Помощь в написании студенческих работ
Антистрессовый сервис

Количественные закономерности электрохимического восстановления изомерных динитробензолов в неводной среде

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Изучена кинетика протонирования анион-радикалов и дианионов 1,2-, 1,3- и 1,4-динитробензолов различными донорами протонов. Показано, что эти реакции являются орбитально контролируемыми. Предложен простой и доступный способ оценки значений констант скорости протонирования путем использования индекса реакционной способности, рассчитываемого по величинам формальных потенциалов процессов образования… Читать ещё >

Количественные закономерности электрохимического восстановления изомерных динитробензолов в неводной среде (реферат, курсовая, диплом, контрольная)

Содержание

  • 1. Обзор литературы. Механизм электрохимического восстановления нитроароматических соединений
    • 1. 1. Общие замечания
    • 1. 2. Образование анион-радикалов и дианионов нитроароматических соединений
    • 1. 3. Реакции анион-радикалов и дианионов нитроароматических соединений в отсутствии электрофилов
    • 1. 4. Протонирование и другие реакции анион-радикалов и дианионов нитроароматических соединений с электрофилами
    • 1. 5. Факторы, влияющие на разницу потенциалов образования анион-радикалов и дианионов нитроароматических соединений
    • 1. 6. Электрохимическое восстановление нитрозоароматических соединений в отсутствии и присутствии электрофилов
    • 1. 7. Электрохимическое восстановление азоксибензола и фенилгидроксиламинов
    • 1. 8. Особенности химического поведения анион-радикалов ароматических полинитросоединений
    • 1. 9. Анион-радикалы нитроароматических соединений и продукты их восстановления в биологических системах
  • 2. Электрохимическое восстановление 1,2-, 1,3- и 1,4-динитробензолов
    • 2. 1. Образование и устойчивость анион-радикалов и дианионов динитробензолов в отсутствии доноров протонов
    • 2. 2. Термодинамика образования и электронная структура анион-радикалов и дианионов динитробензолов
    • 2. 3. Сопоставление экспериментальных и теоретических данных по термодинамике образования анион-радикалов и дианионов динитробензолов
    • 2. 4. Реакции протонирования дианионов 1,3- и 1,4-динитробензолов
    • 2. 5. Протонирование дианионов 1,3-динитробензола катионами 1-бутил-3-метилимидазолия
    • 2. 6. Протонирование анион-радикалов и дианионов 1,2-динитробензола фенолом
    • 2. 7. Протонирование анион-радикалов 1,2- и 1,4-динитробензола бензойной кислотой
    • 2. 8. Индексы реакционной способности, описывающие протонирование анион-радикалов и дианионов динитробензолов
    • 2. 9. Образование комплексов с водородной связью между дианионами 1,4-динитробензола и донорами протонов
  • 3. Электрохимическое восстановление 2-, 3- и 4-нитрозонитробензолов
    • 3. 1. Электрохимическое поведение нитрозонитробензолов в отсутствии доноров протонов
    • 3. 2. Образование димерных продуктов при восстановлении нитрозонитробензолов в присутствии доноров протонов
    • 3. 3. Протонирование анион-радикалов нитрозонитробензолов и конкуренция димеризация-протонирование
  • 4. Электрохимическое восстановление 2-, 3- и 4-нитрофенилгидроксиламинов
    • 4. 1. Электрохимическое поведение нитрофенилгидроксиламинов: самопротонирование и продукты электровосстановления
    • 4. 2. Квантовохимическое исследование механизма реакции самопротонирования при электровосстановлении нитрофенилгидроксиламинов
  • 5. Экспериментальная часть
    • 5. 1. Аппаратура и техника эксперимента
    • 5. 2. Объекты исследования и реактивы
    • 5. 3. Квантово-химические расчеты
    • 5. 4. Численное моделирование кривых циклической вольтамперометрии и хроноамперометрии
    • 5. 5. Определение констант ассоциации дианионов с катионными и протонодонорными лигандами
  • Выводы

Электродные процессы являются удобным и относительно простым способом генерации широкого спектра высоко реакционоспособных частиц: ионов, радикалов и ион-радикалов, выступающих в качестве интермедиатов органического электросинтеза. Однако, именно высокая реакционная способность этих частиц и разнообразие реакций, в которые они способны вступать, зачастую обуславливает низкую селективность протекающих процессов. Необходимость прогнозировать и контролировать направление электродных реакций с участием органических соединений делает актуальным как исследование химического поведения упомянугых выше частиц, так и установление влияния различных факторов на их реакционную способность.

Сказанное в полной мере относится к представляющему практический интерес процессу электровосстановления (ЭВ) ароматических полинитросоединений, ключевыми интемедиатами которого являются продукты однои двухэлектронного переноса — анион-радикалы (АР) и дианионы (ДА), кинетическая основность которых на порядки превосходит основность исходных соединений, что позволяет осуществлять нетипичные для электронодефицитных аренов реакции. Одной из наиболее важных реакций этих интермедиатов является протонирование, в совокупности с переносом электрона определяющее скорость и направление восстановительного гидрирования.

Несмотря на повышенный интерес к ЭВ ароматических полинитросоединений, даже в случае их простейших представителей — динитробензолов (ДНБ) — количественные данные относительно реакций протонирования их АР и ДА практически отсутствуют, а реакции АР и ДА промежуточных продуктов ЭВ ДНБ, в частности, нитрозонитробензолов (ННБ), динитроазоксибензолов (ДНАБ) и N-нитрофенилгидроксиламинов (НФГА) вообще ранее не изучались.

Поэтому представлялось актуальным выполнить систематическое количественное исследование реакций электрогенерируемых стабильных в неводной среде АР и ДА изомерных ДНБ, а также продуктов их восстановления и установить основные факторы, оказывающие влияние на реакционную способность этих частиц. Целью работы было изучение механизма ЭВ изомерных ДНБ и продуктов их восстановления (ННБ, ДНАБ и НФГА) в апротонной среде и в присутствии контролируемого количества доноров протонов, а также исследование гомогенной кинетики приэлектродных реакций АР и ДА этих соединений и установление зависимости их химического поведения от электронной структуры.

выводы.

1. Методами циклической вольтамперометрии, хроноамперометрии и электролиза при контролируемом потенциале проведено систематическое исследование механизма восстановления 1,2-, 1,3- и 1,4-динитробензолов в апротонной среде и в присутствии доноров протонов, что позволило установить основные факторы, определяющие направление и скорость приэлектродных химических реакций.

2. Изучена кинетика протонирования анион-радикалов и дианионов 1,2-, 1,3- и 1,4-динитробензолов различными донорами протонов. Показано, что эти реакции являются орбитально контролируемыми. Предложен простой и доступный способ оценки значений констант скорости протонирования путем использования индекса реакционной способности, рассчитываемого по величинам формальных потенциалов процессов образования анион-радикалов и дианионов.

3. На примере дианиона 1,4-динитробензола показано, что реакции его протонирования предшествует образование комплекса с водородной связью между донором протонов и дианионом. Определено числошигандов в ассоциатах и константы их устойчивости для ряда доноров протонов.

4. На основании сопоставления экспериментальных значений формальных потенциалов восстановления с результатами расчетов электронной структуры показано, что в отличие от синглетных дианионов 1,2- и 1,4-динитробензолов, основным состоянием дианиона 1,3-динитробензола является триплетное.

5. Впервые исследовано электровосстановление 2-, 3-, 4-нитронитрозобензолов — важных промежуточных продуктов восстановления изомерных динитробензолов. Установлено, что основной реакцией, конкурирующей с протонированием анион-радикалов нитрозонитробензолов, является их димеризация. Эффективная скорость образования димерных продуктов зависит от взаимного расположения функциональных групп и падает в ряду изомеров, как 2- > 3- > 4-, в то время, как скорость протонирования растет в ряду 4- < 3- < 2-.

6. Показано, что при электровосстановлении 2- и 4-нитрофенилгидроксиламинов в апротонных средах имеет место протонирование продукта электровосстановления исходным соединением с последующим образованием соответствующего нитроанилина и аниона нитрофенилгидроксиламина. Результаты квантовохимических расчетов позволяют предположить образование нитроанилина через отщепление гидроксид-аниона из анион-радикала нитрофенилгидроксиламина.

Показать весь текст

Список литературы

  1. Н. Lund. Cathodic reduction of nitro and related compounds // Organic electrochemistry, fourth ed., H. Lund, O. Hammerich (eds.), New York- Basel: Marcel Dekker, 2001. P. 379−411.
  2. A. J. Bard, G. Inzelt, F. Scholz (eds.), Electrochemical dictionary. Berlin- Heidelberg: Springer-Verlag, 2008. P. 241.
  3. А. И., Мендкович А. С., Гультяй В. П., Орлов В. Ю. Структура и реакционная способность органических анион-радикалов. М.: Мир, 2005. 294 с.
  4. A. J. Fry. The electrochemistry of nitro, nitroso, and related compounds // The Chemistry of Amino, Nitroso, Nitro and Related Groups., S. Patai (ed.), Chichester- New York- Brisbane- Toronto- Singapore: John Wiley & Sons, 1996. P. 837−857.
  5. J. Grimshaw. Reduction of nitro, nitroso, azo and azoxy groups // Electrochemical reactions and mechanisms in organic chemistry. Amsterdam- Lausanne- New York- Oxford- Shanon- Singapore- Tokyo: Elsevier, 2000. Ch. 11. P. 371−396.
  6. K. D. Moeller. Electrochemistry of nitrogen-containing compounds // Encyclopedia of electrochemistry. Vol. 8: Organic electrochemistry, Schaefer H.J. (ed.), 2004. P. 277−313.
  7. Todres Z. V. Ion-radical organic chemistry: principles and applications. Second edition. New York.: Taylor & Francis, 2009. — 475 p.
  8. S. F. Nelsen, M. N. Weaver, J. I. Zink, J. P. Telo. Optical spectra of delocalized dinitroaromatic radical anions revisited // J. Am. Chem. Soc. 2005. — Vol. 127. — P. 1 061 110 622.
  9. S. F. Nelsen, M. N. Weaver, A. E. Konradsson, J. P. Telo, T. Clark. Electron Transfer within 2,7-Dinitronaphthalene Radical Anion // J. Am. Chem. Soc. 2004. — Vol. 126.-P. 15 431−15 438.
  10. J. P. Telo, S. F. Nelsen, Y. Zhao. Electron transfer within charge-localized dinitroaromatic radical anions // J. Phys. Chem. A. 2009. — Vol. 113. — P. 7730−7736.
  11. J. P. Telo, G. Grampp, M. С. B. L. Shohoji. Solvent effects on intramolecular electron exchange in the 1,4-dinitrobenzene radical anion // Phys. Chem. Chem. Phys. — 1999.-Vol. l.-P. 99−104.
  12. H. Hosoi, Y. Mori, Y. Masuda. Solvent effect on intramolecular electron transfer rate of 1,3-dinitrobenzene radical anion // Chem. Letters. 1998. — P. 177−178.
  13. A. Sauer, F. Wasgestian, U. Nickel. Electrochemical generation and properties of the p-dinitrobenzene radical anion in N, N-dimethylformamide // Bull. Chem. Soc. Jpn. — 1989. Vol. 62. — P. 2688−2692.
  14. W. Kemula, R. Sioda. Visible spectrum of nitrobenzene free radical-anion in dimethylformamide // Bull. De L’Academie Polonaise des Sciences, Serie des Sciences Chimiques. 1962. — Vol. 10. — P. 513−514.
  15. K. Izutsu. Electrochemistry in nonaqueous solutions. Darmstadt.: Wiley-VCH, 2002.-330 p.
  16. D. S. Silvester, A. J. Wain, L. Aldous, C. Hardacre, R. G. Compton. Electrochemical reduction of nitrobenzene and 4-nitrophenol in the room temperature ionic liquid C4dmim. N (Tf)2] II J. Electroanal. Chem. 2006. — Vol. 596. — P. 131−140.
  17. W. H. Smith, A. Bard. Electrochemical reactions of organic compounds in liquid ammonia. II. Nitrobenzene and nitrosobenzene // J. Am. Chem. Soc. — 1975. Vol. 97. — P. 5203−5210.
  18. S. Jensen, V. D. Parker. Reversible anion radical dianion redox equilibria involving ions of simple aromatic compounds // J.C.S. Chem. Comm. — 1974. — P. 367−368.
  19. N. A. Macias-Ruvalcaba, D. H. Evans. Study of the effects of ion pairing and activity coefficients on the separation in standard potentials for two-step reduction of dinitroaromatics II J. Phys. Chem. B. 2005. — Vol. 109. — P. 14 642−14 647.
  20. M. H. Михайлов, А. С. Мендкович, M. Б. Кузьминский, А. И. Русаков. Исследование строения дианиона 1,3-динитробензола многоконфигурационными методами II Изв. АН, сер. хим. 2007. — С. 1408−1410.
  21. М. N. Mikhailov, A. S. Mendkovich, М. В. Kuzminsky, A. I. Rusakov. А multiconfigurational study of anion-radical and dianion of 1,3-dinitrobenzene // J. Molecular Structure: THEOCHEM.- 2007.-Vol. 847.-P. 103−106.
  22. L. Eberson, S. S. Shaik. Electron-transfer reactions of radical anions: do they follow outer- or inner-sphere mechanisms? // J. Am. Chem. Soc. 1990. — Vol. 112. — P. 4484−4489.
  23. С. Kraiya, P. Singh, D. H. Evans. Revisiting the heterogeneous electron-transfer kinetics of nitro compounds // J. Electroanal. Chem. 2004. — Vol. 563. — P. 203−212.
  24. M. E. Peover, J. S. Powell. Dependence of electrode kinetics on molecular structure. Nitro-compoumds in dimethylformamide // J. Electroanal. Chem. 1969. — Vol. 20.-P. 427−433.
  25. H. Kojima, A. Bard. Determination of rate constants for the electroreduction of aromatic compounds and their correlation with homogeneous electron transfer rates // J. Am. Chem. Soc. 1975. — Vol. 97. — P. 6317−6324.
  26. M. Mohammad, A. Y. Khan, R. Qureshi, N. Ashraf, W. Begum. Heterogeneous electron transfer rate constants for the second reduction process of some dinitroaromatics // Collect. Czech. Chem. Commun. 1992. — Vol. 57. — P. 1410−1418.
  27. А. С. Мендкович, А. П. Чурилина, JT. В. Михальченко, В. П. Гультяй. Влияние структуры ароматической системы на скорость димеризации анион-радикалов ароматических нитросоединений // Изв. АН, сер. хим. 1990. — С. 14 921 495.
  28. В. П. Гультяй, Н. К. Лисицына, А. В. Игнатенко, А. С. Мендкович. Влияние воды на механизм электровосстановления 9-нитроантрацена в ДМФА // Изв. АН, сер. хим.- 1991.-С. 873−877.
  29. О. Hammerich, V. D. Parker. The kinetics and mechanism of the reversible dimerization of anthracene anion radicals substituted with electron withdrawing substituents II Acta Chem. Scand. B. 1981. — Vol. 35. — P. 341−347.
  30. Л. В. Михальченко. Приэлектродные химические реакции анион-радикалов и дианионов ароматических и ненасыщенных нитросоединений: дис.канд. хим. наук. М., 1989.-с. 53.
  31. I. Gallardo, G. Guirado, J. Marquet, N. Vila. Evidence for a 7i-dimer in the electrochemical reduction of 1,3,5-trinitrobenzene: a reversible N2-fixation system // Angew. Chem. Int. Ed. 2007. — Vol. 46. — P. 1321−1325.
  32. N. A. Macias-Ruvalcaba, J. P. Telo, D. H. Evans. Studies of the electrochemical reduction of some dinitroaromatics // J. Electroanal. Chem. 2007. — Vol. 600. — P. 294 302.
  33. I. Gallardo, G. Guirado, J. Marquet. Mechanistic studies on the reactivity of halodinitrobenzene radical-anion // J. Electroanal. Chem. 2000. — Vol. 488. — P. 64−72.
  34. M. Arun Prasad, M. V. Sangaranarayanan. Electrochemical reductive cleavage of carbon-chlorine bond in l-chloro-2,4-dinitrobenzene // Electrochim. Acta. 2005. — Vol. 51. -P. 242−246.
  35. H. Bock, U. Lechner-Knoblauch. Die elektrochemische Reduktion aromatischer Nitro-Verbindungen in aprotischer Losung // Z. Naturforsch. 1985. — B. 40. — S. 14 631 475.
  36. C. D. Stevenson, P. M. Garland, M. L. Batz. Evidence of carbenes in the explosion chemistry of nitroaromatic anion radicals // J. Org. Chem. — 1996. Vol. 61. P. 5948−5952.
  37. M. L. Batz, P. M. Garland, R. C. Reiter, M. D. Sanborn, C. D. Stevenson. Explosion and ion association chemistry of the anion radicals of 2,4,6-trinitrotoluene, 2,6-dinitrotoluene, and trinitrobenzene II J. Org. Chem. 1997. — Vol. 62. — P. 2045−2049.
  38. E. Hayon, M. Simic. Acid-base properties of free radicals in solution // Acc. Chem. Res. 1974. — Vol. 7. — P. 114−121.
  39. P. Neta. Pulse radiolysis and electron spin resonance studies of nitroaromatic radical anions. Optical absorption spectra, kinetics, and one-electron redox potentials // J. Phys. Chem. 1976. — Vol. 80. — P. 2018−2023.
  40. K.-D. Asmus, A. Wigger, A. Henglein. Pulsradiolytische Untersuchung einiger Elementarprozesse der Nitrobenzolreduktion // Ber. Bunsenges. 1966. — B. 70. — S. 862 868.
  41. А. С. Мендкович, В. H. Лейбзон, Л. В. Мартынова. Использование зависимостей ток-время для определения механизма электродных процессов. Распад радикала, образующегося при протонизации радикал-аниона нитробензола // Электрохимия. 1982. — Т. 18. — С. 424.
  42. В. Kasterning, S. Vavricka // Ber. Bunsenges. Phys. Chem. 1968. — B. 72. — S.27.
  43. A. Darchen, C. Moinet. Mecanisme e.c.e. de reduction du para-dinitrobenzene en para-nitrophenylhydroxylamine // J. Electroanal. Chem. 1977. — Vol. 78. — P. 81−88.
  44. A. Darchen, C. Moinet. Observation d’une N-phenyl-N, N-dihydroxylamine lors de la reduction d’un mononitrobenzene // J. Electroanal. Chem. 1975. — Vol. 61. — P. 373 375.
  45. A. Darchen, С. Moinet. Mecanisme de reduction des mononitrobenzenes en milieu aqueux. Formation des produits secondaires lors des electrolyses // J. Electroanal. Chem. 1976.-Vol. 68.-P. 173−180.
  46. P. Zuman, Z. Fijalek. Addition of hydroxide ions to nitrosobenzene: equilibria and some reactions of the adduct // J. Org. Chem. 1991. — Vol. 56. — P. 5486−5488.
  47. P. Zuman, B. Shah. Addition, reduction, and oxidation reactions of nitrosobenzene // Chem. Rev. 1994. — Vol. 94. — P. 1621−1641.
  48. M. Mohammad, A.Y. Khan, M.S. Subhani, W. Begum, N. Ashraf, R. Qureshi, R. Iqbal. Protonation of anion-radicals and dianions of some dinitro aromatics // Res. Chem. Intermediates. 1991. — Vol. 16. — P. 29−43.
  49. S. H. Cadle, P. R. Tice, J. Q. Chambers. Electrochemical reduction of aromatic nitro compounds in the presence of proton donors // J. Phys. Chem. 1967. — Vol. 71. — P. 3517−3522.
  50. H. Wang, V. D. Parker. The effect of the substitution pattern on the protonation pathways of dinitrobenzene dianions in N, N-dimethylformamide solution // Acta Chem. Scand. 1994. — Vol. 48. — P. 933−936.
  51. C. L. Forryan, R. G.Compton. Studies of the electrochemical reduction of 4-nitrophenol in dimethylformamide: evidence for a change in mechanism with temperature // Phys. Chem. Chem. Phys. 2003. — Vol. 19. — P. 4226−4230.
  52. G. Farnia, A. Roque da Silva, E. Vianello. Electrode reaction mechanism of nitroderivatives in aprotic solvents. Part II. p- and o-nitrophenols // J. Electroanal. Chem. — 1974.-Vol. 57.-P. 191−202.
  53. A. Baeza, J. L. Ortiz, I. Gonzalez. Control of the electrochemical reduction of o-nitrophenol by pH imposition in acetonitrile // J. Electroanal. Chem. 1997. — Vol. 429. — P. 121−127.
  54. Т. Ohba, Н. Ishida, Т. Yamaguchi, Т. Horiuchi, К. Ohkubo. Carbon dioxide-promoted electrochemical reduction of aromatic nitro compounds to azoxy compounds to acetonitrile // J. Chem. Soc., Chem. Commun. 1994. — P. 263−264.
  55. T. Abe, Y. Ikegami. An anion radical precursor in the nucleophilic substitution of o-dinitrobenezene // Bull. Chem. Soc. Japan. 1976. — Vol. 49. — P. 3227−3231.
  56. Z. V. Todres, G. Ts. Hovsepyan, Ye. A. Ionina. The first successful direct azocoupling of nitroaromatic anion-radical // Tetrahedron. 1988. — Vol. 44. — P. 51 995 204.
  57. D. H. Evans. One-electron and two-electron transfers in electrochemistry and homogeneous solution reactions // Chem. Rev. 2008. — Vol. 108. — P. 2113−2144.
  58. C. Kraiya, D. H. Evans. Investigation of potential inversion in the reduction of 9,10-dinitroanthracene and 3,6-dinitrodurene // J. Electroanal. Chem. 2004. — Vol. 565. -P. 29−35.
  59. M. W. Lehmann, P. Singh, D. Ii. Evans. Potential inversion in the reduction of trans-2,3-dinitro-2-butene// J. Electroanal. Chem. -2003. -Vol. 549.-P. 137−143.
  60. C. P. Andrieux, J. M. Saveant. Effect of solvent and ion-pairing on the entropy and" enthalpy factors in successive reductions of dinitro compounds // J. Electroanal. Chem. 1974.-Vol. 57.-P. 27−33.
  61. E. Ahlberg, B. Drews, B. S. Jensen. The effect of alkali metal cations on the cathodic reduction of p-dinitrobenzene in DMF. The formation of insoluble triple ions of the dianion with Na+ and K+ // J. Electroanal. Chem. 1978. — Vol. 87. — P. 141−148.
  62. L. Pospisil, M. Hromadova, R. Sokolova, J. Bulickova, N. Fanelli. Cationic catalysis and hidden negative differential resistance in reduction of radical anion of nitrobenzene // Electrochim. Acta. 2008. — Vol. 53. — P. 4852−4858.
  63. C. Chan-Leonor, S. L. Martin, D. K. Smith. Electrochemically controlled hydrogen bonding. Redox-dependent formation of a 2:1 diarylurea / dinitrobenzene2″ complex// J. Org. Chem. 2005. — Vol. 70.-P. 10 817−10 822.
  64. M. F. Nielsen, V. D. Parker. The association reactions of ion radicals with neutral molecules. VI. One-to-one and one-to-two complexes of dianions with hydroxylic compounds II Acta Chem. Scand. B. 1988. — Vol. 42. — P. 93−100.
  65. P. Hapiot, C. Lagrost. Electrochemical reactivity in room-temperature ionic liquids // Chem. Rev. 2008. — Vol. 108. — P. 2238−2264.
  66. A. J. Fry. Strong ion-pairing effects in a room temperature ionic liquid // J. Electroanal. Chem. 2003. — Vol. 546. — P. 35−39.
  67. Electrochemical Aspects of Ionic Liquids, Ed. H. Ohno, John Wiley and Sons, Hoboken, 2005, 408 p.
  68. B. G. Gowenlock, G. B. Richter-Addo. Preparations of C-Nitroso Compounds // Chem. Rev. 2004. — Vol. 104. — P. 3315−3340.
  69. J.-C. Gard, J. Lessard, Y. Mugnier. An efficient electrochemical method for the synthesis of nitrosobenzene from nitrobenzene // Electrochim. Acta. 1993. — Vol. 38. — P. 677−680.
  70. K.-D. Asmus, G. Beck, A. Henglein, A. Wigger. Pulsradiolytische Untersuchung der Oxydation und Reduktion des Nitrosobenzols in waBriger Losung // Ber. Bunsenges. -1966. -B. 70. S. 869−874.
  71. M. R. Asirvatham, M. D. Hawley. The electrochemical and chemical behavior of nitrosobenzene// J. Electroanal. Chem. 1974. — Vol. 57. — P. 179−190.
  72. E. Steudel, J. Posdorfer, R. N. Schindler. Intermediates and products in the electrochemical reduction of nitrosobenzene. A spectroelectrochemical investigation // Electrochim. Acta. 1995. — Vol. 40. — P. 1587−1594.
  73. G. A. Russell, E. J. Geels. Paramagnetic intermediates in the condensation of nitrosobenzene and phenylhydroxylamine // J. Am. Chem. Soc. 1965. — Vol. 87. — P. 122 123.
  74. F. Williot, M. Bernard. D. Lucas, Y. Mugnier, J. Lessard. Addition of cyclopentadiene derivatives on aromatic aldehydes or nitrosobenzene initiated by electrochemical reduction// Can. J. Chem. 1999. — Vol. 77. — P. 1648−1654.
  75. K. J. Stutts, C. L. Scortichini, С. M. Repucci. Electrochemical reduction of nitroaromatics to anilines in basic media: effects of positional isomerism and cathode composition//,/. Org. Chem. 1989. — Vol. 54. — P. 3740−3744.
  76. H. Lund. On the electrochemistry of 2,4,6-triphenylnitrobenzene and related compounds // Electrochim. Acta. 2006. — Vol. 52. — P. 272−277.
  77. P. D. Jannakoudakis, E. Theodoridou. Reduktion der Dinitrobenzole an Kohlenstoff-Faser-Electroden in Acetonitril ohne und mit Protonendonatoren // Z. Phys. Chem. Neue Folge. 1982.- B. 130, — P. 167−180.
  78. R. D. Allendoerfer, P. H. Rieger. An electron spin resonance study of the reduction of polynitromesitylenes and -durenes И J. Am. Chem. Soc. 1966. — Vol. 88. — P. 3711−3719.
  79. А. Л. Русанов, Л. Г. Комарова, Д. Ю. Лихачев, С. А. Шевелев, В. А. Тартаковский. Конденсационные мономеры и полимеры на основе 2,4,6-тринитротолуола // Yen. химии. 2003. — Т. 72. — С. 1011−1024.
  80. S. Е. Barrows, С. J. Cramer, D. G. Truhlar, М. S. Elovitz, Е. J. Weber. Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution // Environ. Sci. Technol. 1996. — Vol. 30. — P. 3028−3038.
  81. M.-J. Huang, J. Leszczynski. The mechanism of the radical-anion reduction of 2,4,6-trinitrotoluene: a theoretical insight // J. Mol. Structure (Theochem). 2002. — Vol. 592.-P. 105−113.
  82. R. G. Riefler, B. F. Smets. Enzymatic reduction of 2,4,6-trinitrotoIuene and related nitroarenes: kinetics linked to one-electron redox potentials // Environ. Sci. Technol. 2000. — Vol. 34. — P. 3900−3906.
  83. M. D. Roldan, E. Perez-Reinado, F. Castillo, C. Moreno-Vivian. Reduction of polynitroaromatic compounds: the bacterial nitroreductases // FEMS Microbiol. Rev. 2008. -Vol. 32.-P. 474−500.
  84. J. A. Squella, S. Bollo, L. J. Nunez-Vergara. Recent developments in the electrochemistry of some nitro compounds of biological significance // Curr. Org. Chem. — 2005.-Vol. 9.-P. 565−581.
  85. P. Wardman. Some reactions and properties of nitro radical-anions important in biology and medicine // Environ. Health Perspectives. — 1985. — Vol. 64. — P. 309−320.
  86. S. Bollo, L. J. Nunez-Vergara, M. Bonta, G. Chauviere, J. Perie, J. A. Squella. Cyclic voltammetric studies on nitro radical anion formation from megazol and some related nitroimidazole derivatives // J. Electroanal. Chem. -2001.- Vol. 511. P. 46−54.
  87. S. Bollo, L. J. Nunez-Vergara, J. A. Squella. Cyclic voltammetric determination of free radical species from nitroimidazopyran: a new antituberculosis agent // J. Electroanal. Chem. 2004. — Vol. 562. — P. 9−14.
  88. D. Olender, J. Zwawiak, V. Lukianchuk, R. Lesyk, A. Kropacz, A. Fojutowski, L. Zaprutko. Synthesis of some N-substituted nitroimidazole derivatives as potential antioxidant and antifungal agents // Eur. J. Med. Chem. 2009. — Vol. 44. — P. 645−652.
  89. G. Sabbioni. Hemoglobin binding of arylamines and nitroarenes: molecular dosimetry and quantitative structure-activity relationships // Environ. Health Perspectives. — 1994.-Vol. 102.-P. 61−67.
  90. F. C. de Abreu, P. A. de L. Ferraza, M. O. F. Goulart. Some applications of electrochemistry in biomedical chemistry. Emphasis on the correlation of electrochemical and bioactive properties // J. Braz. Chem. Soc. 2002. — Vol. 13. — P. 19−35.
  91. A. Alvarez-Lueje, H. Pessoa, L. J. Nunez-Vergara, J. A. Squella. Electrochemical reduction of 2,5-dimethoxy nitrobenzenes: nitro radical anion generation and biological activity // Bioelectrochemistry and Bioenergetics. 1998. — Vol. 46. — P. 2128.
  92. Analytical Electrochemistry, 2nd ed., J. Wang (Ed.). New York: Wiley-VCH, 2000, p. 31.
  93. P. F. Barabara, T. J. Meyer, M. A. Ratner. Contemporary Issues in Electron Transfer Research///. Phys. Chem. 1996.-Vol. 100.-P. 13 148−13 168.
  94. J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations // Chem. Rev. -2002.-Vol. 102.-P. 231−282.
  95. II. Shalev, D. H. Evans. Solvation of anion radicals: gas phase vs solution // J. Am. Chem. Soc. 1989. — Vol. 111. — P. 2667−2674.
  96. R. S. Ruoff, К. M. Kadish, P. Boulas, E. С. M. Chen. The relationship between the electron affinities and half-wave reduction potentials of fullerenes, aromatic hydrocarbons, and metal complexes II J. Phys. Chem. 1995. — Vol. 99. — P. 8843−8850.
  97. G. Caldwell, P. Kebarle. Electron affinities from electron transfer equilibria in the gas phase and the electron affinity of S02 // J. Chem. Phys. 1984. — Vol. 80. — P. 577 579.
  98. C. P. Kelly, C. J. Cramer, D. G. Truhlar. Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide // J. Phys. Chem. B. 2007. — Vol. 111. — P. 408−422.
  99. I. Gallardo, G. Guirado, J. Marquet, M. Moreno. Evidence for a transition between singlet and triplet states in the electrochemical reduction of 2,2−4,4-tetranitrobiphenyl // Chem. Phys. Chem. 2001. — Vol. 2. — P. 754−760.
  100. A. S. Menkovich, O. Hammerich, T. Ya. Rubinskaya, V. P. Gultyai. Self-protonation reaction of simple aromatic carboxylic acids during voltammetric reduction in dimethyl sulfoxide II Acta Chem. Scand. 1991. — Vol. 45. — P. 644−651.
  101. J. S. Jaworski. Kinetics of protonation of anthracene and phenanthrene radical anions in DMF by a series of substituted phenols. Comparison of Bronsted and Hammett plots II J. Chem. Soc., Perkin Trans. 2. 1999. — P. 2755−2760.
  102. C. Lagrost, D. Carrie, M. Vaultier, P. Hapiot. Reactivities of some electrogenerated organic cation radicals in room-temperature ionic liquids: toward an alternative to volatile organic solvents? // J. Phys. Chem. A. 2003. — Vol. 107. — P. 745 752.
  103. M. Mellah, J. Zeitouny, S. Gmouh, M. Vaultier, V. Jouikov. Oxidative self-coupling of aromatic compounds in ionic liquids // Electrochem. Commun. 2005. — Vol. 7. -P. 869−874.
  104. A. J. Fry, D. G. Peters. Electrochemistry in ionic liquids. Voltammetry and electrochemical reduction of dinitro compounds // Electrochem. Soc. Proc. 2002. — Vol. 10.-P. 77−80.
  105. C. Lagrost, L. Preda, E. Volanschi, P. Hapiot. Heterogeneous electron-transfer kinetics of nitro compounds in room-temperature ionic liquids // J. Electroanal. Chem. -2005.-Vol. 585.-P. 1−7.
  106. M. Chun-An, C. Song, C. You-Qun, M. Xin-Biao. Electrochemical reduction of nitrobenzene in ionic liquid BMimBF4-H20 // Acta Phys. Chim. Sin. 2007. — Vol. 23. — P. 575−580.
  107. C. Lagrost, P. Hapiot, M. Vaultier. The influence of room-temperature ionic liquids on the stereoselectivity and kinetics of the electrochemical pinacol coupling of acetophenone // Green Chem. 2005. — Vol. 7. — P. 468−474.
  108. C. Lagrost, S. Gmouh, M. Vaultier, P. Hapiot. Specific effects of room temperature ionic liquids on cleavage reactivity: example of the carbon-halogen bond breaking in aromatic radical anions // J. Phys. Chem. A. 2004. — Vol. 108. — P. 6175−6182.
  109. A. P. Doherty, C. A. Brooks. Electrosynthesis in room-temperature ionic liquids: benzaldehyde reduction II Electrochim. Acta. 2004. — Vol. 49. — P. 3821−3826.
  110. C. A. Brooks, A. P. Doherty. Electrogenerated radical anions in room-temperature ionic liquids // J. Phys. Chem. B. 2005. — Vol. 109. — P. 6276−6279.
  111. S. O’Toole, S. Pentlavalli, A. P. Doherty. Behavior of electrogenerated bases in room-temperature ionic liquids II J. Phys. Chem. B. 2007. — Vol. 111. — P. 9281−9287.
  112. H. Wang, G. Zhang, Y. Liu, Y. Luo, J. Lu. Electrocarboxylation of activated olefins in ionic liquid BMIMBF4II Electrochem. Commun. 2007. — Vol. 9. — P. 2235−2239.
  113. M. Mellah, S. Gmouh, M. Vaultier, V. Jouikov. Electrocatalytic dimerisation of PhBr and PhCII2Br in BMIM.+NTf2- ionic liquid // Electrochem. Commun. 2003. -Vol. 5. -P. 591−593.
  114. M. F. Nielsen, О. Hammerich. The protonation of the anthracene anion radical in dimethyl sulfoxide using phenol/phenolate complex as proton sources: a well behaved process II Acta Chem. Scand. 1989. — Vol. 43. — P. 269−274.
  115. R. G. Pearson. Hard and soft acids and bases II J. Am. Chem. Soc. 1963. — Vol. 85.-P. 3533.
  116. R. G. Parr, R. G. Pearson. Absolute hardness: companion parameter to absolute electronegativity II J. Am. Chem. Soc. 1983. — Vol. 105. — P. 7512−7516.
  117. H. Chermette. Chemical reactivity indexes in density functional theory // J. Сотр. Chem. 1999. — Vol. 20. — P. 129−154.
  118. K. R. S. Chandrakumar, S. Pal. The concept of density functional theory based descriptors and its relation with the reactivity of molecular systems: a semi-quantitative study // Int. J. Mol. Sci. 2002. — Vol. 3. — P. 324−337.
  119. R. G. Parr, W. Yang. Density Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989. 325 p.
  120. M. Дьюар, P. Догерти. Теория возмущений молекулярных орбиталей в органической химии. М.: Мир, 1977. 696 с.
  121. К. Fukui. Role of frontier orbitals in chemical reactions // Science. — 1982. — Vol. 218.-P. 747−754
  122. A. Ponti, G. Molteni. Uncommon aqueous media for nitrilimine cycloadditions. II. Computational study of the effect of water on reaction rate // New J. Chem. 2002. — Vol. 26.-P. 1346−1351.
  123. P. Jaramillo, P. Prez, P. Fuentealba, S. Canuto, K. Coutinho. Solvent effects on global reactivity properties for neutral and charged systems using the sequential Monte Carlo quantum mechanics // Model J. Phys. Chem. B. 2009. — Vol. 113.-P. 4314−4322.
  124. N. A. Macias-Ruvalcaba, I. Gonzalez, M. Aguilar-Martmez. Evolution from hydrogen bond to proton transfer pathways in the electroreduction of a-NH-quinones in acetonitrile // J. Electrochem. Soc. 2004. — Vol. 151. — P. E110-Е 118.
  125. N. Gupta, H. Linschitz. Hydrogen-bonding and protonation effects in electrochemistry of quinones in aprotic solvents // J. Am. Chem. Soc. 1997. — Vol. 119. — P. 6384−6391.
  126. A. J. Fry. A computational study of solution effects on the disproportionation of electrochemically generated polycyclic aromatic hydrocarbon radical anions. Thermodynamics and structure // Tetrahedron. 2006. — Vol. 62. — P. 6558−6565.
  127. M. Gomez, F. J. Gonzalez, I. Gonzalez. Effect of host and guest structures on hydrogen bonding association II J. Electrochem. Soc. 2003. — Vol. 150. — E527-E534.
  128. R. Kuhn, F. Weygand. p- und o-Nitro-phenylhydroxylamin // Ber. Deutsch. Chem. Ges. 1936. -B. 69. — S. 1969−1974.
  129. F. G. Bordwell, W.-Zh. Liu. Equilibrium acidities and homolytic bond dissociation energies of N-H and/or O-H bonds in N-phenylhydroxylamine and its derivatives II J. Am. Chem. Soc. 1996. — Vol. 118. — P. 8777−8781.
  130. J. A. Richards, P. E. Whitson, D. H. Evans. Electrochemical oxidation of 2,4,6-tri-tert-butylphenol II J. Electroanal. Chem. 1975. — Vol. 63. — P. 311−327.
  131. Y. Zhao, F. G. Bordwell. Acidities of radical anions (pKha"-) derived from nitro-substituted aromatic weak acids and the formation of radical dianions // J. Org. Chem. -1996. Vol. 61. — P. 2530−2535.
  132. Г. А. Вагина, Т. В. Троепольская, Ю. П. Китаев. Электрохимическое поведение оксимов в неводной среде II Изв. АН, сер. хим 1983. — С. 2488−2493.
  133. В. Soucaze-Guillous, Н: Lund: Electrochemical reduction of oximes in aprotic media II Acta Chem. Scand. 1998. — Vol. 52. — P. 417−424.
  134. Г. M. Волков, В. И. Калугин, К. И. Сысков. Некоторые' физические и химические свойства углеситалла // Докл. АН. 1968: — Т. 183. — С. 396−397.
  135. О. Л. Кабанова, Ю. А. Гончаровю Углеситалл новый электродный материал в вольтамперометрии // Журн. аналитической химии. — 1973. — Т. 28. — С. 1665−1668.
  136. С. Э. Паничева, Б. К. Филановский. Сравнение электродов из стеклоуглерода и углеситалла в инверсионных электрохимических методах // Заводская лаборатория. 1989. — № 5. — С. 23−24.
  137. О. Л. Кабанова. Углеситалловый электрод в аналитической химии // Журн. аналитической химии. 1981.-Т. 36.— С. 1421−1428.
  138. N. G. Tsierkezos. Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 К // J. Solution. Chem. 2007. -Vol. 36.-P. 289−302.
  139. E. Б. Мельников, Г. А. Субоч, E. Ю. Беляев. Окисление первичных ароматических аминов катализируемое соединениями вольфрама И Журн. орг. химии. — 1995.-Т. 31.-С. 1849−1851.
  140. F. Y. Alway // Ber. Deutsch. Chem. Ges. 1903. — В. 36. — S. 2530.
  141. J. Mclntyre, J. С. E. Simpson. Cinnolines and other heterocyclic types in relation to the chemotherapy of trypanosomiasis. Part IV. Synthesis of azocinnoline derivatives II J. Chem. Soc. 1952. — P. 2606−2615.
  142. R. Kuhn, F. Weygand. p- und o-Nitro-phenylhydroxylamin // Ber. Deutsch. Chem. Ges. 1936. — B. 69. — S. 1969−1974.
  143. K. Brand. Die Partielle Reduction aromatischer Dinitro- und Polynitro-Verbindungen auf electrochemischem Wege. I. Mittheilung // Ber. Deutsch. Chem. Ges. -1905.-B. 4.-P. 4006−4015.
  144. A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange II J. Chem. Phys. 1993. — Vol. 98. — P. 5648.
  145. C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. B. 1988. — Vol. 37. -P. 785−789.
  146. S. H. Vosko, L. Wilk, M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis // Can. J. Phys. -1980.-Vol. 58.-P. 1200−1211.
  147. M. H. Михайлов, H. Д. Чувылкин, И. В. Мишин, JI. М. Кустов. О возможности отрыва атомарного водорода при захвате электрона бренстедовским центром в цеолитах // Журн. физ. химии. — 2009. — Т. 83. С. 868−872.
  148. J. Tomassi, М. Persico. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent // Chem. Rev. 1994. — Vol. 94. -P. 2027−2094.
  149. E. Cances, B. Mennuchi, J. Tomassi. A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics II J. Chem. Phys. 1997. — Vol. 107. — P. 3032.
  150. V. Barone, M. Cossi. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model // J. Phys. Chem. A. 1998. — Vol. 102. -P. 1995−2001.
  151. D. Britz. Digital simulation in electrochemistry. Third edition. Berlin.: Springer-Verlag, 2005. — 338 p.
Заполнить форму текущей работой