysina V, Mavropulo V, Schal C. Structure and molecular evolution of the ribosomal DNA external transcribed spacer in the cockroach genus Blattella. Genome. 2011 Mar-54(3):222−34.
  142. Murphy W.J., Stanyon R., O’Brien S.J. Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol. 2001. 2, 5−15.
  143. Mukha DV, Mysina V, Mavropulo V, Schal C. Structure and molecular evolution of the ribosomal DNA external transcribed spacer in the cockroach genus Blattella. Genome. 2011. 54(3), 222−234.
  144. Naylor SL, Chin WW, Goodman HM, Lalley PA, Grzeschik KH, Sakaguchi AY. Chromosome assignment of genes encoding the alpha and beta subunits of glycoprotein hormones in man and mouse. Somatic Cell Genet. 1983. Nov, 9(6), 757−770.
  145. Naylor S.L., Sakaguchi A.Y., Schmickel R.D., Woodworth-Gutal M., Shows T.B. Organization of rDNA spacer fragment variants among human acrocentric chromosomes in somatic cell hybrids. J. Mol. Appl. Genet. 1983. 2,137−146
  146. Neumann R, Lawson VE, Jeffreys AJ. Dynamics and processes of copy number instability in human gamma-globin genes. Proc Natl Acad Sci USA. 2010−107(18):8304−8309.
  147. Nikitina TV, Tishchenko LI, RNA polymerase III transcription apparatus: structure and transcription regulation Mol Biol (Mosk). 2005. Mar-Apr, 39(2), 179−92.
  148. Netchvolodov KK, Boiko AV, Ryskov AP, Kupriyanova NS. Evolutionary divergence of the pre-promotor region of ribosomal DNA in the great apes. DNA Seq. 2006 Oct-17(5):378−91.
  149. O’Brien SJ. The ancestry of the giant panda. Sci Am. 1987 Nov- 257(5): 102−7.
  150. Paquet Y., Anderson A. Sequence composition similarities with the 7SL RNA are highly predictive of functional genomic features. Nucleic Acids Research. 2010 Aug, 38(15): 490 716. Epub 2010 Apr 14.
  151. Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999 Jun- 63(2):349−404.
  152. Pavelitz T, Liao D, Weiner AM. Concerted evolution of the tandem array encoding primate U2 snRNA (the RNU2 locus) is accompanied by dramatic remodeling of the junctions with flanking chromosomal sequences. EMBO J. 1999 Jul 1- 18(13): 3783−92.
  153. Pedrazzini E, Slavutsky I. Ag-NOR staining and satellite association in lymphoproliferative disorders. Hereditas. 1991- 115(3):207−12.
  154. Pederson T, Tsai RY. In search of nonribosomal nucleolar protein function and regulation. J Cell Biol. 2009 Mar 23−184(6):771−6. Epub 2009 Mar 16.
  155. Pederson T. Growth factors in the nucleolus? J Cell Biol. 1998 Oct 19−143(2):279−81.
  156. Peng JC, Karpen GH. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol. 2007 Jan-9(l):25−35. Epub 2006 Dec 10.
  157. Piccini I., Ballarati L., Bassi C., Rocchi M., Marozzi A., Ginelli E., Meneveri R. The structure of duplications on human acrocentric chromosome short arms derived by the analysis of 15p. Hum. Genet. 2001. 108, 467−477.
  158. Planta RJ, Raue HA. Control of ribosome biogenesis in yeast. Trends Genet. 1988 Mar- 4(3):64−8.
  159. Plohl M, Luchetti A, Mestrovic N, Mantovani B. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero) chromatin. Gene. 2008. 409(1−2), 72−82.
  160. Polak P, Domany E. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics. 2006. 7, 133−138.
  161. Ranzani G.N., Bernini L.F., Crippa M. Inheritance of rDNA spacer length variants in man. Mol. Gen. Genet. 1984. 196, 141−145.
  162. Razin SV, Gavrilov AA, Yarovaya OV. Transcription factories and spatial organization of eukaryotic genomes. Biochemistry (Mosc). 2010- 75(11): 1307−15.
  163. Rosmarin AG, Resendes KK, Yang Z, McMillan JN, Fleming SL. GA-binding protein transcription factor: a review of GABP as an integrator of intracellular signaling and proteinprotein interactions. Blood Cells Mol Dis. 2004. 32(1), 143−154.
  164. Rudiger N.S., Gregersen N., Kielland-Brandt M.C., One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res. 1995. V. 23, P. 256−260.
  165. Rudra D, Warner JR. What better measure than ribosome synthesis? Genes Dev. 2004. 18(20):2431−6.
  166. Sadoni N, Langer S, Fauth C, Bernardi G, Cremer T, Turner BM, Zink D. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol. 1999 Sep 20- 146(6): 1211−26.
  167. Sakai K, Ohta T, Minoshima S, Kudoh J, Wang Y, de Jong PJ, Shimizu N. Human ribosomal RNA gene cluster: identification of the proximal end containing a novel tandem repeat sequence. Genomics. 1995 Apr 10- 26(3):521−6.
  168. Scharf S.J., Friedmann A., Brautbar C., Szafer F., Steinman L., Horn G., Gyllensten U., Erlich H.A., HLA class II allelic variation and susceptibility to pemphigus vulgaris., Proc. Natl. Acad. Sci. 1988. V. 85, P. 3504−3508.
  169. Scharf S.J., Long C.M., Erlich H.A. Sequence analysis of the HLA-DR beta and HLA-DQ beta loci from three Pemphigus vulgaris patients., Hum. Immunol. 1988. V. 22, P. 61−69.
  170. Schlotterer C, Tautz D. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol. 1994 Sep 1- 4(9):777−83.
  171. Scheer U, Trendelenburg MF, Krohne G, Franke WW. Lengths and patterns of transcriptional units in the amplified nucleoli of oocytes of Xenopus laevis. Chromosoma. 1977 Mar 16- 60(2): 147−67.
  172. Schmickel R.D., Gonzalez I.L., Erickson J.M. Nucleolus organizing genes on chromosome 21: recombination and non-disjunction. In «Molecular Structure of the Number 21 Chromosome and Down Syndrome» Ed. Smith G.F. 1985. NY: 121−131.
  173. Schilders G, Raijmakers R, Raats JM, Pruijn GJ. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA. Nucleic Acids Res. 2005 Dec 7−33(21):6795−804.
  174. Seperack P., Slatkin M., Arnheim N. Linkage disequlibrium in human ribosomal genes: implications of multigene family evolution. Genetics. 1988. 119, 943−949.
  175. Sinclair JH, Carroll CR, Humphrey RR. Variation in rDNA redundancy level and nucleolar organizer length in normal and variant lines of the Mexican axolotl. J Cell Sci. 1974 Jul- 15(2):239−57.
  176. Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D. Nucleolus: the fascinating nuclear body. Histochem Cell Biol. 2008 Jan- 129(1): 13−31. Epub 2007 Nov 29.
  177. Solomon JM, Rossi JM, Golic K, McGarry T, Lindquist S. Changes in hsp70 alter thermotoleranee and heat-shock regulation in Drosophila. New Biol. 1991 Nov- 3(11): 110 620.
  178. Spear BB, Gall JG. Independent control of ribosomal gene replication in polytene chromosomes of Drosophila melanogaster. Proc Natl Acad Sei USA. 1973 May- 70(5): 135 963.
  179. Srivastava L, Lapik YR, Wang M, Pestov DG. Mammalian DEAD box protein Ddx51 acts in 3' end maturation of 28 S ribosomal RNA by promoting the release of U8 snoRNA. Mol Cell Biol. 2010. Jun, 30(12), 2947−56.
  180. Srivastava AK, Hagino Y, Schiessinger D. Ribosomal DNA clusters in pulsed-field gel electrophoretic analysis of human acrocentric chromosomes. Mamm Genome. 1993- 4(8):445−50.
  181. Sun HB, Yokota H. Correlated positioning of homologous chromosomes in daughter fibroblast cells. Chromosome Res. 1999- 7(8):603−10.
  182. Suzuki H, Tsuchiya K, Sakaizumi M, Wakana S, Gotoh O, Saitou N, Moriwaki K, Sakurai S. Differentiation of restriction sites in ribosomal DNA in the genus Apodemus. Biochem Genet. 1990 Apr- 28(3−4): 137−49.
  183. Sylvester JE, Petersen R, Schmickel RD. Human ribosomal DNA: novel sequence organization in a 4.5-kb region upstream from the promoter. Gene. 1989 Dec 7- 84(1): 193−6.
  184. Sylvester J.E., Whiteman D.A., Podolsky R., Pozgay J.M., Respess J., Schmickel R.D. The human ribosomal RNA genes: structure and organization of the complete repeating unit. Hum. Genet. 1986. V. 73, P. 193- 198.
  185. Sorek, R., Lev-Maor, G., Reznik, M., Dagan, T., Belinky, F., Graur, D. and Ast, G. Minimal conditions for exonization of intronic sequences: 50 splice site formation in Alu exons. Mol. Cell, 2004. 14, 221−231.
  186. Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD, Arnold SM, Moscow JA, Pierce AJ. Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res. 2009. 69(23), 9096−104.
  187. Strehler BL, Chang MP, Johnson LK. Loss of hybridizable ribosomal DNA from human postmitotic tissues during aging: I. Age-dependent loss in human myocardium. Mech Ageing Dev. 1979. Dec, 11(5−6), 371−8.
  188. Strehler BL, Chang MP. Loss of hybridizable ribosomal DNA from human post-mitotic tissues during aging: II. Age-dependent loss in human cerebral cortex-hippocampal and somatosensory cortex comparison. Mech Ageing Dev. 1979 Dec, 11(5−6), 379−382.
  189. Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD, Arnold SM, Moscow JA, Pierce AJ. Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res. 2009. 69(23), 9096−104.
  190. Subrahmanyam CS, Cassidy B, Busch H, Rothblum LI. Nucleotide sequence of the region between the 18S rRNA sequence and the 28S rRNA sequence of rat ribosomal DNA. Nucleic Acids Res. 1982- 10(12):3667−80.
  191. Tamaki K, May CA, Dubrova YE, Jeffreys AJ. Extremely complex repeat shuffling during germline mutation at human minisatellite B6.7. Hum Mol Genet. 1999 May- 8(5):879−88.
  192. Tsuchya Т., Saegusa Y., Taira Т., Mimori Т., Iguchi-Ariga S.M., Ariga H.// J. Biochem (Tokio). 1998. V. 123, P. 120−127.
  193. Vogt P. Code domains in tandem repetitive DNA sequence structures. Chromosoma. 19 921. Oct- 101(10):585−9.
  194. Vowles EJ, Amos W. Evidence for widespread convergent evolution around humanmicrosatellites. PLoS Biol. 2004- 2(8):E199.
  195. Wheelan S.J., Aizawa, Y., Han, J.S. and Boeke, J.D. Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. Genome Res., 2005. 15, 1073−1078
  196. White RJ. RNA polymerases I and III, noncoding RNAs and cancer. Trends Genet. 2008. 24,622.629.
  197. Williamson D, Lu YJ, Fang C, Pritchard-Jones K, Shipley J. Nascent pre-rRNA overexpression correlates with an adverse prognosis in alveolar rhabdomyosarcoma. Genes Chromosom. Cancer 2006. 45, 839−845.
  198. Worton R.G., Sutherland J., Sylvester J.E., Willard H.F., Bodrug S., Dube I., Duff C., Kean V., Ray P., Schmickel R.D. Human ribosomal RNA genes: Orientation of the tandem array and conservation of the 5' end. Science. 1988. 239, 64−68
  199. Zafiropoulos A, Tsentelierou E, Linardakis M, Kafatos A, Spandidos DA Preferential loss of 5S and 28S rDNA genes in human adipose tissue during ageing. Int J Biochem Cell Biol. 2005.37(2), 409−415.
  200. Zamb TJ, Petes TD. Analysis of the junction between ribosomal RNA genes and single-copy chromosomal sequences in the yeast Saccharomyces cerevisiae. Cell. 1982 Feb- 28(2):355−64.1. Благодарности
  201. Я благодарен руководству Института биологии гена РАН за предоставленную возможность обучения в очной аспирантуре и возможность выполнить диссертационную работу, а также членам Диссертационного совета и особенно Грабовской Любовь Сергеевне.
Заполнить форму текущей работой