ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² написании студСнчСских Ρ€Π°Π±ΠΎΡ‚
АнтистрСссовый сСрвис

ИсслСдованиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ активности химичСски ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠΉ бутирилхолинэстСразы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° in vitro ΠΈ in vivo

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Saxena A. et al. Pretreatment with human serum butyrylcholinesterase aloneprevents cardiac abnormalities, seizures, and death in Gottingen minipigs exposed to sarin vapor. // Biochem Pharmacol. 2011. Π’ΠΎΠΌ 82, № 12. Π‘. 1984;1993. Bartels Π‘.F. et al. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ИсслСдованиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ активности химичСски ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠΉ бутирилхолинэстСразы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° in vitro ΠΈ in vivo (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • Бписок сокращСний
  • ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
  • ВСрапия ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠ° ΠΎΡ‚Ρ€Π°Π²Π»Π΅Π½ΠΈΠΉ ЀОВ
  • БиологичСский Π°Π½Ρ‚ΠΈΠ΄ΠΎΡ‚Ρ‹ ΠΊΠ°ΠΊ срСдство ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ 14 ΠΎΡ‚Ρ€Π°Π²Π»Π΅Π½ΠΈΠΉ ЀОВ
  • БутирилхолинэстСраза Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
  • БиотСхнологичСскоС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠΉ бутирилхолинэстСразы 31 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
  • ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
  • Π Π΅Π°ΠΊΡ‚ΠΈΠ²Ρ‹ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹
  • Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹
  • ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ
  • Растворы ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ срСды
  • Антибиотики
  • ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹ΠΌΠΈ кислотами
  • ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Π±Π°ΠΊΡ‚Сриями Escherichia col
  • ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ с ΡΡƒΠΊΠ°Ρ€ΠΈΠΎΡ‚ичСскими ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π»ΠΈΠ½ΠΈΠΈ БНО
  • ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ
  • ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ с ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌΠΈ
  • Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
  • Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ эукариотичСской систСмы экспрСссии чСловСчСской 58 бутирилхолинэстразы
  • Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° систСмы Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΠΈ ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ°
  • Π₯арактСристики Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠΉ Π‘ΡƒΠ₯Π­
  • ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ фармакокинСтичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Ρ‡Π‘ΡƒΠ₯Π­ химичСским 77 полисиалированиСм in vitro
  • ИсслСдованиС Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠΉ эффСктивности ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ€Ρ‡Π‘ΡƒΠ₯Π­ in vivo
  • Π’Ρ‹Π²ΠΎΠ΄Ρ‹

Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° эффСктивная систСма экспрСссии Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠΉ Π‘ΡƒΠ₯Π­ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π»ΠΈΠ½ΠΈΠΈ БНО, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ Π΄ΠΎ 30 ΠΌΠ³/Π» Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π² ΠΎΠ»ΠΈΠ³ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅.

2. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ сравнимыми структурно-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ характСристиками с ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠΌ Π‘ΡƒΠ₯Π­ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΊΡ€ΠΎΠ²ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°.

3. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ осущСствлСно химичСскоС полисиалированиС гидролитичСского Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. ΠŸΠΎΠ΄ΠΎΠ±Ρ€Π°Π½Ρ‹ условия Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ‚ Ρ€Ρ‡Π‘ΡƒΠ₯Π­-БА027 с 80%-Π½Ρ‹ΠΌ Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ. Показано, Ρ‡Ρ‚ΠΎ данная модификация Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅Ρ‚ кинСтичСскиС характСристики Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°, Ρ‡Ρ‚ΠΎ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎΠ± ΠΈΠ½Ρ‚актности Π΅Π³ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°.

4. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ химичСского полисиалирования сущСствСнно ΡƒΠ»ΡƒΡ‡ΡˆΠΈΠ»ΠΎ фармакокинСтичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ² врСмя полувывСдСния ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ€Ρ‡Π‘ΡƒΠ₯Π­ Π² 5,5 Ρ€Π°Π·.

5. ΠŸΠΎΠ»ΠΈΡΠΈΠ°Π»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Π» Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ профилактичСского биологичСского Π°Π½Ρ‚ΠΈΠ΄ΠΎΡ‚Π°. Π—Π°Ρ‰ΠΈΡ‚Π½Ρ‹ΠΉ индСкс ΠΏΠΎ Π²Π΅Ρ‰Π΅ΡΡ‚Π²Ρƒ Π£Π« составил 4,2 Π›Π”50, Ρ‡Ρ‚ΠΎ сопоставимо с Π‘ΡƒΠ₯Π­ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΊΡ€ΠΎΠ²ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°.

1. Greenfield R.A. et al. Microbiological, biological, and chemical weapons ofwarfare and terrorism. //Am. J. Med. Sei. 2002. Π’ΠΎΠΌ 323, № 6. Π‘. 326−340.

2. Kwong T.C. Organophosphate pesticides: biochemistry and clinicaltoxicology. // Ther Drug Monit. 2002. Π’ΠΎΠΌ 24, № 1. Π‘. 144−149.

3. Eddieston M. et al. Management of acute organophosphorus pesticidepoisoning. // Lancet. 2008. Π’ΠΎΠΌ 371, № 9612. Π‘. 597−607.

4. Macilwain Π‘. Study proves Iraq used nerve gas. // Nature. 1993. Π’ΠΎΠΌ 363, № 6424. Π‘. 3.

5. TU A.T. Basic information on nerve gas and the use of sarin by Aum.

6. Shinrikyo // Journal of the Mass Spectrometry Society of Japan. J-STAGE, 1996. Π’ΠΎΠΌ 44, № 3. C. 293−320.

7. Masson P., Carletti E., Nachon F. Structure, activities and biomedicalapplications of human butyrylcholinesterase. // Protein Pept. Lett. 2009. Π’ΠΎΠΌ 16, № 10. Π‘. 1215−1224.

8. Masson P. et al. A collaborative endeavor to design cholinesterase-basedcatalytic scavengers against toxic organophosphorus esters // Chem Biol Interact. 2008. Π’ΠΎΠΌ 175, № 1−3. Π‘. 273−280.

9. Hammond J.W. Poison Gas. Greenwood Publishing Group, 1999.

10. Tucker J. War of Nerves. Anchor, 2007.

11. Coleman K. A history of chemical warfare. Palgrave MacMillan, 2005.

12. Gupta R.C. Handbook of Toxicology of Chemical Warfare Agents. Academic1. Pr, 2009.

13. Purves D. et al. Neuroscience. Sinauer Associates Incorporated, 2011.

14. Shafferman A. et al. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. // J Biol Chem. 1992. Π’ΠΎΠΌ 267, № 25. Π‘. 17 640−17 648.

15. Maxwell D.M. et al. Toxicodynamic modeling of highly toxic organophosphorus compounds. // J. Mol. Neurosci. 2006. Π’ΠΎΠΌ 30, № 1−2. Π‘.129−131.

16. Peeples E.S. et al. Albumin, a new biomarker of organophosphorus toxicant91exposure, identified by mass spectrometry. // Toxicol. Sci. 2005. Π’ΠΎΠΌ 83, № 2. Π‘. 303−312.

17. Dunn M.A., Sidell F.R. Progress in medical defense against nerve agents. //.

18. JAMA. 1989. Tom 262, № 5. C. 649−652.

19. Jokanovic M. Medical treatment of acute poisoning with organophosphorusand carbamate pesticides. // Toxicol Lett. 2009. Π’ΠΎΠΌ 190, № 2. Π‘. 107−115.

20. Shih T.-M., Rowland T.C., McDonough J.H. Anticonvulsants for nerve agent-induced seizures: The influence of the therapeutic dose of atropine. // J Pharmacol Exp Ther. 2007. Π’ΠΎΠΌ 320, № 1. Π‘. 154−161.

21. Kaires P. Identification of Gulf War syndrome: methodological issues andmedical illnesses. // JAMA. 1997. Π’ΠΎΠΌ 278, № 5. Π‘. 385−387.

22. Gots R.E. et al. Identification of Gulf War syndrome: methodological issuesand medical illnesses. // JAMA. 1997. Π’ΠΎΠΌ 278, № 5. Π‘. 385−371.

23. Schlesinger N., Baker D.G., Schumacher H.R. Persian Gulf War myalgiasyndrome. // J. Rheumatol. 1997. Π’ΠΎΠΌ 24, № 5. Π‘. 1018−1019.

24. Jokanovic M., Prostran M. Pyridinium oximes as cholinesterase reactivators.

25. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. // Curr Med Chem. 2009. Π’ΠΎΠΌ 16, № 17. Π‘. 2177−2188.

26. Kassa J. Review of oximes in the antidotal treatment of poisoning by organophosphorus nerve agents. // J. Toxicol. Clin. Toxicol. 2002. Π’ΠΎΠΌ 40, № 6. Π‘. 803−816.

27. Cannard К. The acute treatment of nerve agent exposure. // J. Neurol. Sci.2006. Π’ΠΎΠΌ 249, № 1. Π‘. 86−94.

28. Wille Π’. et al. Detoxification of nerve agents by a substituted beta-cyclodextrin: application of a modified biological assay. // Toxicology. 2009. Tom 265, № 3. C. 96−100.

29. Bhattacharjee A.K. et al. Discovery of non-oxime reactivators using an insilico pharmacophore model of oxime reactivators of OP-inhibited acetylcholinesterase. // Eur J Med Chem. 2012. Π’ΠΎΠΌ 49. Π‘. 229−238.

30. Muller S. et al. In vitro detoxification of cyclosarin (GF) by modified cyclodextrins. // Toxicol Lett. 2011. Π’ΠΎΠΌ 200, № 1−2. Π‘. 53−58.

31. Le Provost R. et al. Optimized strategies to synthesize P-cyclodextrin-oximeconjugates as a new generation of organophosphate scavengers. // Org. Biomol. Chem. 2011. Π’ΠΎΠΌ 9, № 8. Π‘. 3026−3032.

32. Wadia R.S. Treatment of organophosphate poisoning // Indian Journal of.

33. Critical Care Medicine. 2003.

34. Eyer P. et al. Are we using the right dose? a tale of mole and gram. // Br J.

35. Clin Pharmacol. 2008. Π’ΠΎΠΌ 66, № 4. Π‘. 45152.

36. Wolfe A.D. et al. Acetylcholinesterase prophylaxis against organophosphatetoxicity // Fundamental and Applied Toxicology. 1987. Π’ΠΎΠΌ 9, № 2. Π‘. 266−270.

37. Sweeney R.E., Maxwell D.M. A theoretical expression for the protectionassociated with stoichiometric and catalytic scavengers in a single compartment model of organophosphorous poisoning. // Math Biosci. 2003. Tom 181, № 2. C. 133−143.

38. Millard C.B. et al. Crystal structures of aged phosphonylated acetylcholinesterase: nerve agent reaction products at the atomic level. // Biochemistry. 1999. Π’ΠΎΠΌ 38, № 22. Π‘. 7032−7039.

39. Sklan E.H. et al. Acetylcholinesterase/paraoxonase genotype and expressionpredict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. // Proc Natl Acad Sci USA. 2004. Π’ΠΎΠΌ 101, № 15. Π‘. 55 125 517.

40. Evron Π’. et al. Plant-derived human acetylcholinesterase-R provides protection from lethal organophosphate poisoning and its chronic aftermath. // FASEB J. 2007. Π’ΠΎΠΌ 21, № 11. Π‘. 2961−2969.

41. Cohen О. et al. Effect of chemical modification of recombinant humanacetylcholinesterase by polyethylene glycol on its circulatory longevity. // Biochem J. 2001. Π’ΠΎΠΌ 357, β„– Pt 3. C. 795−802.

42. Saxena A. et al. Mutant acetylcholinesterases as potential detoxification agents for organophosphate poisoning. // Biochem Pharmacol. 1997. Π’ΠΎΠΌ 54, № 2. Π‘. 269−274.

43. Sirivarasai J. et al. Paraoxonase (PON1) polymorphism and activity as thedeterminants of sensitivity to organophosphates in human subjects. // Chem Biol Interact. 2007. Π’ΠΎΠΌ 168, № 3. Π‘. 184−192.

44. Rochu D., Chabriere E., Masson P. Human paraoxonase: a promising approach for pre-treatment and therapy of organophosphorus poisoning. // Toxicology. 2007. Tom 233, № 1−3. C. 47−59.

45. Khersonsky O., Tawfik D.S. Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. // Biochemistry. 2005. Π’ΠΎΠΌ 44, № 16. Π‘. 6371−6382.

46. Shih D.M. et al. Decreased obesity and atherosclerosis in human paraoxonase 3 transgenic mice. // Circ. Res. 2007. Π’ΠΎΠΌ 100, № 8. Π‘. 12 001 207.

47. Masson P., Rochu D. Catalytic bioscavengers against toxic esters, an alternative approach for prophylaxis and treatments of poisonings. // Acta Naturae. 2009. Π’ΠΎΠΌ 1, № 1. Π‘. 68−791.

48. Scharff E.I. et al. Crystal structure of diisopropylfluorophosphatase from Loligo vulgaris. // Structure. 2001. Π’ΠΎΠΌ 9, № 6. Π‘. 493−502.

49. Jawad Z., Paoli M. Novel sequences propel familiar folds. // Structure. 2002.1. Π’ΠΎΠΌ 10, № 4. Π‘. 44754.

50. Kuo C.L., La Du B.N. Calcium binding by human and rabbit serum paraoxonases. Structural stability and enzymatic activity. // Drug Metab. Dispos. 1998. Tom 26, № 7. C. 653−660.

51. Harel M. et al. Structure and evolution of the serum paraoxonase family ofdetoxifying and anti-atherosclerotic enzymes. // Nat. Struct. Mol. Biol. 2004. Tom 11, № 5. C. 412−419.

52. Aharoni A. et al. Directed evolution of mammalian paraoxonases PON1 and.

53. PON3 for bacterial expression and catalytic specialization. // Proc Natl Acad Sci USA. 2004. Π’ΠΎΠΌ 101, № 2. Π‘. 482−487.

54. Gupta R.D. et al. Directed evolution of hydrolases for prevention of G-typenerve agent intoxication. //Nat. Chem. Biol. 2011. Π’ΠΎΠΌ 7, № 2. Π‘. 120−125.

55. Valiyaveettil M. et al. Protective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs. // Biochem Pharmacol. 2011. Π’ΠΎΠΌ 81, № 6. Π‘. 800−809.

56. Jencks W.P. Catalysis in Chemistry and Enzymology. Dover Publications, 1987.

57. Kohen F. et al. Antibody-enhanced hydrolysis of steroid esters. // Biochim.

58. Biophys Acta. 1980. Π’ΠΎΠΌ 629, № 2. Π‘. 328−337.

59. Pollack S.J., Jacobs J.W., Schultz P.G. Selective chemical catalysis by anantibody. // Science. 1986. Π’ΠΎΠΌ 234, № 4783. Π‘. 1570−1573.

60. Tramontano A., Janda K.D., Lerner R.A. Catalytic antibodies. // Science.1986. Tom 234, № 4783. C. 1566−1570.

61. Smirnov I. et al. Reactibodies generated by kinetic selection couple chemicalreactivity with favorable protein dynamics. // Proc Natl Acad Sci USA. 2011. Π’ΠΎΠΌ 108, № 38. C. 15 954−15 959.

62. Kolesnikov A.V. et al. Enzyme mimicry by the antiidiotypic antibody approach. // Proc Natl Acad Sci USA. 2000. Π’ΠΎΠΌ 97, № 25. Π‘. 1 352 613 531.

63. Jbilo О. et al. Acetylcholinesterase and butyrylcholinesterase expression inadult rabbit tissues and during development. // Eur J Biochem. 1994. Π’ΠΎΠΌ95 225, β„– l.C. 115−124.

64. Mesulam M. Acetylcholinesterase knockouts establish central cholinergicpathways and can use butyrylcholinesterase to hydrolyze acetylcholine // Neuroscience. 2002. Π’ΠΎΠΌ 110, № 4. Π‘. 627−639.

65. George S.T., Balasubramanian A.S. The aryl acylamidases and their relationship to cholinesterases in human serum, erythrocyte and liver. // Eur J Biochem. 1981. Tom 121, β„– l.C. 177−186.

66. Saxena A. et al. Prophylaxis with human serum butyrylcholinesterase protects guinea pigs exposed to multiple lethal doses of soman or VX. // Biochem Pharmacol. 2011. Π’ΠΎΠΌ 81, № 1. Π‘. 164−169.

67. Lockridge О. et al. Large Scale Purification of Butyrylcholinesterase From.

68. Human Plasma Suitable for Injection Into Monkeysa Potential New Therapeutic for Protection Against Cocaine and Nerve Agent Toxicity. // J Med Chem Biol Radiol Def. 2005. Π’ΠΎΠΌ 3. (DOI: 10.1901/jaba.2005.3-nihms5095).

69. Raveh L. The Stoichiometry of Protection against Soman and VX Toxicity in.

70. Monkeys Pretreated with Human Butyrylcholinesterase // Toxicol Appl Pharmacol. 1997. Π’ΠΎΠΌ 145, № 1. Π‘. 43−53.

71. Lockridge О., Masson P. Pesticides and susceptible populations: people withbutyrylcholinesterase genetic variants may be at risk. // Neurotoxicology. 2000. Tom 21, № 1−2. C. 113−126.

72. Saxena A. et al. Role of oligosaccharides in the pharmacokinetics of tissuederived and genetically engineered cholinesterases // Mol Pharmacol. 1998. Π’ΠΎΠΌ 53, № 1. C. 112−122.

73. Lockridge O. et al. Complete amino acid sequence of human serum cholinesterase. // J Biol Chem. 1987. Π’ΠΎΠΌ 262, № 2. Π‘. 549−557.

74. Anesthesiologica Scandinavica. 1988. Π’ΠΎΠΌ 32. № 3. Π‘. 266−269.

75. Perrier A.L., Massoulie J., Krejci E. PRiMA: the membrane anchor of acetylcholinesterase in the brain. // Neuron. 2002. Π’ΠΎΠΌ 33, № 2. Π‘. 275 285.

76. Noureddine H. et al. Acetylcholinesterase associates differently with itsanchoring proteins ColQ and PRiMA. // J Biol Chem. 2008. Π’ΠΎΠΌ 283, № 30. Π‘.20 722−20 732.

77. Bon S., Coussen F., Massoulie J. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. // J Biol Chem. 1997. Π’ΠΎΠΌ 272, № 5. Π‘. 3016−3021.

78. Altamirano C.V., Lockridge O. Conserved aromatic residues of the C-terminus of human butyrylcholinesterase mediate the association of tetramers. // Biochemistry. 1999. Π’ΠΎΠΌ 38, № 40. Π‘. 13 414−13 422.

79. Biberoglu К. et al. The Proline Rich Tetramerization Peptides in Equine.

80. Serum Butyrylcholinesterase. // FEBS J. 2012. Π’ΠΎΠΌ 279. № 20. 3844−3858.

81. Dvir H. et al. The synaptic acetylcholinesterase tetramer assembles around apolyproline II helix. // EMBO J. 2004. Π’ΠΎΠΌ 23, № 22. Π‘. 4394−4405.

82. Masson P., Lockridge O. Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. //Arch. Biochem. Biophys. 2010. Π’ΠΎΠΌ 494, № 2. Π‘. 107−120.

83. Nachon F. et al. Role of water in aging of human butyrylcholinesteraseinhibited by echothiophate: the crystal structure suggests two alternative mechanisms of aging. // Biochemistry. 2005. Π’ΠΎΠΌ 44, № 4. Π‘. 1154−1162.

84. Nicolet Y. et al. Crystal structure of human butyrylcholinesterase and of itscomplexes with substrate and products. // J Biol Chem. 2003. Π’ΠΎΠΌ 278, № 42. Π‘. 41 141^11147.

85. Carletti E. et al. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun. // Biochem J. 2009. Tom 421, № 1. C. 97−106.

86. Allderdice P.W. et al. The cloned butyrylcholinesterase (BCHE) gene maps97to a single chromosome site, 3q26. // Genomics. 1991. Π’ΠΎΠΌ 11, № 2. Π‘. 452−454.

87. Lockridge О. et al. Hydrolysis of diacetylmorphine (heroin) by human serum.

88. Cholinesterase. // J Pharmacol Exp Ther. 1980. Π’ΠΎΠΌ 215, № 1. Π‘. 1−88.

89. Gatke M.R. et al. Response to mivacurium in a patient compound heterozygous for a novel and a known silent mutation in the butyrylcholinesterase gene: genotyping by sequencing. // Anesthesiology. 2001. Π’ΠΎΠΌ 95, № 3. C. 600−606.

90. Manoharan I. et al. Naturally occurring mutation Leu307Pro of human butyrylcholinesterase in the Vysya community of India // Pharmacogenetics and Genomics. 2006. Π’ΠΎΠΌ 16, № 7. P. 461.

91. Saxena A. et al. Pretreatment with human serum butyrylcholinesterase aloneprevents cardiac abnormalities, seizures, and death in Gottingen minipigs exposed to sarin vapor. // Biochem Pharmacol. 2011. Π’ΠΎΠΌ 82, № 12. Π‘. 1984;1993.

92. Myers T.M. et al. Characterization of human serum butyrylcholinesterase inrhesus monkeys: behavioral and physiological effects. // Neurotoxicol Teratol. 2012. Π’ΠΎΠΌ 34, № 3. Π‘. 323−330.

93. Masson P. et al. Multidisciplinary approaches to Cholinesterase functions /ed. Shafferman A., Velan B. New York: Plenum Press, 1992.

94. Bershtein S., Tawfik D.S. Advances in laboratory evolution of enzymes. //.

95. Curr Opin Chem Biol. 2008. Π’ΠΎΠΌ 12, № 2. Π‘. 151−158.

96. ΠŸΠ°Ρ‚Ρ€ΡƒΡˆΠ΅Π² JI.И. Π˜ΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ гСнСтичСскиС систСмы. Π˜Π·Π΄Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Наука, 2004.

97. Nachon F. et al. Engineering of a monomeric and low-glycosylated form ofhuman butyrylcholinesterase: expression, purification, characterization and crystallization // Eur J Biochem. 2002. Π’ΠΎΠΌ 269, № 2. Π‘. 630−637.

98. Kris M. et al. Endogenous butyrylcholinesterase in SV40 transformed celllines: COS-1, COS-7, MRC-5 SV40, and WI-38 VA13 // In Vitro Cell Dev Biol Anim. 1994. Π’ΠΎΠΌΠ—ΠžΠ. № 10. 680−689.

99. Huang Y.-J. et al. Recombinant human butyrylcholinesterase from milk of98transgenic animals to protect against organophosphate poisoning. // Proc Natl Acad Sci USA. 2007. Tom 104, № 34. C. 13 603−13 608.

100. Yang X., Carter M.G. Transgenic animal bioreactors: a new line of defenseagainst chemical weapons? // Proc Natl Acad Sci USA. 2007. Π’ΠΎΠΌ 104, № 35. Π‘. 13 859−13 860.

101. Geyer B.C. et al. Plant-derived human butyrylcholinesterase, but not an organophosphorous-compound hydrolyzing variant thereof, protects rodents against nerve agents. // Proc Natl Acad Sci USA. 2010. Π’ΠΎΠΌ 107, № 47. Π‘. 20 251−20 256.

102. Geyer B.C. et al. Transgenic plants as a source for the bioscavenging enzyme, human butyrylcholinesterase. // Plant Biotechnol. J. 2010. Π’ΠΎΠΌ 8, № 8. Π‘. 873−886.

103. Chilukuri N. et al. Polyethylene glycosylation prolongs the circulatory stability of recombinant human butyrylcholinesterase // Chem Biol Interact. 2005. Tom 157−158. C. 115−121.

104. Saxena A. et al. Structure of glycan moieties responsible for the extendedcirculatory life time of fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase. // Biochemistry. 1997. Π’ΠΎΠΌ 36, № 24. Π‘. 7481−7489.

105. Raveh L. et al. Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity. In vitro and in vivo quantitative characterization. // Biochem Pharmacol. 1993. Π’ΠΎΠΌ 45, № 12. Π‘. 24 652 474.

106. Chitlaru Π’. et al. Overloading and removal of N-glycosylation targets on human acetylcholinesterase: effects on glycan composition and circulatory residence time. // Biochem J. 2002. Π’ΠΎΠΌ 363, β„– Pt 3. C. 619−631.

107. Chilukuri N. et al. Effect of polyethylene glycol modification on the circulatory stability and immunogenicity of recombinant human butyrylcholinesterase // Chem Biol Interact. 2008. Π’ΠΎΠΌ 175, № 1−3. Π‘. 255−260.

108. Freshney R.I. Culture of animal cells. Wiley-Blackwell, 2005.

109. ELLMAN G.L. et al. A new and rapid colorimetric determination of acetylcholinesterase activity // Biochem Pharmacol. 1961. Π’ΠΎΠΌ 7. Π‘. 88−95.

110. Karnovsky M.J., Roots L. A «Direct-Coloring» Thiocholine Method for Cholinesterases // J Histochem Cytochem. 1964. Π’ΠΎΠΌ 12. Π‘. 219−221.

111. Harlow E., Harlow E., Lane D. Antibodies. CSHL Press, 1988.

112. Ausubel F.M. Short protocols in molecular biology. Current Protocols, 2002.

113. Jain S. et al. Polysialylated insulin: synthesis, characterization and biological activity in vivo. // Biochim Biophys Acta. 2003. Π’ΠΎΠΌ 1622, № 1. Π‘. 4219.

114. Finney D. Probit Analysis. Cambridge Univ Pr, 2009.

115. Nair A.J. Principles of Biotechnology. Firewall Media, 2008.

116. Mulsant P. et al. Phleomycin resistance as a dominant selectable marker in CHO cells. // Somat. Cell Mol. Genet. 1988. Π’ΠΎΠΌ 14, № 3. Π‘. 243−252.

117. Izumi M. et al. Blasticidin S-resistance gene (bsr): a novel selectable marker for mammalian cells. // Exp. Cell Res. 1991. Π’ΠΎΠΌ 197, № 2. Π‘. 229−233.

118. Fontes E.B. et al. Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. // Plant Cell. 1991. Π’ΠΎΠΌ 3, № 5. Π‘. 48396.

119. Kishnani P. S. et al. Recombinant human acid alpha.-glucosidase: major clinical benefits in infantile-onset Pompe disease // Neurology. 2007. Π’ΠΎΠΌ 68, № 2. Π‘. 99−109.

120. Schwartz R.S. et al. Human recombinant DNA-derived antihemophilic factor (factor VIII) in the treatment of hemophilia A. recombinant Factor VIII Study Group // N Engl J Med. 1990. Π’ΠΎΠΌ 323, № 26. Π‘. 1800−1805.

121. White G.C., Beebe A., Nielsen B. Recombinant factor IX // Thromb Haemost. 1997. Π’ΠΎΠΌ 78, № 1. Π‘. 261−265.

122. Jacobs L.D. et al. Intramuscular interferon beta-la for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG) //Ann Neurol. 1996. Π’ΠΎΠΌ 39, № 3. Π‘. 285−294.

123. Barngrover D. Fabrazyme—recombinant protein treatment for Fabry’s disease // J Biotechnol. 2002. Π’ΠΎΠΌ 95, № 3. Π‘. 280−282.

124. Robinson D.K., Memmert K.W. Kinetics of recombinant immunoglobulin production by mammalian cells in continuous culture. // Biotechnol Bioeng. 1991. Tom 38, № 9. C. 972−976.

125. Xie W. et al. An improved cocaine hydrolase: the A328Y mutant of human butyrylcholinesterase is 4-fold more efficient // Mol Pharmacol. 1999. Π’ΠΎΠΌ 55, № 1. Π‘. 83−91.

126. Bartels Π‘.F. et al. DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites // Am J Hum Genet. 1992. Π’ΠΎΠΌ 50, № 5. Π‘. 1086−1103.

127. Wang Y. et al. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase // Toxicol Appl Pharmacol. 2004. Π’ΠΎΠΌ 196, № 3. Π‘. 356−366.

128. Preininger A. et al. Strategies for recombinant Furin employment in a biotechnological process: complete target protein precursor cleavage. // Cytotechnology. 1999. Π’ΠΎΠΌ 30, № 1−3. Π‘. 1−16.

129. Josse L., Smales C.M., Tuite M.F. Transient expression of human TorsinA enhances secretion of two functionally distinct proteins in cultured Chinese hamster ovary (CHO) cells. // Biotechnol Bioeng. 2010. Π’ΠΎΠΌ 105, № 3. Π‘. 556−566.

130. Meleady P. et al. Sustained productivity in recombinant Chinese hamster ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype. // BMC Biotechnol. 2011. Π’ΠΎΠΌ 11. Π‘. 781.

131. Gregoriadis G. et al. Polysialic acids: potential in drug delivery. // FEBS Lett. 1993. Tom 315, № 3. C. 271−276.

132. Fernandes A.I., Gregoriadis G. Synthesis, characterization and properties of sialylated catalase. // Biochim Biophys Acta. 1996. Π’ΠΎΠΌ 1293, № 1. Π‘. 9096ΠΎ со5.0.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ