ΠΠ°Π³ΡΠ°Π½ΠΆΠ΅Π²Ρ ΡΡΡΡΠΊΡΡΡΡ, ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΈ Π·Π°ΠΊΠΎΠ½Ρ ΡΠΎΡ ΡΠ°Π½Π΅Π½ΠΈΡ Π² ΡΠ΅ΠΎΡΠΈΠΈ ΠΏΠΎΠ»Ρ
Π‘ΡΠ΅Π΄ΠΈ Π½Π΅Π»Π°Π³ΡΠ°Π½ΠΆΠ΅Π²ΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΏΠΎΠ»Ρ ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈΠ· Π²Π°ΠΆΠ½Π΅ΠΉΡΠΈΡ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π³ΠΎΠ΄Ρ ΡΡΠΈΡΠ°Π»ΠΈΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ Π±Π΅Π·ΠΌΠ°ΡΡΠΎΠ²ΡΡ ΠΏΠΎΠ»Π΅ΠΉ Π²ΡΡΡΠΈΡ ΡΠΏΠΈΠ½ΠΎΠ² Π² ΡΠΎΡΠΌΠ΅ ΡΠ°Π·Π²Π΅ΡΠ½ΡΡΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΠ°ΡΠΈΠ»ΡΠ΅Π²Π° ?38β42]. ΠΠ°Π΄Π°ΡΠ° ΠΊΠ²Π°Π½ΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ Π΄ΠΎ ΡΠΈΡ ΠΏΠΎΡ Π½Π΅ ΡΠ΅ΡΠ΅Π½Π°. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΠ°ΡΠΈΠ»ΡΠ΅Π²Π°, ΠΏΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ, ΡΠ²Π»ΡΡΡΡΡ Π½Π΅Π²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΠΌΠΈ, ΠΈ ΠΈΡ Π²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ°, Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΏΡΠ΅ΡΠ΅Π½Π·ΠΈΠΈ |43… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- Noethcr Π. 1.variante Variationsproblcmc // Gott.Nachr. — 1918. — P. 235 257.
- Kosinann-Schwarzbach Y. The Noether theorems: Invariance and conservation laws in the twentieth century, Sources and Studies in the History of Mathematics and Physical Sciences / Y. Kosmann-Schwarzbach Berlin: Springer-Verlag, 2010. — 205 p.
- Feynmari R.P. Space-time approach to nonrelativistic quantum mechanics // Rev. Mod. Phys. 1948. — V.20, N.2 — P. 367−387.
- Feynmari R.P. Mathematical formulation of the quantum theory of eectro-magnetic interaction // Phys. Rev. 1950. — V.80, N.3 — P. 440−457.
- Feynmari R.P. An operator calculus having applications in quantum electrodynamics // Phys. Rev. 1951. — V.84, N.2 — P. 108−128.
- ΠΠΎΠΏΠΎΠ² B.H. ΠΠΎΠ½ΡΠΈΠ½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Ρ Π² ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΡΠ΅ΠΎΡΠΈΠΈ ΠΏΠΎΠ»Ρ ΠΈ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΠ·ΠΈΠΊΠ΅ / Π. Π. ΠΠΎΠΏΠΎΠ² Π.:ΠΡΠΎΠΌΠΈΠ·Π΄Π°Ρ, 1976. — 256 Ρ.
- Fadeev L. Feynman diagrams for the Yang-Mills field / L. Fadeev, V. Popov // Phys. Lett. B. 1967. — V.25. — P. 30−31.
- Bccchi S. Renormalization of the abelian Higgs-Kibble model / S. Becchi, A. Rouet, R. Stora // Commun. Math. Phys. 1975. — V.42. — P.127−133.
- Becchi S. Renormalization of gauge theories / S. Becchi, A. Rouet, R. Stora // Ann. Phys. 1976. — V.98. — P.287−321.
- Batalin I.A. R. elativistic S-inatrix of dynamical systems with boson and fcrniion constraints / I.A. Batalin, G.A. Vilkovisky // Phys. Lett. B. -1977. V.69. — P. 309−312.
- Batalin I.A. Operator quantization of relativistic dynamical systems subject to first class constraints / I.A. Batalin, E.S. Fradkin // Pliys. Lett. B. 1983. — V.128. — P. 303−308.
- Batalin I.A. A generalized canonical formalism and quantization of reducible gauge theories / I.A. Batalin and E.S. Fradkin // Phys. Lett. B. -1983. V.122. — P. 157−164.
- Batalin I.A. Gauge algebra and quantization / I.A. Batalin and G.A. Vilkovisky // Phys. Lett. B. 1981. — V.102. — P.27−31.
- Batalin I.A. Quantization of gauge theories with linearly dependent generators / I.A. Batalin, G.A. Vilkovisky // Phys. Rev. D. 983. — V.28. — P. 2567−2582.
- Batalin I.A. Existence theorem for gauge algebra / I.A. Batalin and G.A. Vilkovisky // J. Math. Phys. 1985. — V.26. — P. 172−184.
- Henneaux M. Quantization of gauge systems / M. Henneaux, C. Teitel-boim. Princeton: Princeton University Press, 1992. — 520 p.
- ΠΠΈΡΠΌΠ°Π½ Π.Π. ΠΠ°Π½ΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΊΠ²Π°Π½ΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ»Π΅ΠΉ ΡΠΎ ΡΠ²ΡΠ·ΡΠΌΠΈ / Π. Π. ΠΠΈΡΠΌΠ°Π½, Π. Π. Π’ΡΡΠΈΠ½. Π.: ΠΠ°ΡΠΊΠ°, 1986. — 215 Ρ.
- Barnich G. Local BRST cohomology in gauge theories / G. Barnich, F. Brandt, M. Henneaux // Phys. Rep. 2000. — V.338. — P. 439−569.
- Henneaux M. Spacetime locality of the BRST formalism / M. Henneaux // Commun. Math. Phys. 1991. — V.140. — P. 1−13.
- Fisch J.M.L. Homological perturbation theory and the algebraic structure of the antificld-antibracket formalism for gauge theories / J.M.L. Fisch, M. Henneaux // Commun. Math. Phys. 1990. — V.128. — P. 627−640.
- Fisch J. Existence, Uniqueness And Cohomology Of The Classical BRST Charge With Ghosts Of Ghosts / J. Fisch, M. Henneaux, J. Stashcff, C. Teitelboim // Commuri. Math. Pliys. 1989. — V.120. — P.379−407.
- Barnich G. Local BRST cohomology in the antificld formalism. I. General theorems / G. Barnich, F. Brandt, M. Henneaux // Comm. Math. Phys.- 1995. V.174. — P. 57−91.
- Barnich G. Consistent Interactions between Gauge Fields and Local BRST Cohomology: The Example of Yang-Mills Models / G. Barnich, M. Henneaux, R. Tatar // Int.J.Mod.Phys.D. 1994. — V.3. — P.139−144.
- M. Henneaux, Consistent interactions between gauge fields: The cohomo-logical approach / M. Henneaux // Conternp. Math. 1998. — V.219. — P. 93 — 109.
- Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket / G. Barnich, M. Henneaux // J. Math. Phys. 1996. — V.37. — P. 5273−5296.
- Dickey L.A. Soliton equations and Hamiltonian systems / L.A. Dickey -Singapore: World Scientific, 1991. 420 p. — (Advanced Series in Mathematical Physics, V. 12.)
- Anco S. Conserved currents of massless fields of spin s > 0 / S. Anco, J. Pohjanpclto // R. Soc. Lond. Proc. Scr. A Math. Phys. Eng. Sci. 2003.- V.459. P. 1215 — 1239.
- Anco S. Generalized symmetries of massless free fields on Minkowski space / S. Anco, J. Pohjanpclto // SIGMA. 2008. — V.4. — P.004−1-17.
- Kazinski P.O. Lagrange structure and quantization / P.O. Kazinski, S.L.Lyakhovich, A.A.Sharapov // JHEP.-2005.-V.05,N.07.-P.076-l 41.
- Lyakhovich S.L. Schwinger-Dyson equation for non-Lagrangian field theory / S.L. Lyakhovich, A.A. Sharapov // JHEP.-2006.-V.06,N.02.-P.007-l-28.
- Lyakhovich S.L. Quantizing non-Lagrangian gauge theories: An augmentation method /S.L. Lyakhovich, A.A. Sharapov // JHEP. 2007. V.07, N.01. — P.047−1 — 46.
- Lyakhovich S.L. BRST theory without Harniltonian and Lagrangian / S.L. Lyakhovich, A.A. Sharapov // JHEP. 2005. — V.05, N.03. — P.011−1 — 21.
- Cattaneo A.S. Relative formality theorem and quantisation of coisotropic submanifolds / A.S. Cattaneo, G. Felder // Adv. in Math. 2007. — V.208.- P. 521−548.
- DeWitt B. Dynamical theory of groups and fields / B. DeWitt New York: Gordon and Breach, 1965. — 248 p.
- Lyakhovich S. L Quantization of Donaldson-Uhlenbeck-Yau theory / S.L. Lyakhovich and A.A. Sharapov // Phys. Lett. B. 2007. — V.656. — P. 265−271.
- Vasiliev M.A. Cubic interactions in extended theories of massless higherspin fields / E.S. Fradkin, M.A. Vasiliev // Nucl.Phys.B. 1987. — V.291.- P. 141−171.
- Vasiliev M.A. Superalgcbra higher spin arid auxiliary fields /E.S. Fradkin, M.A. Vasiliev // Int.J.Mod.Phys.A. 1988. — V.3. — P. 2983−3010.
- Vasiliev M.A. Consistent equation for interacting gauge fields of all spins in (3 + l)-dimensions / M.A. Vasiliev // Phys.Lctt.B. 1990. — V.243. -P. 378−382.
- Vasiliev M.A. Higher spin theories in various dimensions / M.A. Vasiliev // Fortsch. Phys. 2004. — V.54. — P. 702−717.
- Vasiliev M.A. Actions, charges and off-shell fields in the unfolded dynamics approach / M.A. Vasiliev // Int.J.Math.Mcth.Mod.Phys. 2006. — V.3. -P. 37−80.
- Boulanger N. An action principle for Vasiliev’s four-dimensional higherspin gravity / N. Boulanger, P. Sundell // J.Phys.A. 2011. — V.44. — P. 495 402−1-41.
- Barnich G. A Poincarc lemma for sigrna models of AKSZ type / G. Barnich and M. Grigoriev //, J. Gcom. Pliys. 2011. — V.61. — P. 663−674.
- Kaparulin D.S. On Lagrange structure of unfolded field theory / D.S. Ka-parulin, S.L. Lyakhovich and A.A. Sharapov // Int. Π. Mod. Phys. A. -2011. V.26. — P. 1347−1362.
- Kaparulin D.S. Rigid symmetries and conservation laws in non-Lagrangian field theory / D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov // J. Math. Phys. 2010. — V.51. — P. 82 902−1 — 22.
- Olvcr P.J. Application of Lie groups to differential equations / P.J. Olver- New York: Springer-Verlag, 1986. 513 p.
- Anco S. Direct construction method for conservation laws of partial differential equations. Part II: General treatment / S. Anco, G. Blurnan // EJAM. 2002. — V.13. — P. 567 — 585.
- Anderson I.M. Introduction to variational bicomplcx, in Mathematical Aspects of Classical Field Theory / I.M. Anderson // Contemp. Math. -1992.- V.132. P. 51 — 73.
- Kaparulin D.S. Lagrange Anchor and Characteristic Symmetries of Free Massless Fields / D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov // SIGMA. 2012. — V.8., No.021. — P. 1−18.
- Anco S. Direct construction of conservation laws from field equations / S. Anco, G. Bluman // Phys. Rev. Lett. 1997. — V.78. — P. 2869 — 2873.
- Bluman G. Applications of symmetry methods to partial differential equations /G. Bluman, A. Cheviakov, S. Anco.-New York: Springer, 2010.-398p.
- Anco S. Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications / S. Anco, G. Bluman // EJAM. 2002. — V.13. — P. 545 — 566.
- Anco S. Classification of local conservation laws of Maxwell’s equations / S. Anco, J. Pohjanpelto // Acta Appl. Math.-2001.- V.69.-P. 285−327.
- Kolar I. Natural operations in differential geometry / I. Kolar, P. Michor,
- J. Slovak Berlin: Springer-Verlag, 1993. — 434 p. 5G. Saunders D.J. The geometry of jet bundles / D.J. Saunders. — Cambridge: Cambridge University Press, 1989. — 304 p.
- Krasil’shchik I.S. Geometry of jet spaces and nonlinear differential equations / I.S. Krasil’shchik, V.V. Lychagin, A.M. Vinogradov New York: Gordon and Breach, 1986. — 441 p.
- Bryant R.L. Characteristic cohomology of differential systems I. General theory / R.L. Bryant, P.A. Griffits // J. Am. Math. Soc. -1995. V.8. -P. 507 — 596.
- Vinogradov A.M. The C-spectral sequence, Lagrange formalism, and conservation laws. I. The linear theory / A.M. Vinogradov // J. Math. Anal. Appl. 1984. -V.100. — P. 1 — 40.
- Vinogradov A.M. The C-spectral sequence, Lagrange formalism, and conservation laws. I. The nori linear theory / A.M. Vinogradov // J. Math. Anal. Appl. 1984. -V.100. — P. 41 — 129.
- Maclane S. Homology / S. Maclane Berin-Gottingen-Heidelberg: Springer-Verlag, 1963. — 424 p.
- Mackenzie K. General theory of Lie groupoids and Lie algebroids / K. Mackenzie Cambridge: Cambridge University Press, 2005. — 540 p.
- Carinas da Silva A. Geometric models for noncommutative algebras / A. Cannas da Silva, A. Weinstein -Providence: AMS, 1999. 184 p.
- Kaparulin D. S Local BRST cohomology in (non-)Lagrangian field theory / D.S. Kaparulin, S.L. Lyakhovich A.A. Sharapov // JHEP. 2011. — V.ll., No.09. — P. 006−1 — 34.
- Dubois-Violette M. Some results on local cohomologics in field theory / M. Dubois-Violette, M. Henncaux, M. Talon, C. Viallet // Phys. Lett. B. -1991.-V.267.-P. 81−87.
- Voronov Th. Higher derived brackets and liomotopy algebras / Th. Voronov // J. Pure and Appl. Algebra. 2005. — V.202. — P. 133 — 153.
- Lada T. Introduction to sh Lie algebras for physicists / T. Lada, J. Stasheff // Int. J. Theor. Phys. 1993. — V.32. — P. 1087 — 1103.
- Retakh V. Lie-Massey brackets and n-homotopically multiplicative maps of differential graded Lie algebras / V. Retakh //J. Pure and Appl. Algebra. -1993. V.89. — P. 217 — 229.
- Fuchs D. Massey brackets and deformations/ D. Fuchs, L. Lang Weldon // J. Pure and Appl. Algebra. 2001. — V.156. — P. 215 — 229.
- Barnich G. Local BR, ST cohomology in the antifield formalism. II. Application to Yang-Mills theory / G. Barnich, F. Brandt, M. Henneaux // Comm. Math. Phys. 1995. — V.174. — P. 93−116.
- Barnich G. First order parent formulation for generic gauge field theories / G. Barnich, M. Grigoriev//JHEP.-2011.-V.ll., N.01.-P.122-l-36.
- D’Auria Geometric supergravity in D — 11 and its hidden supergroup / R. D’Auria, P. Fre // Nucl.Phys.B. 1982. — V.201. — P. 101−140.
- Fre P. Free Differential Algebras, Rhcoriomy, and Pure Spinors / P. Fre, P. A. Grassi // E-print arxiv. ΠΠ»Π΅ΠΊΡΡΠΎΠ½, Π΄Π°Π½. — ΠΠ΅ΡΡΠΈΡ ΠΎΡ 20.01.2008 -URL: http://arxiv.org/abs/0801.3076.
- Bryant R.L. Exterior differential systems / R,.L. Bryant, S.S. Chern, R.B. Gardner, H.H. Goldschmidt, P.A. Griffiths, New York: Springer-Verlag, 1991. — 475 p.
- Alexandrov M. The Geometry of the Master Equation and Topological Quantum Field Theory / M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky // Int. J. Mod. Phys. A. 1997. — V.12. — P. 1405−1430.
- Kaparulin D.S. BRST analysis of general mechanical systems / D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov // ΠΡΡ ΠΈΠ² ΡΠ»Π΅ΡΡΠΎΠ½Π½ΡΡ ΠΏΡΠ΅ΠΏΡΠΈΠ½ΡΠΎΠ². ΠΠ»Π΅ΠΊΡΡΠΎΠ½, Π΄Π°Π½. — ΠΠΎΡΠ½ΡΡΠ»Π», |2012. — URL: http://arxiv.Org/abs/arXiv:1207.0594 (Π΄Π°ΡΠ° ΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΡ 23.08.2012)
- Lyakhovich S.L. Normal forms and gauge symmetries of local dynamics / S.L. Lyakhovich, A.A. Sharapov //, 1. Math. Pliys. 2009. — V.50. -P.83 510−1-34.
- Marcus N. Field theories that have no manifestly Lorentz invariant formulation / N. Marcus, J.H. Schwarz // Phys. Lett. B. -1982. V.115. — P. Ill — 114.
- Floreanini R. Selfdual fields as charge density solitons / R. Floreanini, R. Jackiw // Phys. Rev. Lett. 1987. — V.59. — P. 1873 — 1876.
- Henneaux M. Dynamics of chiral (selfdual) p-forms / M. Hcnneaux, C. Teitelboim // Phys. Lett. B. 1988. — V.206. — P. 650 — 653.
- McClain B. Covariant quantization of chiral bosons and OSp (l, l-2) symmetry / B. McClain, Y.S. Wu, F. Yu // Nucl. Phys. B. 1990. — V.343. -P. 689 — 704.
- Srivastava P.P. On a gauge theory of selfdual field and its quantization / P.P. Srivastava // Phys. Lett. B. 1990. — V.234. — P. 93 — 96.
- Pasti P. On Lorentz invariant actions for chiral p-forms / P. Pasti, D. Sorokin, M. Tonin // Phys. Rev. D. 1997. — V.55. — P. 6292 — 6298.
- Penrose R. Spinors and space-time / R. Penrose, W. Rindler. Cambridge: Cambridge University Press, 1987. — Vol. I. — 472 p.
- Penrose R. Spinors and space-time / R. Penrose, W. Rindler. Cambridge: Cambridge University Press, 1988. — Vol. II. — 513 p.
- Streater R,.F. PCT, spin and statistics, and all that / R.F. Streater, A.S. Wightman New York-Amsterdam: W. A. Benjamin Inc., 1964. — 189 p.
- Lipkin D. Existence of a new conservation law in electromagnetic theory / D. Lipkin // J. Math Phys. 1964. — V.5. — P. 696 — 700.
- Morgan T. Two classes of new conservation laws for the electromagnetic field and for other massless fields / T. Morgan //J. Math. Phys. 1964. -V.5. — P. 1659 — 1660.
- Kibble T.W.B. Conservation laws for free fields / T.W.B. Kibble // J. Math. Phys. 1965. — V.6. — P. 1022 — 1026.
- Fairlie D.B. Conservation laws and invariance principles // D.B. Fairlie // Nuovo Cimento. 1965. — V.37. — P. 897 — 904.
- Π€ΡΡΠΈΡ Π.Π. Π‘ΠΈΠΌΠΌΠ΅ΡΡΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ / Π. Π. Π€ΡΡΠΈΡ, Π. Π. ΠΠΈΠΊΠΈΡΠΈΠ½. Π.:ΠΠ°ΡΠΊΠ°, 1990. — 400 Ρ.
- Vasiliev M.A., Gelfond Π.Π., Skvortsov E.D., Conformai currents of fields of higher spins in Minkowski space / M.A. Vasiliev, O.A. Gelfond, E.D. Skvortsov // Theor. Math. Phys. 2008. — V.154. — P. 294−302.
- Vasiliev M.A. Nonlinear Equations for Symmetric Massless Higher Spin Fields in (A)dSd/M.A. Vasiliev//Phys.Lett. Π.- 2003.-V.567.- P.139−151.
- Vasiliev M.A. Higher Spin Superalgebras in any Dimension and their Representations/ M.A. Vasiliev// JHEP.-2004-V.8., No. l2.-(51 p.)
- Easwood M. Higher symmetries of the Laplacian / M. Eastwood // Annals Math. 2005. — V.161. — P. 1645−1665.
- Vasiliev M.A. Conformai Higher Spin Symmetries of 4d Massless Supermultiplets and osp (L, 2M) Invariant Equations in Generalized (Super)Space / M.A. Vasiliev // Phys. Rev. D. 2001. — V.66. — P. 66 006−1 — 61.
- Shaynkman O.V. Scalar Field in Any Dimension from the Higher Spin Gauge Theory Perspective / O.V. Shaynkman, M.A. Vasiliev // Theor. Math. Phys. 2000. — V.123. — P. 683 — 703.